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In this paper we study a normalized anisotropic Gauss curvature flow of strictly
convex, closed hypersurfaces in the Euclidean space. We prove that the flow exists
for all time and converges smoothly to the unique, strictly convex solution of a
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the Dual Orlicz-Minkowski problem for smooth measures, especially for even smooth
measures.
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1. Introduction

The Gauss curvature flow was introduced by Firey [15] to model the shape change
of worn stones. The first celebrated result was proved by Andrews in [3], where
Firey’s conjecture that convex surfaces in R

3 moving by their Gauss curvature
became spherical as they contracted to points was proved. Guan-Ni [16] proved that
convex hypersurfaces in R

n+1 contracting along the Gauss curvature flow converged
(after rescaling to fixed volume) to a smooth strictly convex self-similar solution
of the flow. Soon, Andrews-Guan-Ni [7] extended the results in [16] to the flow
by powers of the Gauss curvature Kα with α > (1/n + 2). Recently, Brendle-Choi-
Daskalopoulos [9] proved that round spheres were the only closed, strictly convex
self-similar solutions to the Kα-flow with α > (1/n + 2). Therefore, the generalized
Firey’s conjecture proposed by Andrews in [1] was completely solved, that was, the
solutions of the flow by powers of the Gauss curvature converged to spheres for
α > (1/n + 2). We also refer to [2,5,6,14] and the references therein.

As a natural extension of Gauss curvature flows, anisotropic Gauss curvature
flows have attracted considerable attention and they provide alternative proofs for
the existence of solutions to elliptic PDEs arising in geometry and physics, espe-
cially for the Minkowski type problem. For example an alternative proof based
on the logarithmic Gauss curvature flow was given by Chou-Wang in [13] for the

c© The Author(s), 2021. Published by Cambridge University Press on behalf of
The Royal Society of Edinburgh

148

https://doi.org/10.1017/prm.2020.102 Published online by Cambridge University Press

mailto:nixiang@hubu.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/prm.2020.102&domain=pdf
https://doi.org/10.1017/prm.2020.102
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classical Minkowski problem, in [22] for a prescribing Gauss curvature problem.
Bryan-Ivaki-Scheuer in [10] have given an unified flow approach to smooth, even
Lp-Minkowski problems. Using a contracting Gauss curvature flow, Li-Sheng-Wang
[18] have provided a parabolic proof in the smooth category for the classical
Aleksandrov and dual Minkowski problems. Recently, two kinds of normalized
anisotropic Gauss curvature flow have been used to prove the Lp dual Minkowski
problems by Chen-Huang-Zhao [11] and Chen-Li [12], respectively. These results
are major source of inspiration for us.

Let M0 be a strictly convex, closed and smooth hypersurface in R
n+1 enclosing

the origin given by

X0 : M → R
n+1,

where M is an n-dimensional closed smooth Riemannian manifold. In this paper,
we study the long-time behavior of the following normalized anisotropic Gauss
curvature flow which is a family of hypersurfaces Mt = X(M, t) given by smooth
maps X : M× (0, T ) → R

n+1 satisfying the initial value problem⎧⎪⎨
⎪⎩

∂X

∂t
= −θ(t)f(ν)

rn+1

ϕ(r)
Kν + X, on M× (0, T ),

X(·, 0) = X0, on M,

(1.1)

where ν is the unit outer vector of Mt at X, K denotes the Gauss curvature of Mt

at X, r = |X| denotes the distance form X to the origin, f ∈ C∞(Sn) with f > 0,
ϕ ∈ C∞(0,+∞) is a positive smooth function, and

θ(t) =
∫

Sn

ϕ(r(ξ, t))dξ

[ ∫
Sn

f(x)dx

]−1

.

Here we parametrize the radial function r as a function from S
n to R. Both dξ and

dx are the spherical measures on S
n.

