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The effects of gravity modulation on fluid
mixing. Part 2. Stochastic modulation
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We study numerically the effects of zero-mean stochastic gravity modulation on the
mixing characteristics of two interdiffusing miscible Boussinesq fluids initially separa-
ted by a thin diffusion layer. The gravity modulation has a Gaussian probability
distribution and is characterized by an exponentially damped cosine autocorrelation
function, i.e. 〈g(t)g(t + τ )〉/〈g2(t)〉 = e−λτ cos(ωτ ). The associated power spectrum is a
Lorentzian with peak at ω and width λ. The flow is found to depend on the follow-
ing parameters: the Grashof number, Gr, based on the viscous length scale, lν =

√
ν/ω;

the Schmidt number, Sc; the correlation exponent, λ; and other geometric parameters.
Even for extremely small Gr, we observe the propagation of gravity currents, Kelvin–
Helmholtz (KH) and Rayleigh–Taylor (RT) instabilities. This is in contrast to the case
of harmonic modulation considered in Part 1 (Siddavaram & Homsy J. Fluid Mech.
vol. 562, 2006, p. 445) wherein these phenomena occur sequentially as Gr increases. The
mixed volume is found to vary non-monotonically with the correlation exponent, λ,
with narrow-band modulation having the largest mixed volume followed by harmonic
modulation and then broadband modulation. This non-monotonicity of the mixed
volume with λ is explained on the basis of the competition between the effects of excita-
tion of lower frequencies, which lead to higher mixing, and the effects of the reduction
in the energy content at the dominant frequency, which leads to reduced mixing. The
value of the correlation coefficient, λ, at which the mixed volume is the largest is
found to be independent of Gr. To understand the finer details of the mechanisms, we
consider two- and three-frequency modulations. We find that increasing the amplitude
of the secondary component when its frequency is smaller than that of the primary
component leads to the occurrence of KH and RT instabilities at smaller Gr than that
for the case of single-frequency modulation. We have understood the non-monotonic
variation in the mixed volume by considering a three-frequency modulation, where
one of the frequencies is smaller than the characteristic frequency and the other
larger.

1. Introduction
In Part 1 of this paper (Siddavaram & Homsy 2006), we analysed the effects of

harmonic gravity modulation on fluid mixing. In this paper, we will focus on the
effects of stochastic gravity modulation. Jules et al. (2002) found that the microgravity
environment, e.g. that aboard the International Space Station (ISS), is characterized by
low mean accelerations which are O(10−6)ge (ge is the gravity on Earth) and fluctua-
tions that are two or three orders of magnitude above the mean, i.e. O(10−4 − 10−3)ge.
These gravity fluctuations are collectively termed gravity jitters or g-jitter. Thomson
et al. (1997) analysed the accelerometer data collected during a NASA mission and
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found that the typical acceleration field consists of periodic components, random
components with small autocorrelation time, and a white noise background. In order
to understand the nature of the flows generated by gravity jitters and to study their
effects on fluid mixing, it is therefore essential to consider both deterministic and
stochastic models of jitter.

Gresho & Sani (1970) studied the effect of a time-modulated vertical gravity field
on the Rayleigh–Bénard instability of a heated fluid layer and concluded that the
effect of harmonic gravity modulation is to change the critical Rayleigh number. In
particular, a layer of fluid heated from below, which is normally unstable because
of the unstable density stratification may be stabilized in certain regions of the
amplitude-frequency plane, no matter how large the Rayleigh number is. In contrast,
Antar (1977) analysed the effect of small-amplitude random uncorrelated vibrations
(white noise) on the stability of a fluid layer heated from below, and concluded that
stochastic modulation tends to further destabilize a fluid layer heated from below.
Thus the effects of stochastic and deterministic modulations may be qualitatively
different.

As noted by Horsthemke & Lefever (1984) and Drolet & Viñals (1997), internal
random fluctuations, which are usually of thermal origin, scale inversely with the
size of the system and lead to imperfect bifurcations, wherein the bifurcation point
is smeared into a small region. These imperfect bifurcations have also been studied
by Jhaveri & Homsy (1980) in the context of analysing the onset of Rayleigh–
Bénard convection from random thermodynamic fluctuations arising within a fluid.
In contrast, the intensity of the externally induced fluctuations (e.g. stochastic forcing
or random fluctuations of a parameter), in general, does not scale with the system
size and therefore may modify the local stability properties of the system.

