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The emergence of drug-resistant malaria
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

Stochastic processes play a vital role in the early stages of the evolution of drug-resistant malaria. We present a simple

and flexible method for investigating these processes and understanding how they affect the emergence of drug-resistant

malaria. Qualitatively different predictions can be made depending on the biological and epidemiological factors which

prevail in the field. Intense intra-host competition between co-infecting clones, low numbers of genes required to encode

resistance, and high drug usage all encourage the emergence of drug resistance. Drug-resistant forms present at the time

drug application starts are less likely to survive than those which arise subsequently; survival of the former largely depends

on how rapidly malaria population size stabilizes after drug application. In particular, whether resistance is more likely

to emerge in areas of high or low transmission depends on malaria intra-host dynamics, the level of drug usage, the

population regulation of malaria, and the number of genes required to encode resistance. These factors are discussed in

relation to the practical implementation of drug control programmes.
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

Several previous papers have investigated the dy-

namics underlying the evolution of drug-resistant

malaria (Curtis & Otoo, 1986; Dye, 1991, 1994; Dye

& Williams, 1997; Hastings, 1997; Mackinnon &

Hastings, 1998). In these studies, these dynamics

have been assumed either to be deterministic or else

the studies have simulated conditions where the

frequency of resistance has been sufficiently high

that stochastic effects can be ignored. However, in

the initial emergence of resistant malaria, the number

of resistant genotypes may be low and the likelihood

that they become extinct or become established in

the population will depend on the stochastic events

which surround their transmission. This was ex-

amined by Mackinnon (1997) who concluded that

resistance is more likely to evolve in areas of intense

malaria transmission. In contrast, Hastings (1997)

concluded that drug-resistant genotypes at very low

frequencies could evolve faster at either high or low

transmission levels depending on the assumptions

made about the underlying biology. The purpose of

this paper is 2-fold: firstly, to show how these

differing conclusions can be reconciled by examining

the assumptions and parameter spaces examined in

the 2 models, and secondly, to present a general and

simple method to predict the initial stages of the

emergence of drug-resistant malaria. The latter

objective is important as it allows the method to be

applicable to situations where any number of genes
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may be required to encode resistance, and to

investigate a variety of biological assumptions and

processes which underlie the model.



The fate of a single drug-resistant mutant depends

on its probability of being transmitted to the next

generation. If the mean number of offspring is

greater than 1, the mutant has a non-zero probability

of surviving and becoming established in the popu-

lation: this probability depends on the mean and the

variance of the number of offspring.

As a concrete example, consider a highly ad-

vantageous mutation which is expected to double in

frequency each generation, that is each mutation

would, on average, transmit 2 copies of itself to the

subsequent generation. In reality, chance ‘stoch-

astic ’ processes such as death of the mosquito,

inoculation into an immune host, and so on, mean

that it will not invariably transmit exactly 2 copies

but may transmit 0, 1, 2, 3, 4, 5… depending on

chance. Assuming a Poisson distribution with mean

of 2 it will transmit 0 with probability 0±14, 1 with

probability 0±27, 2 with probability 0±27, 3 with

probability of 0±18 and so on. The critical point is

that even though it is a highly advantageous

mutation, it may be lost from the population purely

by chance, i.e. leave zero offspring with probability

0±14; even if it successfully transmits 2 copies to

the next generation then both may be lost in the

subsequent generation with probability 0±14#¯0±02.

There is a standard body of theory which calculates
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the probability of it being lost by chance extinction

(and by extension the probability of it surviving)

given the expected mean number of transmissions

and the variance associated with this mean; this

theory is that of ‘branching processes’ which will be

employed later.

There is one other methodological caveat. We

require both the mean infection level (which deter-

mines recombination rate) and the mean number of

successful transmissions per host. At equilibrium,

these are obviously equal in the discrete generation

model employed here. Slight disparities may occur if

populations are shrinking as a result of drug

application (see later Discussion section of norma-

lization); under these circumstances transmission

may be less than infection, but this disparity is

unlikely to affect the results presented here. The

analyses would, however, be inappropriate in an

epidemic situation where low infection rates (typi-

cally by a single clone) may be associated with very

large transmission rates. On grounds of brevity we

refer to ‘mean infection rate’ as the epidemiological

variable rather than its equivalent of ‘mean number

of successful transmissions’. The former also has the

advantage that it can actually be measured (e.g. Hill

& Babiker, 1995 and references therein) and used to

compare populations.