The reason that we study the flow (1.1) is to explore the existence of the smooth
solutions to the dual Orlicz-Minkowski problem introduced by Zhu-Xing-Ye [24],
which is equivalent to solve the following Monge-Ampère type equation

u ϕ(r)
rn+1

· det(uij + u δij) = λf(x) on S
n, (1.2)

where r =
√|Du|2 + u2 and λ is a positive constant. In deed, let K0 be the set of

all convex bodies in R
n+1 which contain the origin in their interiors, ϕ : (0,+∞) →

(0,+∞) be a continuous function. Zhu-Xing-Ye [24] have introduced the dual Orlicz
curvature measure of K ∈ K0

C̃ϕ(K,E) =
1

n + 1

∫
α∗

K(E)

ϕ(rK(ξ))dξ

for each Borel set E ⊂ S
n, where α∗

K is the reverse radial Gauss image on S
n, rK

is the radial function of K, dξ is the spherical measure on S
n, see [24] for more

details. They posed the following dual Orlicz-Minkowski problem in [24]:
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Proposition 1.1 Dual Orlicz-Minkowski problem. Under what conditions on ϕ
and a nonzero finite Borel measure μ on S

n, there exists a constant λ > 0 and
K ∈ K0 such that λ · μ = C̃ϕ(K, ·)?

When μ has a density f , this kind of Minkowski problem is equivalent to solve
the Monge-Ampère type equation (1.2). When ϕ(r) = rq, it becomes the dual
Minkowski problem for the q-th dual curvature measure considered by Huang-
Lutwak-Yang-Zhang [17]. It is worth pointing out that they also proved the
existence of symmetric solutions for the case q ∈ (0, n + 1) under some conditions.
For q = n + 1, the dual Minkowski problem becomes the logarithmic Minkowski
problem which was studied in [8]. For q < 0, the existence and uniqueness of weak
solutions were obtained by Zhao [23].

It is to be expected that the flow (1.1) converges to a solution of the equation
(1.2). We obtain the following result for the flow (1.1).

Theorem 1.2. Suppose that f ∈ C∞(Sn) is a positive and even function and ϕ ∈
C∞(0,+∞) is a positive function satisfying

∫ 1

0

ϕ(s)
s

ds < +∞. (1.3)

Let M0 ⊂ R
n+1 be an origin-symmetric, strictly convex, closed and smooth hyper-

surface which contains the origin in its interior. Then,

(i) the normalized flow (1.1) has a unique smooth solution, which exists for any
time t ∈ [0,∞);

(ii) for each t ∈ [0,∞), Mt = X(M, t) is an origin-symmetric, strictly convex,
closed and smooth hypersurface which also contains the origin in its interior;

(iii) the support function u(x, t) of Mt = X(M, t) converges smoothly, as t → ∞,
to a positive, strictly convex and smooth solution of the equation (1.2) with
λ = limti→∞ θ(ti) > 0.

As a corollary of theorem 1.2, we get the following existence of solutions to the
dual Orlicz-Minkowski problem (1.2).

Theorem 1.3. Suppose that f ∈ C∞(Sn) is a positive and even function and
ϕ ∈ C∞(0,+∞) is a positive function satisfying (1.3). Then there exists a posi-
tive constant λ and a positive, smooth and even function u satisfying the equation
(1.2).

For the special case ϕ(r) = rq, the condition (1.3) in theorem 1.2 is equivalent
to q > 0. Thus, theorem 1.2 recovers a parabolic proof in the smooth category
for the existence of solutions to the even dual Minkowsi problem for q > 0 which
is given in [18]. Recently, Liu-Lu [19] also used the flow method to study the
dual Orlicz-Minkowski problem and they obtained the existence result under the
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condition that

lim
r→+∞ϕ(r) < f(x) < lim

r→0+
ϕ(r), ∀x ∈ S

n,

which means q < 0 if ϕ(r) = rq.
Our proof of theorem 1.2 is inspired by [11] and [18]. We need to obtain uniform

positive upper and lower bounds for the support function and principal curvatures
along the flow to derive its long-time existence. The difficulty of these a priori
estimates for the flow (1.1) lies in the inhomogeneous term ϕ(r). So we need to
choose proper auxiliary functions and do more delicate computations. Then the
long-time existence follows by standard arguments.