Benjamin & Ursell (1954) studied the linear stability of a free surface of a
liquid subject to a harmonically varying external force, acting perpendicular to the
undeformed surface at rest, and found that the displacement of the surface is governed
by Mathieu’s equation, with potential for parametric resonance, and that the free-
surface response was subharmonic. Zhang, Casademunt & Viñals (1993) analysed the
same problem when the external force is stochastic. In the underdamped limit, this
problem reduces to a study of the parametric harmonic oscillator for each of the
Fourier modes of the surface displacement. They observed parametric resonance in
a wide frequency range when the external force had a broad frequency spectrum.
The above results are similar to those observed in the case of harmonic modulation.
However, they found that the resonant behaviour in the case of stochastic modulation
is, in general, weaker than that which results from an equivalent monochromatic
modulation. They defined the stability of the solutions on the basis of time-dependence
of second-order moments, which are related to the average energy of the oscillations,
and obtained neutral stability curves in the limit of low frequencies and near resonance.
They also studied the effects of varying the width of the noise spectrum on the stability
and found that when the forcing is broadband, increasing the correlation time leads
to an increase in the stability, whereas when the forcing is monochromatic, increasing
the correlation time leads to a decrease in stability.

Thomson, Casademunt & Viñals (1995) studied the effects of a stochastically vary-
ing gravity field on the flow inside a laterally heated cavity. The acceleration is perpen-
dicular to the initial density gradient and the heat transfer is conduction dominated.
When the modulation is periodic, they find that the vorticity field is oscillatory with
a zero mean and has a root-mean-squared (r.m.s.) value that is proportional to the
Rayleigh number, and even in the absence of viscous dissipation, the r.m.s. value
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remains bounded. When the modulation is stochastic, the mean value of the vorticity
field is zero. However, the r.m.s. value grows linearly with time, until it saturates
owing to viscous diffusion.

Drolet & Viñals (1997) studied the effect of stochastic modulation on a system with
O(2) symmetry that exhibits Hopf bifurcation in the absence of modulation. The study
included a random component in both the control parameter of the bifurcation and the
modulation amplitude. At a Hopf bifurcation in a periodically modulated system, the
trivial state loses stability to either travelling waves when the modulation amplitude
is small, or standing waves when the amplitude is sufficiently large. They concluded
that when the modulation amplitude has a stochastic component, the threshold for
the onset of instability in the standing-wave regime is shifted from its deterministic
location and the region of primary bifurcation to travelling waves disappears. The
main conclusion from all of the above studies is that the effects of stochastic
modulation may be qualitatively different from those of harmonic modulation.

Duval & Jacqmin (1990) studied the effects of zero-mean harmonic gravity modula-
tion on two interdiffusing miscible fluids separated by a vertical diffusion layer. They
identified two types of instability: Kelvin–Helmholtz instability associated with the
growth and oscillation of the interface, and ‘chaotic instability’ associated with the
breakup of the interface. They proposed that the initial breakup of the interface
occurs by means of Rayleigh–Taylor instability. The analysis of Duval & Jacqmin
(1990) was extended in Part 1 of this paper and the parameters were varied over a
wider range. We found that the solution depended on the following parameters: the
Grashof number, Gr, based on the viscous length scale and buoyancy velocity; the
Schmidt number, Sc; the phase angle of the modulation; and geometric parameters.
We observed the following flow regimes as Gr was increased: (i) neutral oscillations
at the forcing frequency; (ii) successive folds which propagate diffusively; (iii) Kelvin–
Helmholtz (KH) instabilities on the folds leading to interfacial breakup and; (iv) both
KH and Rayleigh–Taylor (RT) instabilities, leading to rapid mixing. By varying Sc,
we determined that the mechanism for the formation of the instabilities was inertial
in nature, hence the critical Gr for the onset of KH and RT instabilities, Grc,KH and
Grc,RT , respectively, are independent of Sc for moderate to large Sc.

In this paper, we will examine the effects of stochastic vertical gravity modulation
on the mixing characteristics of two interdiffusing miscible fluids separated by a
thin vertical diffusion layer. We will consider both narrow-band (coloured noise) and
broadband (white noise) stochastic modulation. Our main objective is to compare
the flow regimes and instabilities obtained for stochastic gravity modulation with
those obtained for harmonic modulation. We ask if the flow instabilities that are
observed in the case of stochastic modulation are the same as those observed for
harmonic modulation and if stochastic modulation leads to the same well-defined
smooth progression of the flow regimes with increasing Gr as observed in the case of
harmonic modulation. We will also compare the mixed volumes (to be defined later)
obtained in both forms of modulation and explain the differences.

2. Problem formulation
Since we are mainly interested in a qualitative description of the mixing mechanisms

and instabilities, we focus our attention on two-dimensional effects and assume that
gravity is entirely in the vertical direction. Figure 1(a) shows a schematic of the model
problem. The following equations governing the evolution of the non-dimensionalized
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Figure 1. Schematic of (a) the two-dimensional problem (b) the initial and boundary
conditions in dimensionless terms.

flow and concentration fields have been given in Part 1.