The following sections describe the mean number

of offspring for a resistant malaria parasite as a

function of the 3 forces determining mutant survival

– drug treatment, mean infection rate and recom-

bination. The methods for calculating survival

probability based on the distribution of offspring

number are then given followed by a description of

some of the assumptions made.

Calculating mean number of resistant haplotypes

successfully transmitted from a single resistant

haplotype

It will be assumed initially that alleles at either 1 or

2 loci are required to encode drug resistance although

the method can be extended to any number of loci.

The following derivation is derived intuitively but a

more rigorous derivation has been given by Hastings

(1997). We assume for clarity that the frequency of

resistant clones and alleles are negligible, that natural

selection is absent and a constant number, c, of

independent clones are present in each individual.

(These assumptions may be easily relaxed and do not

affect the conclusions below.) Each clone in a host is

assumed to have been acquired independently, each

successful mosquito bite transmitting only a single

clone as assumed in previous studies (Hill & Babiker,

1995; Hill et al. 1995; Hastings, 1997; Mackinnon,

1997; Mackinnon & Hastings, 1998). In an untreated

host the probability of a resistant haplotype surviving

meiosis and being transmitted to the next generation

is τ¯x#­2x(1®x)d(n) where x¯1}c is the fre-

quency of a resistant clone within the host (which

can therefore be adjusted to incorporate the effects of

natural selection (Hastings, 1997; Mackinnon,

1997)), and d(n)¯1}2n is the probability that it

survives meiosis with a sensitive clone assuming n

loci are required to encode resistance (Hastings,

1997). In the case of 2 unlinked genes encoding

resistance, d(n)¯0±25 so τ¯1}2c(1­1}c). Now

assume that a proportion, T, of the population of

hosts are treated with drugs: susceptible haplotypes

will, by definition, be eliminated in this group while

resistant forms survive and transmit t copies of

themselves to the subsequent generation. If the

population is assumed to be stable in its total size

(see later), the mean number of clones transmitted

per infection is c and the expected number of

resistant descendants transmitted per resistant

haplotype per generation, E(P«), is :

E(P«)¯
(1®T ) cτ­Tct

(1®T )
. (1a)

If, however, drugs have been only recently intro-

duced and the parasite population size is decreasing

as a consequence, we may also need to consider the

case when normalization is absent, as assumed by

Mackinnon (1997) i.e.

E(P«)¯ (1®T ) cτ­Tct. (1b)

A fuller discussion of when normalization is required

is given later.

The parameter t is used in 2 ways here: to

investigate the effects of intra-host dynamics

(Hastings, 1997) or to investigate the effects of the

drug on subsequent transmission (Mackinnon &

Hastings, 1998). The nature of the intra-host

dynamics is assumed to depend on the mechanism of

immune regulation within the infected host. Under a

model of generalization immunity (GI) the total

level of infection is regulated and a resistant

haplotype actively expands to replace any co-

infecting sensitive clones killed by drug treatment:

its expected transmission from such hosts therefore

increases from 1 to c. Under a model of specific

immunity (SI), each clone is regulated independently

and a resistant haplotype does not expand to replace

those killed by drug treatment: its mean transmission

to the following generation is 1. Hence setting t¯1

or t¯1}c restores the GI and SI models respect-

ively. This analysis assumes that drugs have no effect

on subsequent transmission, i.e. the resistant haplo-

type is completely resistant and its transmission

output is unaffected by drugs. Alternatively, t can be

considered to be the effect of the drug on trans-

mission, whether this be due to a direct effect of the

drug on transmission stages, or varying susceptibility

of the mutant to the drug, or through some complex

effect of immunity and within-host dynamics fol-

lowing drug treatment. For example t¯0±5 implies

that a treated individual host with a single ‘resistant’
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clone transmits half as much as the same individual

without drug treatment.