The organization of this paper is as follows. In § 2 we start with some pre-
liminaries. The C0, C1 and C2 estimates are given in § 3. In § 4 we prove
theorem 1.2.

2. Preliminaries

2.1. Basic properties of convex hypersurfaces

We first recall some basic properties of convex hypersurfaces. Let M be a smooth,
closed and strictly convex hypersurface in R

n+1. Assume that M is parametrized
by the inverse Gauss map

X : S
n → M.

The support function u : S
n → R of M is defined by

u(x) = sup{〈x, y〉 : y ∈ M}.
The supreme is attained at a point y such that x is the outer normal of M at X.
It is easy to check that

X = u(x)x + Du(x),

where D is the covariant derivative with respect to the standard metric σij of the
sphere S

n. Hence,

r = |X| =
√

u2 + |Du|2, (2.1)

and

u =
r2√

r2 + |Dr|2 . (2.2)

The second fundamental form of M is given by, see e.g. [4,21],

hij = uij + uσij , (2.3)

where uij = DiDju denotes the second-order covariant derivative of u with respect
to the spherical metric σij . By Weingarten’s formula,

σij =
〈

∂ν

∂xi
,

∂ν

∂xj

〉
= hikgklhjl, (2.4)

https://doi.org/10.1017/prm.2020.102 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.102


152 L. Chen, Q. Tu, D. Wu and N. Xiang

where gij is the metric of M and gij is its inverse. It follows from (2.3) and (2.4)
that the principal radii of curvature of M, under a smooth local orthonormal frame
on S

n, are the eigenvalues of the matrix

bij = uij + uδij .

In particular, the Gauss curvature is given by

K =
1

det(uij + uδij)
.

2.2. Geometric flow and its associated functional

Recall the normalized anisotropic Gauss curvature flow (1.1)⎧⎪⎨
⎪⎩

∂X

∂t
= −θ(t)f(ν)

rn+1

ϕ(r)
Kν + X,

X(·, 0) = X0,

where

θ(t) =
∫

Sn

ϕ(r(ξ, t))dξ

[ ∫
Sn

f(x)dx

]−1

.

By the definition of support function, we know u(x, t) = 〈x,X(x, t)〉. Hence,⎧⎪⎨
⎪⎩

∂u

∂t
(x, t) = −θ(t)

f(x)rn+1

ϕ(r)
K + u(x, t),

u(·, 0) = u0.

(2.5)

The normalized flow (1.1) can be also described by the following scalar equation
for the radial function r(·, t)⎧⎪⎨

⎪⎩
∂r

∂t
(ξ, t) = −θ(t)

f(x)rn+2

ϕ(r)u
K + r(ξ, t),

r(·, 0) = r0,

(2.6)

where we use the following relation (see § 3 in [12] for the proof) to get the above
equation

1
r(ξ, t)

∂r(ξ, t)
∂t

=
1

u(x, t)
∂u(x, t)

∂t
.

For a convex body Ω ⊂ R
n+1 which contains the origin in its interior, we define

ϕ-volume of Ω as

Vϕ(Ω) =
∫

Sn

dξ

∫ r(ξ)

0

ϕ(s)
s

ds,

where r is the radial function of Ω. When ϕ(s) = sq, Vϕ(Ω) is the q-volume of the
convex body Ω ⊂ R

n+1, see [11,12]. Under the condition (1.3), Vϕ is well defined.
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We will show below that Vϕ(Ωt) is unchanged along the flow (1.1), where Ωt is a
compact convex body in R

n+1 with the boundary Mt.

Lemma 2.1. Let X(·, t) be a strictly convex solution to the flow (1.1) which encloses
the origin for t ∈ (0, T ), then under the condition (1.3), we obtain

Vϕ(Ωt) = Vϕ(Ω0).

Proof. By a direction calculation, we have

d
dt

Vϕ(Ωt) =
∫

Sn

ϕ(r)
r

∂r

∂t
dξ

=
∫

Sn

ϕ(r)
r

(
− θ(t)

f(x)rn+2

ϕ(r)u
K + r(ξ, t))

)
dξ

= − θ(t)
∫

Sn

f(x)rn+1

u
Kdξ +

∫
Sn

ϕ(r)dξ

= 0,

where we use the integration by substitution (see e.g. [12,17]) to get the last
inequality

dx

dξ
=

rn+1K

u
.