∂u

∂x
+

∂v

∂y
= 0, (2.1)

∂u

∂t
+ Gr

(
u

∂u

∂x
+ v

∂u

∂y

)
= −Gr

∂p

∂x
+

(
∂2u

∂x2
+

∂2u

∂y2

)
, (2.2)

∂v

∂t
+ Gr

(
u

∂v

∂x
+ v

∂v

∂y

)
= −Gr

∂p

∂y
+

(
∂2v

∂x2
+

∂2v

∂y2

)
+ g(t), (2.3)

∂C

∂t
+ Gr

(
u

∂C

∂x
+ v

∂C

∂y

)
=

1

Sc

(
∂2C

∂x2
+

∂2C

∂y2

)
. (2.4)

In (2.1)–(2.4) g(t) is the non-dimensional gravity which is normalized such that its
standard deviation, g, is 1. We consider stochastic gravity modulations that have
zero mean, are characterized by an exponentially damped cosine autocorrelation
function, i.e. 〈g(t)g(t + τ )〉 = e−λτ cos(ωτ ), and whose probability distribution function
is Gaussian. Modulations having the above statistics have also been used by Thomson
et al. (1995) and Zhang et al. (1993). The one-sided power spectrum associated with
the jitter is a Lorentzian with width λ and has a single well-defined peak at ω,
which is chosen as the characteristic frequency. We measure time in units of ‘periods’,
where 1 period =2π/ω, so in non-dimensional terms, the autocorrelation of gravity
is e−λτ cos(τ ). Also, note that when the correlation coefficient λ= 0, the modulation
reduces to monochromatic noise, which will allow us to validate our results with those
for harmonic modulation discussed in Part 1. More will be said about this later. When
λ→ ∞ and ω =0, the modulation is equivalent to white noise. Thus, varying λ offers
us an easy way of smoothly changing the modulation from monochromatic noise to
broadband white noise. Since gravity jitters are characterized by low mean and large
fluctuations, it is reasonable to assume that the mean gravity is zero. Finally, Thomson
et al. (1997) analysed the actual accelerometer data collected during a microgravity
mission and found that the probability distribution function associated with the jitter
is Gaussian for small amplitudes.

All the other variables are scaled in the same way as described in Part 1. We define
our characteristic time scale as the reciprocal of ω. The length scale is chosen as
the viscous length, lν =

√
ν/ω, where ν = µ/ρ̄ is the kinematic viscosity. The velocity

scale is chosen as the buoyancy velocity, Uc = (�ρ/ρ̄)(g/ω). In the above equations,
Gr =Uc/ωlν = (�ρ/ρ̄)(g/ν1/2ω3/2) = (�ρ/ρ̄)g(l3ν /ν

2) is a Grashof number, Sc= ν/D is
the Schmidt number. Note that there is a slight difference in the definition of Gr
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adopted here and that used in Part 1. For the case of stochastic modulation, the Gr is
based on the standard deviation of the modulation, g, whereas in SH, Gr is based on
the amplitude of the harmonic gravity modulation, which is

√
2 times the standard

deviation.
The relevant parameters governing the two-dimensional problem are then the

Grashof number, Gr = (�ρ/ρ̄)(g/ω3/2ν1/2); the Schmidt number, Sc= ν/D; the ex-
ponential coefficient of autocorrelation, λ; the non-dimensional length of the domain,
l = L/lν; and the aspect ratio of the domain, A= H/L where H and L are the
height and length of the domain, respectively. The last two parameters are introduced
through the boundary conditions which will be discussed later.

Equations (2.1)–(2.4) are now recast into streamfunction–vorticity formulation as
in Part 1. The equations become

∂2ψ

∂x2
+

∂2ψ

∂y2
= −ξ, (2.5)

∂ξ

∂t
+ Gr

(
u

∂ξ

∂x
+ v

∂ξ

∂y

)
=

(
∂2ξ

∂x2
+

∂2ξ

∂y2

)
+

(
∂C

∂x

)
g(t), (2.6)

∂C

∂t
+ Gr

(
u

∂C

∂x
+ v

∂C

∂y

)
=

1

Sc

(
∂2C

∂x2
+

∂2C

∂y2

)
. (2.7)

Also as in Part 1, we choose the following initial condition for the concentration, C:

t = 0: C = 1
2
erfc

(
x − 0.5l

δ

)
. (2.8)

Note that the above initial condition introduces an additional parameter into the
problem: δ, the steepness of the initial concentration profile. It has been found in
many similar problems that the dependence on δ is very slight.

We assume that the fluids are initially at rest. Therefore

t = 0: ξ = 0, ψ = 0. (2.9)

The boundary conditions are as follows:

x = 0, l: u =
∂v

∂x
=

∂C

∂x
= 0. (2.10)

The above equation corresponds to the boundary conditions of no fluid penetration,
no shear stress, and no mass flux along the vertical walls.

y = 0, lA: u = v =
∂C

∂y
= 0. (2.11)

Equation (2.11) corresponds to the boundary conditions of no fluid penetration, no
slip, and no mass flux along the horizontal walls. We will be solving (2.5)–(2.7), subject
to (2.8)–(2.11). Figure 1(b) shows a sketch of the domain along with the boundary
conditions.