Calculation of survival probabilities from the

distribution of the number of offspring

The distribution of offspring from each resistant

clone can be assumed to be the weighted sum of 2

Poisson distributions (or negative binomial distri-

butions, as in Mackinnon (1997)), 1 with mean

cτ}(1®T ) and 1 with mean c}(1®T ) with frequen-

cies (1®T ) and T respectively for the GI model. An

analogous procedure is used to obtain the dis-

tribution of offspring in the SI model. Using

branching process theory, the probability-generating

function of this mixed distribution is then solved to

obtain the probability of survival of the mutant

(Crow & Kimura, 1970).



The values of E(P«) assuming that the population has

stabilized before the mutant arises (Equation 1a) and

that 2 loci jointly confer resistance are shown on Fig.

1A for the GI and SI models. The curve shows that

for the GI model the mean is higher at both low

(c!1±5) and high infection rates (c"3) than at

intermediate infection rates, thus producing the

interesting situation where it is true that both low

transmission rates and high transmission rates favour

mutant survival. The reason why this ‘valley’ effect

occurs (i.e. increasing survival probabilities as trans-

mission both decreases and increases) in the GI case

is because of the interplay between 2 processes.

Recombination breaks up resistant haplotypes more

frequently as infection rate increases. If this, plus

drug selection, were the only forces operating then a

plot of E(P«) against infection rate would be

qualitatively indistinguishable from the SI curve on

Fig. 1A. The reason why high infection levels may

result in higher rates of evolution in the GI model

lies in the model of intra-host dynamics. Trans-

mission from all hosts is assumed to be equal so,

effectively, a resistant haplotype in a treated host

expands to replace to co-infecting clones killed by

drugs; for example if mean infection (and hence

transmission) rate is 2±0 a single resistant haplotype

in a treated host would leave 2 offspring (i.e. double

in number), if mean infection}transmission rate was

3±0, it would leave 3 offspring and treble in number,

and so on. At high infection rates the number of co-

infecting clones is higher and so expansion is greater

and the increase in transmission higher; thus a linear

increase in E(P«) is superimposed on the loss due to

recombination, resulting in the type of GI curve

shown in Fig. 1A. Under an SI model this expansion

does not occur and there is no advantage at higher

infection rates, i.e. low transmission rates always

favour mutant survival. The choice between GI and

SI is problematic and this is not the place to attempt

a resolution; it is merely necessary to note that both

models are plausible but result in profoundly

different dynamics: resistance will only spread faster

in areas of high transmission if the term cTt

dominates Equation 1a, i.e. if the intrahost dynamics

are close to a GI model or if the drug causes little

reduction in transmission from hosts carrying the

mutant, i.e. t is close to 1 (see later). The values of T

and t for which this valley in survival probability

occurs are given later. Importantly, the valley in

survival probabilities never occurs in the absence of

normalization (as in Mackinnon, 1997) or in the case

of a single locus encoding resistance because when-

ever E(P«)"1, it is always increasing with c.

Since survival probability is greater than zero

whenever E(P«)"1, similar qualitative results for

survival probabilities are found (Fig. 1B). The

results from Fig. 1A do not translate directly onto

Fig. 1B; for example under GI, E(P«)¯1±11 for

transmission rates of 1±0 and 4±5 but the survival

probability is markedly lower for the latter. This

occurs because the dynamics are composed of 2

distributions and most (90% in this case) trans-

missions occur from untreated hosts. When infection

rates are high, the probability of loss (via meiosis) in

untreated hosts is larger and the overall probability

of a resistant clone leaving zero progeny is higher

(0±33 and 0±46 for transmission rates of 1±0 and 4±5
respectively).

The conditions under which the valley occurs for

the 2-locus case in which normalization is used are

quantified as follows. The exact level of drug

pressure (T ) and effect on transmission (t) for which

it is true that survival probabilities increase as

transmission rate decreases from a value of c to c* is

found from Equation 1a to be:

c!2,
1

2tcc*­1
"T"

c*®1

2tc*#®1­c*
, t"0.

This equation describes 3 regions, as shown in Fig.

2 for the cases of c¯1±1 or c¯1±5 and c®c* is small,

i.e. small reductions in transmission rate. The upper

(left) boundary for T represents the value above

which the mutant will have a strictly decreasing

probability of survival as transmission decreases.