We complete the proof. �

Next, we define the entropy functional along the flow (1.1)

Jϕ(X(·, t)) =
∫

Sn

log u(x, t) · f(x)dx.

The following lemma shows that the functional Jϕ is non-increasing along the flow
(1.1).

Lemma 2.2. Assume the condition (1.3) holds and let X(·, t) be a strictly convex
solution to the flow (1.1) which encloses the origin for t ∈ (0, T ). For any ϕ � 0,
we have

d
dt

Jϕ(X(·, t)) � 0

and the equality holds if and only if Xt satisfies the elliptic equation (1.2) with
λ = θ(t).

Proof. We have

d
dt

Jϕ(X(·, t))

=
∫

Sn

1
u

∂u(x, t)
∂t

f(x)dx

=
∫

Sn

1
u

(
− θ(t)

f(x)rn+1

ϕ(r)
K + u(x, t)

)
f(x)dx
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=
[ ∫

Sn

f(x)dx

]−1{
−

∫
Sn

uϕ(r)
rn+1K

dx

∫
Sn

rn+1K

uϕ(r)
f2dx +

∫
Sn

fdx

∫
Sn

fdx

}

=
[ ∫

Sn

f(x)dx

]−1{
−

∫
Sn

uϕ(r)
frn+1K

dσ

∫
Sn

rn+1K

uϕ(r)
fdσ +

∫
Sn

dσ

∫
Sn

dσ

}
� 0

in view of

(∫
Sn

dσ

)2

�
∫

Sn

uϕ(r)
frn+1K

dσ

∫
Sn

rn+1K

uϕ(r)
fdσ,

which is implied by Hölder inequality and where dσ = f(x)dx. Clearly, the equality
holds if and only if

f(x)rn+1K

uϕ(r)
=

1
c(t)

.

Thus, X(·, t) satisfies the elliptic equation (1.2) with λ = θ(t). �

3. A priori estimates

In this section, we will derive uniform positive upper and lower bounds for the
support function and principal curvatures along the flow (1.1). The key is the lower
bound of u. The difficulty of the proof lies in dealing with the inhomogeneous term
ϕ(r).

3.1. C0 and C1 estimates

In this subsection, we will derive C0 and C1 estimates for the support function
along the flow (1.1).

Lemma 3.1. Suppose the condition (1.3) holds and let X(·, t) be an origin-
symmetric and strictly convex solution to the flow (1.1) which encloses the origin
for t ∈ (0, T ), then we have

1
C

� u(x, t) � C, ∀(x, t) ∈ S
n × (0, T ), (3.1)

and

|Du|(x, t) � C, ∀(x, t) ∈ S
n × (0, T ). (3.2)

Proof. Assume u(·, t) attains its spatial maximum at a point xt. Since Mt is origin-
symmetric, we have by the definition of support function that

u(x, t) � u(xt, t)|〈x, xt〉|, ∀x ∈ Sn.
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Thus, we know from lemma 2.2

C �
∫

Sn

log u(x, t) · f(x)dx

� log u(xt, t)
∫

Sn

f(x)dx +
∫

Sn

log |〈x, xt〉|f(x)dx

� C1 log u(xt, t) − C2,

which implies

C � max
Sn

u(·, t).

This yields the first inequality in (3.1). By (2.1), we conclude

max
Sn

|Du(·, t)|2 � max
Sn

r2(·, t) = max
Sn

u2(·, t).

So

max
Sn

|Du|(·, t) � max
Sn

u(·, t),

leading to the inequality (3.2).
Next we will derive a positive lower bound of u. Here we use the idea in [11]

to complete our proof by contradiction. Assume u(x, t) is not uniformly bounded
away from 0 which means there exists ti such that

inf
x∈Sn

u(x, ti) → 0

as i → ∞, where ti ∈ (0, T ). Recall that Ωt is the origin-symmetric convex body
containing the origin satisfying ∂Ωt = Mt. Thus, using the Blaschke selection
theorem, we can say that {Ωti

}i=1,2,... (after choosing a subsequence) converge to
a origin-symmetric convex body Ω0. Then, the support function uΩ0 of Ω0 satisfies

inf
ξ∈Sn

uΩ0(x) = 0.