We use the pseudospectral algorithm described in Part 1 to solve the above equations
subject to the initial and boundary conditions. Spectral methods are used in the x-
direction and compact finite differences, which are fourth-order in the interior and
third-order at the boundaries, are used in the y-direction. The time-stepping is done
through operator splitting in which all terms except the stochastic one are advanced
by a classical fourth-order explicit Runge–Kutta scheme. In order to compute the
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Position ξstochastic ξharmonic Cstochastic Charmonic

x = 269.53125, y = 1.5625 −0.017237 −0.017411 1 1
x = 476.4625, y = 64.0625 −0.001573 −0.001478 0.545523 0.54426

Table 1. Validation of stochastic modulation for λ= 10−4 with harmonic modulation.

integral of the stochastic gravity term, we use the algorithm provided in the Appendix
of Thomson et al. (1995).

In order to understand the evolution of the field variables in the mean, we compute
the ensemble averages which are obtained by first computing the field variable in
question (concentration say) for each individual gravity realization, and then averaging
the field variable over a fairly large number of realizations of g(t). We increase the
number of realizations in increments of 10 until the results obtained with successive
numbers of realizations are within 5% of each other. For the parameter ranges
considered here averaging over 40 realizations was enough to achieve this level of
accuracy and unless otherwise specified, the results are reported for 40 realizations.

For validation, we compared our results for correlated stochastic modulation when
the correlation coefficient λ→ 0, with the results for harmonic modulation presented in
Part 1. When λ= 0, the autocorrelation for correlated stochastic modulation is cos(t)
which is the same as the autocorrelation in the case of harmonic modulation wherein
the gravity varies as

√
2 cos(t +φ). Thus, for small values of λ, we expect the ensemble-

averaged flow and concentration variables for correlated stochastic modulation for a
given Gr to be the same as the phase-averaged flow and concentration variables in
the case of harmonic modulation corresponding to

√
2Gr. The phase-averaged field

variables for the case of harmonic modulation are computed by averaging the field
variable in question over the different individual harmonic gravity realizations for
different values of the phase angle, φ, which is varied from 0 to 2π. In table 1, we show
the excellent agreement between the vorticity and concentration values for Gr = 7 and
λ=10−4 (Gr = 7

√
2 for the harmonic case) after 10 time periods for the cases of har-

monic and stochastic formulations. To illustrate the agreement, we plot the ensemble-
averaged and phase-averaged concentration fields (figure 2). For clarity, we show
only the contours depicting concentration values between 0.25 and 0.75. The slight
asymmetry that we see in the case of stochastic modulation is due to sampling errors.

3. Results
The reference values of the six parameters governing the problem are as follows.

We fix Sc=1, which corresponds to the case of mixing of gases, and A= 0.2 which
means that the domain is a horizontal slender cavity. l is fixed at 1000, resulting
in a reasonably large domain (a thousand viscous lengths, lν) so that the evolution
of the interface is free from any end effects over a reasonably long time. δ is set
at 10, resulting in a reasonably sharp but continuous interface and the correlation
coefficient λ is initially fixed at 1.0, which corresponds to the case of narrow-band
gravity modulation. Gr was varied from 1 to 15 (resulting in Grashof numbers based
on the length of the domain (GrL = Gr l3) of the order of 1010). Various quantities,
especially the interfacial evolution, were studied as a function of time. Note that time
is measured in ‘periods’, which are defined on the basis of the characteristic frequency
identified in § 2. Also, unless otherwise specified, whenever we plot the concentration
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Figure 2. Validation of the results for Gr = 7 and after 10 periods. (a) Phase-averaged
concentration field for harmonic modulation (cf. Part 1). (b) Ensemble-averaged concentration
field for stochastic modulation with λ= 10−4.
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Figure 3. Concentration fields for Gr =0.3. (a) Gravity current at t = 15 periods. (b) KH
instability at t =25 periods. (c) RT instability at t = 60 periods.

field, we show only the contours depicting the concentration values between 0.25 and
0.75, even though the full range of the concentration values extends from 0 to 1.