For example, in a GI model (t¯1), when the

prevailing value of c¯1±5 and whenever drug

pressure is greater than T¯0±18, reductions in

transmission will always lead to a slower spread of

resistance. The lower boundary represents the value

of T below which survival probability will either

remain zero or increase with decreasing transmission

below the value of c, i.e. reducing transmission rate

will favour the spread of resistance. To continue the

example, for c¯1±5, further decreases in trans-
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Fig. 1. How survival of drug-resistant malaria varies

with infection and transmission rates (which are

assumed to be identical and constitute the independent,

epidemiological variable plotted along the x axis ; see

under Methods section for more details). (A) The

expected mean number of resistant haplotypes

transmitted to the next generation by each resistant

haplotype, E(P«), under a GI (——) or SI (±±±±±±) model

with drug treatment rates, T, of 0±05 or 0±1. (B) How

this expected mean number translates into the

probability of survival, assuming T¯0±1. (C) The

effects of incorporating the frequency of resistance

alleles expected under mutation}selection balance

assuming GI with T¯0±1; results are expressed relative

to survival probability expected when mean infection

rate is 1±05.

mission will not lead to faster spread of drug

resistance when T!0±1 because survival probability

remains zero. Between these boundaries for T,

survival probability will increase as transmission is

reduced below c, i.e. the valley exists. For a

prevailing transmission rate of c¯1±1, the valley

exists between T¯0±04 and T¯0±29. This range

extends as t decreases, i.e. moving towards an SI

model, but remains within the intermediate range of

drug pressure for most values of c and t. Note also

that the valley never occurs when c"2.

Fig. 2. Values of drug treatment rate (T ) and drug effect

on transmission (t) for which decreasing transmission

below the value of c (c¯1±5 or c¯1±1, as shown) has

different consequences. In the light shaded area,

reducing transmission below c will lead to a decrease in

survival probability; in the dark shaded area, it will lead

to zero change in survival probability. In the white area,

survival probability will increase as transmission rate

declines below c, but will become positive again at high

values of c, i.e. the valley behaviour exists. See text for

details.



Consider the fate of resistant haplotypes under 2

conditions: first, where they arise in the population

once drug use has stabilized the population (de novo

mutations), and second, where they pre-exist in the

population prior to drug use being commenced.

De novo mutations

Infectiousness and prevalence are likely to be

saturated for most transmission intensities in areas of

stable malaria (see e.g. Gupta & Snow, 1996) so that

if drug use does not drive the parasite population to

extinction, its size will eventually stabilize despite

continued drug usage. This stability is assumed to

occur because, although a proportion, T, of clones

are killed each generation, each surviving clone

(including, by definition, resistance clones) will

transmit on average 1}(1®T ) clones to compensate

for this loss. This case can also be argued from

another perspective.The population is at equilibrium

so an infection of c clones will transmit, on average, c

clones to the next generation. However this average

will consist of 2 types of infection, those which are

treated (frequency T ) and transmit zero offspring,

and those which are untreated (frequency 1®T ) and

transmit c}(1®T ) : hence T¬0­(1®T ) c}(1®T )

¯ c. Since, by definition, infections containing a

drug-resistant clone survive then they each leave

on average c}(1®T ) offspring. This is the reason

why the normalization factor (1®T ) is included in

Equation 1a. Note that this normalizing constant is

absent in standard branching theory (e.g. Crow &

Kimura, 1970) because the population size is
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unaffected by the presence of a single novel gene.

Because cτ in Equation 1a can never exceed unity,

the positive survival probabilities which occur at low

transmission rates will always be missed in the

absence of normalization. Thus this assumption is

critical to the outcome of the analysis.

Pre-existing mutations

Once drugs are applied to a population, stability will

eventually be reached but there are problems in

deciding how quickly the population size will

stabilize. These problems are discussed below.

(i) Slow stabilization. In this model, the fitnesses of

the sensitive and resistant parasites are as assumed

by Mackinnon (1997), namely, in untreated hosts,

the mean number of offspring is 1 for both sensitive

and resistant parasites and in treated hosts is,

respectively, zero and c (i.e. the normalization factor

1®T is omitted (Equation 1b). The mean number of

sensitive offspring is 1®T so, as there are only a few

mutants in the population, this means that the total

parasite population size is decreasing, at least in the

immediate term, due to drug killing. Note that this

decrease in population size does not violate the

assumptions of branching process theory as long as

the population remains large such that there is zero

probability that the total population goes extinct. In

the absence of normalization, the population is

predicted to shrink rapidly, e.g. if drug use is 20%

then population size falls 20% each ‘generation’;

if we assume 5 generations}year then after 2 years

population size is 0±8"!¯0±1 of the original and after

5 years population size is 0±8#&¯0±004 of the original.