So, there exists x0 ∈ S
n such that uΩ0(x0) = 0 and thus uΩ0(−x0) = 0, which

implies that Ω0 is contained in a lower-dimensional subspace. This means that

r(ξ, ti) → 0

as i → ∞ almost everywhere with respect to the spherical Lebesgue measure. Under
the condition (1.3), we can use the bounded convergence theorem to get∫

Sn

dξ

∫ r(ξ,0)

0

ϕ(s)
s

ds =
∫

Sn

dξ

∫ r(ξ,ti)

0

ϕ(s)
s

ds → 0

as i → ∞, which is a contradiction. So, we complete our proof. �

Clearly, C0 and C1 estimates of u imply the corresponding C0 and C1 estimates
of r by (2.1) and (2.2).
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Corollary 3.2. Under the same assumptions in lemma 3.1, we have

1
C

� r(ξ, t) � C, ∀(ξ, t) ∈ S
n × (0, T ),

|Dr|(ξ, t) � C, ∀(ξ, t) ∈ S
n × (0, T ),

and

1
C

� θ(t) � C, ∀t ∈ (0, T ).

3.2. C2-estimates

In this subsection we establish the uniformly upper bound of Gauss curvature,
and uniformly positive lower bounds for the principle curvatures for the normalized
flow (1.1). We first use the technique introduced by Tso [20] to derive the upper
bound of the Gauss curvature along the flow (1.1), see also the proof of lemma 4.1
in [18] and lemma 5.1 in [11].

Lemma 3.3. Let X(·, t) be a strictly convex solution to the flow (1.1) which encloses
the origin for t ∈ (0, T ). Then, there exists a positive constant C depending only ϕ,
maxSn×(0,T ) u and minSn×(0,T ) u, such that

max
Sn

K(·, t) � C, ∀t ∈ (0, T ).

Proof. We apply the maximum principle to the following auxiliary function defined
on the unit sphere S

n,

W (x, t) =
1

θ(t)
−ut + u

u − ε0
=

f(x)
ϕ(r)

rn+1 K

u − ε0
,

where

ε0 =
1
2

min
(x,t)∈Sn×(0,T )

u(x, t) > 0.

For any fixed t ∈ (0, T ), we assume the maximum of W is attained at x0 ∈ S
n.

Then, we have at (x0, t)

0 = θ(t)Wi =
−uti + ui

u − ε0
+

ut − u

(u − ε0)2
ui, (3.3)

and

0 � θ(t)D2
ijW =

−utij + uij

u − ε0
+

(ut − u)uij

(u − ε0)2
, (3.4)

where (3.3) is used in deriving (3.4). The inequality (3.4) should be understood in
sense of positive semi-definite matrix. Hence,

utij + utδij � θ(t)(−bij + ε0δij)W + bij .
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Thus,

Kt = −Kbij(utij + utδij) � −nK − θ(t)KW (−n + ε0H),

where H denotes the mean curvature of X(·, t). Notice that H � nK
1
n , we obtain

Kt � CW (1 + W ) − CW 2+ 1
n .

Using the equation (2.5) and the inequality above, we have

Wt =
[
f(x)
ϕ(r)

rn+1

u − ε0

]
t

K +
[
f(x)
ϕ(r)

rn+1

u − ε0

]
Kt

� CW 2 + CW − CW 2+ 1
n ,

in view of

ut ≈ CW + C, rt =
uut + ukukt

r
≈ CW + C.

Without loss of generality we assume that K ≈ W 
 1, which implies that

Wt � 0.

Therefore, we arrive at W � C for some positive constant C depending on the
C1-norm of r and ε0. Thus, the upper bound of K follows consequently. �

Next, we show the principle curvatures of X(·, t) are bounded from below along
the flow (1.1). The proof is similar to lemma 4.2 in [18] and lemma 5.1 in [11].