3.1. Effect of Gr

The individual realizations of the flow and concentration fields naturally depend on
the individual realizations of g(t). In figure 3, we show the concentration fields for a
typical realization at three different times for a very small Gr =0.3. For small times
(figure 3a), we observe the propagation of a gravity current similar in appearance to
that observed in the case of harmonic modulation with non-zero phase angle albeit
at higher Gr (cf. figure 26a of Part 1).
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The front of this gravity current demarcates the two regions where the velocities
of the heavy and the lighter fluids are of opposite sign, thus setting up a velocity
gradient. Thus, at later times, there is a potential for shear instabilities, such as those
observed in Part 1, figure 26(b). The rollers due to KH instability occurring on the
gravity current can be seen in figure 3(b). There are also regions in the domain where
the net acceleration is directed from the lighter fluid towards the heavy fluid, creating
the potential for RT instability. Also, the rollers associated with KH instability act
as a stirring mechanism, placing packets of heavy fluid above lighter fluids, thus
enhancing the potential for RT instability. The mushroom structures associated with
RT instabilities can be seen in figure 3(c).

We now discuss the reason for the formation of this gravity current. Suppose the
gravity is initially negative (pointing downward). As a result, the heavier fluid which
is on the left-hand side of the cavity starts flowing to the right along the bottom
of the cavity and the lighter fluid flows to the left along the top. When the gravity
vector changes direction, the heavier fluid does not immediately return to its initial
position, but continues moving to the right, because of finite fluid inertia at finite Gr.
Eventually, depending upon the initial magnitude of the gravity and the time over
which the gravity remains of the same sign, the gravity current reverses its direction or
continues coasting in the same direction. We have noticed several instances in which
the eventual direction of coasting of the gravity current is opposite to the initial
direction of propagation of the current. However, this reversal in direction happens
only during the very early stages (t < 5 periods).

Although the occurrence of these gravity currents, KH instabilities and RT instabi-
lities, is similar to what we observe in the case of harmonic modulation with non-zero
phase angle, the Gr at which the instabilities first occur are much lower than in the case
of harmonic modulation (for which Grc,KH = 12 and Grc,RT = 18). On the contrary, for
stochastic modulation, we have observed that KH and RT instabilities always occur
no matter how small Gr is. Thus, there is no critical Gr for the occurrence of KH and
RT instabilities in the case of stochastic modulation. The reason for the occurrence
of these instabilities at smaller values of Gr in the case of stochastic modulation is
as follows. For stochastic modulation, any realization of g(t) is expected to contain
instantaneous gravity values that are much larger than the standard deviation on
which Gr is based. These rare but important events are instrumental in causing KH
and RT instabilities.

As Gr is increased, the magnitude of the velocity gradient, set up by the gravity cur-
rent, increases, resulting in an increased potential for KH instability at higher Gr. Also,
an increasing Gr corresponds to larger density difference, higher acceleration, sharper
density gradients, or all three, thus causing an increased potential for RT instability.
Hence for higher Gr, we expect both KH and RT instabilities to occur at earlier
times. This is what we observe in figure 4 wherein we show the concentration fields at
t = 14.5 periods, for the same individual gravity realization, for Gr = 0.3, 1.5, 4, 7 and
10. This particular gravity realization was chosen because it leads to easily identifiable
KH and RT instabilities (cf. figure 4b); however, this behaviour has been observed
for other realizations of g(t).

In figure 5, we compare the ensemble-averaged concentration fields at t = 6 periods
for Gr = 3, 7, 10 and 13. We observe the occurrence of a symmetric structure in the
middle of the domain which is similar in appearance to that formed for phase-
averaged harmonic modulation (cf. figure 27 of Part 1). At any given time, the
spread of this structure is larger for higher Gr suggesting that mixing is faster for
higher Gr. In order to quantify the amount of mixing, we use the fractional mixed
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Figure 4. Concentration fields at t = 14.5 periods for (a) Gr = 0.3 – gravity current, (b)
Gr = 1.5 – KH+ RT, (c) Gr = 4.0 – disordered concentration field, (d) Gr = 7.0 – disordered
concentration field (RT mushrooms are visible), (e) Gr = 10.0 – disordered concentration field.

volume, Vm, defined as the fractional volume over which the non-dimensionalized
concentration values lie between 0.3 and 0.7. (This definition of Vm is slightly different
from that adopted in Part 1, wherein we measure the fractional volume over which
the concentration lies between 0.45 and 0.55. However, this change does not affect the
trends in the mixed volume variation, which are our primary concern.) In figure 6,
we plot the fractional mixed volumes of the ensemble averages vs. time for various
Gr. As expected, mixed volume increases with time and is larger for larger Gr. This
is because the flow becomes more disordered as Gr is increased.