We do not, of course, argue that this will in fact

happen, or has been observed. What we argue is that

this model adequately describes the first few critical

generations of drug use, during which period

(provided E(P«) is significantly above 1) stochastic

processes determine whether the pre-existing mutant

will survive. This assumption has a critical conse-

quence, as it is only under this model of complete

non-normalization that the peak in expected rate of

evolution of drug resistance predicted at low in-

fection rates does not translate into a positive survival

probability, i.e. the model predicts that drug-

resistant haplotypes would always be lost through

stochastic processes in populations with low in-

fection rates (as stated by Mackinnon, 1997).

(ii) Rapid stabilization. An alternative to the slow

stabilization model can be justified by considering

the factors which result in stabilization of population

size. This is an ecological concept which may be

more easily understood by analogy. Consider a bird

population which only nests in defined territories

and that the number of territories determines the

breeding size of the population. If, for example,

10% of the birds are artificially removed each year

by an over-zealous ecology student, then the re-

productive excess inherent in most species means

that the vacated territories will be utilized next

breeding season and stabilization of population size

occurs within a generation. If, however, the terri-

tories disappear, for example due to fire, then the

population will only re-stabilize once the vacated

territories become habitable again and it may take

several generations for the vegetation to regenerate.

In other words, population size will stabilize on a

time-scale determined by how quickly the vacated

territories can be re-colonized. Once stabilization

has occurred, a normalizing factor has to be included

as in Equation 1a. The analogy should now be clear:

in malaria populations, the breeding territory is

humans and population stability is reached once

haplotypes can be transmitted to territories (hosts)

left vacant by the sensitive haplotypes killed by

drugs. It seems reasonable to suppose that the reason

why resistant haplotypes cannot immediately occupy

these vacant niches once drugs are applied is residual

host immunity and that the time-scale to stabilization

depends on the length of this immunity. The

question is therefore to determine how long this

immunity lasts, i.e. once a niche is ‘cleared’ by drugs

how long does it remain inaccessible to resistant

forms? Some estimates of this come from field

studies where individuals are cleared by drugs and

their subsequent susceptibility to re-infection is

measured (see, for example, Hoffman et al. 1987;

Alonso et al. 1994). The results of these studies

suggest that re-infection may be possible after a

matter of weeks}months i.e. on the time-scale of

malaria ‘generations’. Since the epidemiological

factors such as bite rate etc. presumably do not

change then we can conclude that stabilization may

be rapid. This line of argument predicts that

normalization is immediately required and Equation

1a can be used to obtain survival probabilities as in

Fig. 1B.

The critical differences in the 2 models of pre-

existing mutation is the time taken for this stabili-

zation to occur. Epidemiological models based on

the prevailing conditions would need to be used to

predict whether the time taken for such an ad-

justment would be relatively ‘rapid’ or ‘slow’. These

are not, of course, the only possibilities but are ends

of a spectrum represented algebraically by full and

no normalization respectively. It is worth re-iterating

that only under a model of complete non-normali-

zation (as described by Mackinnon (1997)) does the

peak in expected rate of evolution at low infection

rate shown on Fig. 1A fail to translate into a positive

survival probability.