Lemma 3.4. Let X(·, t) be a strictly convex solution to the flow (1.1) which encloses
the origin for t ∈ (0, T ). Then, there exists a positive constant C depending only
on ϕ, maxSn×(0,T ) u and minSn×(0,T ) u, such that the principle curvatures of X(·, t)
are bounded from below

κi(x, t) � C, ∀(x, t) ∈ S
n × (0, T ), and i = 1, 2 . . . , n. (3.5)

Proof. We consider the auxiliary function

Λ̃(x, t) = log λmax({bij}) − A log u + B|Du|2,

where A and B are positive constants which will be chosen later, and λmax({bij})
denotes the maximal eigenvalue of {bij = uij + uδij}. For convenience, we write
{bij} for {bij}−1.

For any fixed t ∈ (0, T ), we assume the maximum Λ̃ is achieved at some point x0 ∈
S

n. By rotation, we may assume {bij(x0, t)} is diagonal and λmax({bij})(x0, t) =
b11(x0, t). Thus, it is sufficient to prove b11(x0, t) � C. Then, we define a new
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auxiliary function

Λ(x, t) = log b11 − A log u + B|Du|2,
which attains the local maximum at x0 for fixed t. Thus, we have at x0

0 = DiΛ = b11b11;i − A
ui

u
+ 2B

∑
k

ukuki (3.6)

and

0 � DiDjΛ = b11b11;ij − (b11)2b11;ib11;j − A

(
uij

u
− uiuj

u2

)
(3.7)

+ 2B
∑

k

(
ukjuki + ukukij

)
.

We can rewrite equation (2.5) as

log(u − ut) = − log det(bij) + α(x, t), (3.8)

where

α(x, t) = log
(

θ(t)
f(x)rn+1

ϕ(r)

)
.

Differentiating (3.8), we have

uk − ukt

u − ut
= −bijbij;k + Dkα (3.9)

and

u11 − u11t

u − ut
=

(u1 − u1t)2

(u − ut)2
− biibii;11 + biibjj(bij;1)2 + D1D1α. (3.10)

Recall the Ricci identity

bii;11 = b11;ii − b11 + bii,

by taking it into (3.10) we have

u11 − u11t

u − ut
=

(u1 − u1t)2

(u − ut)2
− biib11;ii +

∑
i

biib11 − n (3.11)

+ biibjj(bij;1)2 + D1D1α.

So, we have

∂tΛ
u − ut

= b11

(
u11t − u11

u − ut
+

u11 + u − u + ut

u − ut

)
− A

1
u

ut − u + u

u − ut
+ 2B

ukukt

u − ut

= b11

[
− (u1 − u1t)2

(u − ut)2
+ biib11;ii −

∑
i

biib11 − biibjj(bij;1)2 − D1D1α

]

+
1 − A

u − ut
+

A

u
+ 2B

∑
k ukukt

u − ut
+ (n − 1)b11. (3.12)
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We know from (3.7) and (3.9)

0 � b11[biib11;ii − biib11(bi1;1)2] − A
n

u
+ A

∑
i

bii + Abii uiui

u2

+ 2B

[
bii(bii − u)2 +

∑
k

uk

(
Dkα − uk − ukt

u − ut

)
− biiuiui

]

� b11[biib11;ii − biibjj(bij;1)2] − A
n

u
+ A

∑
i

bii + Abii uiui

u2

+ 2B

[ ∑
i

bii(b2
ii − 2ubii) +

∑
k

uk

(
Dkα − uk − ukt

u − ut

)
− biiuiui

]

� b11[biib11;ii − biibjj(bij;1)2] − A
n

u
+ A

∑
i

bii + Abii uiui

u2

+ 2B

[ ∑
i

bii − 2nu +
∑

k

uk

(
Dkα − uk − ukt

u − ut

)
− biiuiui

]
.

Thus, plugging the inequality above into (3.12), we have

∂tΛ
u − ut

� − b11D1D1α − 2B
∑

k

ukDkα +
1 − A + 2B|Du|2

u − ut
(3.13)

+
(n + 1)A

u
+ (n − 1)b11 + (2B|Du| − A − 1)

∑
i

bii

− Abii uiui

u2
− 2B

∑
i

bii + 4nBu.