Also as expected, the individual realizations corresponding to different gravity
realizations exhibit different amounts of mixing. In figure 7, we show individual
realizations of the concentration fields corresponding to the cases of very high mixing
and very low mixing at a given time. As can be seen, the realization exhibiting high
mixing, whose fractional mixed volume after 10 periods is 0.57, is characterized by the
presence of a large roller wave, whose significance will be discussed shortly. This roller
is absent in the realization exhibiting low mixing, whose fractional mixed volume at
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Figure 5. Ensemble-averaged concentration fields at t = 6 periods, with λ= 1 for (a) Gr = 4,
(b) Gr = 7, (c) Gr = 10, (d) Gr = 13.
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Figure 6. Mixed volume vs. Gr for Gr =4, 7, 10 and 13.

the same time is only 0.20. We have observed that all the realizations that exhibit
high mixing are characterized by the presence of large rollers in the concentration
field. These are approximately the size of the height of the domain, and are formed
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Figure 7. Individual realizations for Gr = 13 at t = 10 periods. (a) High mixing, mixed
volume=0.57 and (b) Low mixing, mixed volume=0.20.

at the centre of the domain by the pairing of two smaller rollers that appear on the
mixing front. The large roller then serves as a stirring mechanism bringing packets
of heavy fluid above the lighter fluid, thus exciting Rayleigh–Taylor instabilities and
enhancing mixing.

Vortex pairing is an important mechanism of turbulent mixing-layer growth.
Winant & Browand (1974) found that unstable waves resulting from Kelvin–
Helmboltz instability grow and the fluid rolls up into discrete two-dimensional
vortices, which then interact by rotating around each other, forming a single vortex.
As illustrated by Meunier, Le Dizès & Leweke (2005) and Cerretelli & Williamson
(2003), the vortex merging process is characterized by four stages. In stage I, the
vortices rotate around each other and the core size of the vortices increases by viscous
diffusion. In stage II, the vortex pair merges, the vortices are deformed and the
vortex filaments are generated at the extremities of the pair. However, at the end of
this stage, the vortex separation does not reduce to zero, and there are two separate
maxima of vorticity. In stage III, the vortex separation ultimately vanishes owing to
viscous diffusion and the merged vortex, which is elliptical, becomes axisymmetric.
In stage IV, the merged vortex diffuses and its core size grows.

These same processes are seen in our simulations. The merging of two smaller KH
rollers to form a larger one and the growth of the resulting vortex with time are
shown in figures 8 and 9, wherein the various phases described above are identified
in the figure captions. Thus, stochastic jitter results in dynamics that are similar to
those at play in free shear layers.

3.2. Effect of λ

As detailed in § 2, λ is a measure of the duration over which the gravity is correlated
and is also related to the time over which gravity is of the same sign. Increasing
λ corresponds to increasing the width of the power spectrum associated with gravity,
with λ= 0 corresponding to harmonic (or monochromatic) modulation, moderate
values of λ corresponding to narrow-band stochastic gravity modulation (or coloured
noise), and large values of λ corresponding to broadband stochastic gravity modula-
tion (or white noise). The effect of varying λ is shown in figure 10, in which
we plot the ensemble-averaged concentration fields for harmonic modulation and
representative cases of narrow-band modulation and broadband modulation. Mixed
volume, represented by the extent of the dispersive structure, is the largest for narrow-
band modulation. In figure 11, we plot the fractional mixed volume with time for
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Figure 8. Vortex merging for Gr = 13 after (a) t = 2.75 periods – phase I, (b) t =3.00 periods –
phase I, (c) t = 3.25 periods – phase II, (d) t = 3.50 periods – phase II, (e) t = 3.75 periods –
phase II and (f ) t = 4.00 periods – phase II.

Gr =7 for different values of λ. Again as expected, the fractional mixed volume
increases with time. However, we note that there is a non-monotonic dependence of
the mixed volume on λ. This is illustrated better in figure 12 wherein we plot the
fractional mixed volume after 30 periods as a function of λ. As can be seen, mixed
volume at any given time is the largest for narrow-band modulation followed by
harmonic modulation and then broadband modulation. We also note that the value
of λ at which the mixed volume is the largest, denoted as λmax, is constant across
a wide range of Gr. This is shown in figure 13 where we plot the mixed volume at
t = 20 periods with λ for Gr = 4, 7, 10 and 13. The value of λmax is 1.05.

The reason for the non-monotonic behaviour of mixed volume with λ is explained
as follows. As λ is increased, the width of the power spectrum associated with the
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Figure 9. Growth in the size of the central vortex for Gr = 13 after (a) t =5 periods – phase II,
(b) t = 6 periods – phase II, (c) t = 7 periods – phase II, (d) t = 8 periods – phase III, (e) t = 9
periods and – phase III, (f ) t = 10 periods – phase IV.