The method presents a simple means of calculating

survival probabilities and has the advantage of being

able to easily incorporate differing numbers of genes

required to encode resistance. In the above cal-
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culation it was assumed that 2 genes were required

but the method is general : if n genes are required

then d(n)¯1}2n (Hastings, 1997) in Equation 1. In

the case of a single gene required for resistance then

loss of drug resistance through recombination is

absent and d(n)¯1}2 so cτ¯1; substituting this

into Equation 1 shows that under a SI model, E(P«)
(and hence probability of survival) is independent of

infection rate while under a GI model, E(P«) (and

survival probability) is an increasing function of

infection rate. More interesting is the case where n"
2 as many putative vaccines have several components,

for example n¯4 in the case of the recent anti-

malaria vaccine trial of SPF66 (Patarroyo et al. 1988;

Alonso et al. 1994). There is a close correspondence

underlying the evolution of drug resistance and

vaccine insensitivity: in the former, alleles become

insensitive to the drug (e.g. by a conformational

change in their active sites) while in the latter, alleles

arise whose conformations have changed such that

they are not recognized by the antibodies elicited by

the vaccine. The results when n"2 are qualitatively

similar to the case of n¯2 for both the GI and SI

models, the only difference being that the period

where survival probability is zero which separates

the 2 modes in the GI model become longer (results

not shown).

The results examine the fate of a resistant clone

once it has arrived in the population but ignore the

biological and epidemiological processes which give

rise to them. One possibility is that resistant clones

enter a population through migration, either of

infected people or infected mosquitoes, which pre-

sumably occurs at a rate independent of transmission

rate. The other plausible possibility is that resistant

clones are formed by recombination bringing to-

gether the 2 alleles necessary to encode resistance.

Such alleles presumably exist in the population at a

frequency determined by the forces of mutation and

natural selection, the so-called mutation}selection

balance. Pre-existing resistant clones will occur at

frequency p# where p is the frequency of resistance

alleles. Once drug treatment has started they may

arise during recombination between different clones

(which occurs at the rate (1®1}c) so the de novo rate

of appearance is (1®1}c)p#). Under a simple model

of between-clone competition, it can be shown that p

is much higher at low rates of infection (Hastings,

1997) and it is informative to incorporate the effects

of mutation}selection balance into the calculation on

survival probability by multiplying their expected

frequency by their probability of survival. Since

between clone competition is absent when c¯1, the

results on Fig. 1C are shown only for c&1±05 and

scaled to the survival probability at this level of

infection.

A further epidemiological consideration of the

factors promoting drug resistance is the variability of

transmission. In this paper we assumed that the

variability in the mean number of offspring was

equal to the mean, i.e. the distribution of the number

of offspring was Poisson. However, if the variability

is higher than the mean, the mutant is at more risk of

extinction and so survival probability is reduced

(Crow & Kimura, 1970; Mackinnon, 1997). How-

ever, the qualitative conclusions of this paper do not

change as variability in transmission varies because

E(P«) is unaffected.

It is impossible to ascertain the past level of drug

treatment in specific areas which may have been very

high, for example when drugs were routinely added

to table salt. Under intermediate levels of drug use in

stabilized populations, multilocus resistance may

arise and spread faster in areas of high or low

transmission. In any case such post hoc investigations

are not very useful. What is important is how these

results can be used to guide current drug treatment

strategies and how to minimize the risk of resistance

evolving. It is clear that overall drug use must be

minimized and preferably (if possible) restricted to

life-threatening infections. Since these form only a

small part of the total infections (1–2% in Gambia

according to Greenwood et al. (1991)) then usage of

novel drugs should, under these conditions, be

relatively low. Under a model of specific immunity

(SI), or strong effects of the drug in reducing trans-

mission output (low values of t), control measures

can run the risk of increasing the rate of evolution of

drug resistance. If resistance is encoded by more

than 1 locus, the situation under generalized im-

munity (GI) in stabilized populations is more

complex: at low levels of drug pressure, in areas

where transmission is above the ‘valley’ of minimum

transmission control measures to reduce trans-

mission rate will be beneficial provided they do not

lower mean infection rate below the critical level

corresponding to the valley minimum, while in areas

of transmission lower than this, control measures

will increase the risk of resistance appearing. In

unstabilized populations, or where resistance is

controlled by a single locus, this is not a concern, i.e.

control measures will hinder the spread of resistance.

Thus an understanding of the underlying biology is

required in designing a control strategy. Essentially

we need to know (i) the effects of immunity on intra-

host dynamics (GI versus SI), (ii) the effect of drugs

on subsequent transmission, t, (iii) the conditions

under which normalization is appropriate or in-

appropriate, and (iv) the number of independent loci

controlling resistance. While answers to these prob-

lems are only partly known, this paper at least points

out the important factors to be considered in the

implementation of control programmes.
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