Now, we need to estimate the first two terms in the right hand of the inequality.
Clearly, a direct calculation results in

ri =
uui +

∑
k ukuki

r
=

uibii

r

and

rij =
uuij + uiuj +

∑
k ukukij +

∑
k ukjuki

r
− uiuibiibjj

r3
.

Hence, we obtain by lemma 3.1 and corollary 3.2

− b11D1D1α − 2B
∑

k

ukDkα

= −b11

[
f11

f
− f2

1

f2
− (n + 1)

r2
1

r2
+

(ϕ′)2r2
1

ϕ2
− ϕ′′r2

1

ϕ

]

− b11

[
(n + 1)

1
r
− ϕ′

ϕ

]
r11 − 2B

∑
k

uk

(
fk

f
+ [(n + 1)

1
r
− ϕ′

ϕ
]rk

)
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� Cb11(1 + b11) + CB −
[
(n + 1)

1
r
− ϕ′

ϕ

]
(b11r11 + 2Bukrk)

� Cb11(1 + b11 + b2
11) + CB −

[
(n + 1)

1
r
− ϕ′

ϕ

](
b11 ukuk11

r
+ 2B

ukukukk

r

)
.

Then, using (3.6), we have

− b11D1D1α − 2B
∑

k

ukDkα

� Cb11(1 + b11 + b2
11) + CB −

[
(n + 1)

1
r
− ϕ′

ϕ

]
uk

r

(
A

uk

u
− b11u1δk1

)
� Cb11(1 + b11 + b2

11) + CB + CA.

Thus, using the inequality above, we conclude from (3.13)

∂tΛ
u − ut

� C(b11 + 1 + b11) + CB + CA +
1 − A + 2B|Du|2

u − ut
+

(n + 1)A
u

+ (n − 1)b11 + (2B|Du| − A − 1)
∑

i

bii − Abii uiui

u2
− 2B

∑
i

bii + 4nBu

< 0,

provided b11 
 1 and if we choose A 
 B. So we complete the proof. �

4. The convergence of the normalized flow

With the help of a prior estimates in the section above, we show the long-time
existence and asymptotic behavior of the normalized flow (1.1) which complete
theorem 1.2.

Proof. Since the equation (2.5) is parabolic, we have the short time existence. Let
T be the maximal time such that u(·, t) is a positive, smooth and strictly convex
solution to (2.5) for all t ∈ (0, T ). Since M is origin-symmetric and f is even, X(·, t)
is an origin-symmetric and strictly convex solution to the flow (1.1) which encloses
the origin for t ∈ (0, T ). Thus, lemmas 3.1, 3.3 and corollary 3.2 enable us to apply
lemma 3.4 to equation (2.5) and thus we can deduce a uniformly lower estimate for
the biggest eigenvalue of {(uij + uδij)(x, t)}. This together with lemma 3.4 implies

C−1I � (uij + uδij)(x, t) � CI, ∀(x, t) ∈ S
n × (0, T ),

where C > 0 depends only on n, ϕ, f and u0. This shows that the equation (2.5)
is uniformly parabolic. Using Evans-Krylov estimates and Schauder estimates, we
obtain

|u|Cl,m
x,t (Sn×(0,T )) � Cl,m

for some Cl,m independent of T . Hence T = ∞. The uniqueness of the smooth
solution u(·, t) follows by the parabolic comparison principle.
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By the monotonicity of Jϕ (see lemma 2.2), and noticing that

|Jϕ(X(·, t))| � C, ∀t ∈ (0,∞),

we conclude that ∫ ∞

0

| d
dt

Jϕ(X(·, t))| � C.

Hence, there is a sequence ti → ∞ such that

d
dt

Jϕ(X(·, ti)) → 0.

In view of lemma 2.2, we see that u(·, ti) converge smoothly to a positive, smooth
and strictly convex u∞ solving (1.2) with λ = limti→∞ θ(ti). �
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