gravity increases, which means that the gravity modulation now contains a band of
frequencies. Also, because the variance of the modulation is held constant, the area
under the power spectrum curve is constant and therefore the height of the power
spectrum decreases as its width increases. This means that increasing λ at a fixed Gr
corresponds to exciting the system at a range of frequencies at the expense of reducing
the amount of energy contained in the dominant frequency. It was shown in Part 1
that lower frequency modulation tends to make the concentration and flow fields more
disordered. Thus, if we increase the width of the power spectrum, keeping the energy
contained in the dominant frequency the same, we expect the mixed volume to increase.
It was also shown in Part 1 that, reducing Gr (which is related to the energy contained
in the dominant frequency) decreases the disorder and hence the mixed volume. Hence,
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Figure 10. Ensemble-averaged concentration fields at t = 6 periods and Gr =7 for (a)
monochromatic modulation, λ= 0, (b) narrow-band modulation, λ= 0.53, (c) white-noise
modulation, λ= 5300.
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Figure 11. The increase in the mixed volume with time for various λ for Gr = 7.

decreasing the energy content in the dominant frequency, while keeping the width
of the power spectrum constant, reduces the mixed volume. Therefore, for small to
moderate values of λ, increasing λ leads to increasingly disordered concentration and
flow fields, because the attendant decrease in the energy content at the dominant
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Figure 12. The non-monotonic dependence of the mixed volume with λ for Gr = 7 and after
t = 30 periods.
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Figure 13. The constancy of the λ at which the largest mixed volume occurs with Gr.
λmax =1.05.

frequency is not significantly large. However, for large values of λ, the amount
of energy contained in the dominant frequency is very small. So any increase in the
mixed volume owing to the excitation of smaller frequencies is more than offset by the
reduction in the mixed volume owing to this decreasing energy content. So for large λ,
increasing λ leads to a decrease in the mixed volume. This leads to a non-monotonic
variation of the mixed volume as λ is increased from small to large values.
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4. Multiple frequency modulation
As explained in earlier sections, stochastic modulation with a non-zero λ corres-

ponds to exciting the system at a band of frequencies whose width is related to λ.
Even though the analysis carried out above has given us considerable insight into
the problem, in order to understand the finer details of the mechanism, and also to
validate the hypothesis presented in the preceding paragraph, we simplify the forcing
considerably to include only a finite number of frequencies. We explain some of the
results observed in the case of stochastic modulation based on our understanding of
the results obtained for this relatively simpler g(t).

We take the following form for the gravity modulation:

g(t) = a(cos(ωt + φ) + ε cos(rωt + φ)).

We choose ω as our characteristic frequency and T =1/ω as the characteristic time
scale. We will refer to the component with frequency ω as the primary component
and the one with frequency rω as the secondary component. The parameter ε is
varied between 0 and 100, so that the magnitude of the secondary component may
be smaller or larger than that of the primary component. Gravity is normalized by
g, which is defined on the basis of an ‘equivalent amplitude’ as

g =

√
2

∫ T ∗

0

1

T ∗

[
g(t) − 1

T ∗

∫ T ∗

0

g(t) dt

]2

dt . (4.1)

In the above equation, T ∗ is the final time until which we would like to observe the
evolution of the interface, and is measured in terms of the number of periods based
on the characteristic frequency. We compute the standard deviation of g(t) over the
times [0: T ∗] and multiply it by

√
2 to obtain the equivalent amplitude (note that for a

single frequency modulation, this amplitude is
√

2 times the standard deviation). There
are two main advantages to defining g in this way. First, when ε = 0, i.e. for single-
frequency modulation, g reduces to the amplitude of the modulation a. Secondly, the
above definition is general enough to be valid for irrational values of r (quasi-periodic
modulation). The following equations describe the flow and concentration fields:

∂2ψ

∂x2
+

∂2ψ

∂y2
= −ξ, (4.2)

∂ξ

∂t
+ Gr

(
u

∂ξ

∂x
+ v

∂ξ

∂y

)
=

(
∂2ξ

∂x2
+

∂2ξ

∂y2

)
+

(
∂C

∂x

)
a(cos(ωt) + ε cos(rωt))

g
, (4.3)

∂C

∂t
+ Gr

(
u

∂C

∂x
+ v

∂C

∂y

)
=

1

Sc

(
∂2C

∂x2
+

∂2C

∂y2

)
. (4.4)

In the above equations, Gr = (�ρ/ρ̄)(g/ω3/2ν1/2) is a Grashof number based on the
‘equivalent amplitude’, g. All the other symbols have their usual meanings which
are given in § 2. The initial conditions, the boundary conditions, and the solution
procedure are also the same as described § 2. In this paper, we deal only with rational
values of r for which T ∗ is chosen as an integer multiple of the larger of the two time
periods of the individual components which constitute the modulation, 2 π and 2 π/r .
In this case, the equivalent amplitude, g, is given by the expression, g = a

√
1 + ε2.

The reference values of the eight parameters governing the problem are as follows.
We fix Sc= 1, A= 0.2, l = 1000, δ = 10 as in the case for stochastic modulation, and
φ is fixed at π/4. Gr was varied from 1 to 15. The amplitude of the secondary
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Figure 14. The concentration fields for Gr = 20 and r = 2 after t =10 periods. (a) ε = 0 – both
KH and RT, (b) ε = 0.5 – KH only, (c) ε = 1.0 – KH only, (d) ε = 10 – smooth gravity current.
No instability (e) ε = 100 – smooth gravity current.

component, ε, is varied from 0 to 100 and the frequency ratio, r , is varied from 0.2
to 2.0. We will mainly focus on the effects of varying r , ε and Gr.

In figure 14, we present the concentration fields for Gr =20 and r = 2.0 for several
values of ε. We point out that for the case of single-frequency modulation, we observed
both KH and RT instabilities at this particular value of Gr. For ε = 0, we recover
this regime. As ε is increased, we note that the flow becomes less disordered, i.e. for
higher values of ε, we observe only KH instability and for even higher ε, we do not
observe any instabilities, and obtain a smooth gravity current instead. Thus we see
that for r > 1, increasing the magnitude of the secondary component ε makes the
flow less disordered. This is because as ε is increased, the amplitude of the secondary
(in this case larger) frequency component increases, and we have observed in Part 1
that higher-frequency modulation tends to make the flow less disordered.

We observe the reverse trend when r < 1. In figure 15, we show the concentration
fields for r = 0.25 and Gr = 6 for various values of ε. As can be seen, the flow becomes
more disordered when the magnitude of the secondary component is increased. There
are several interesting features in this figure. First, we note that when the modulation
includes a secondary component, the instabilities are observed at much smaller Gr.
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Figure 15. The concentration fields for Gr = 6 and r =0.25 after t = 19.25 periods. (a) ε = 0 –
smooth gravity current, (b) ε = 0.1 – smooth gravity current, (c) ε = 0.175 – KH only,
(d) ε = 0.25 – KH only, (e) ε = 0.4 – both KH and RT.

(As mentioned earlier, when the modulation has only a single component, the critical
Gr at which we first observe RT instability is 18.) Secondly, for any Gr, we note that
there is a critical value of ε for there to be significant deviation from the single-
frequency modulation (ε = 0) case, i.e. for instabilities to first occur. This point is
clearly illustrated in figure 16, wherein we plot the critical ε for the occurrence of KH
and RT instabilities as a function of r . This curve is valid only for Gr = 6. Naturally,
we expect the curves to be different for different Gr. As can be seen, the εc are smaller
for smaller r , because smaller frequencies are more effective at exciting instabilities.
In figure 17, we present the concentration fields for different Gr for fixed r and ε. As
expected, the flow becomes more disordered as Gr is increased.

As stated earlier, our primary motivation in analysing multiple-frequency modula-
tion is to understand the results for stochastic modulation, specifically the non-
monotonicity in mixed volume, based on our understanding of the results for this
relatively simpler case. Since, stochastic modulation with non-zero modulation will
include frequencies that are smaller and larger than the characteristic frequency, we
consider the following three-frequency gravity modulation

g(t) = a(cos(ωt + φ) + ε1 cos(r1ωt + φ) + ε2 cos(r2ωt + φ)).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

53
93

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007005393


The effects of gravity modulation on fluid mixing. Part 2 463

0.1 0.2 0.3 0.4 0.50

1

2

3

r

ε c
,K

H
,ε

c,
R

T

εc,KH

εc,RT

Figure 16. The variation of the critical values of ε for KH and RT instabilities, with r , for
Gr = 6. For r = 0.5 we do not observe RT in the parameter range considered here.
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Figure 17. The concentration fields for different Gr after 13 periods for r = 0.5 and ε = 1.
(a) Gr = 2, (b) Gr = 6, (c) Gr = 10, (d) Gr = 14.

For reasons explained above, we take r1 < 1 and r2 > 1 and for simplicity, we take
ε1 = ε2 = ε. The non-dimensionalization scheme is the same as in the case for the two-
frequency modulation. We have previously noted that when the secondary frequency
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Figure 18. The variation of the fractional mixed volume, Vm vs. t for different ε for
three-frequency modulation with Gr = 6, r1 = 0.25 and r2 = 1.75.

is smaller than the characteristic frequency, increasing the amplitude of the secondary
modulation leads to a more disordered flow, whereas the reverse trend happens
when the secondary frequency is larger than the characteristic frequency. Thus, for
a three-frequency modulation which includes frequencies that are smaller and larger
than the characteristic frequency, we expect a non-monotonic progression of the
mixed volumes as ε is increased. This is indicated by figure 18, where we plot the
fractional mixed volume, Vm with time, for various values of ε, and find that at
any given time, the mixed volume for ε =1 is greater than that for ε = 0 or ε = 100,
suggesting that the mixed volume varies non-monotonically with the amplitude of
the secondary components. The same conclusion can also be drawn from figure 19,
where we plot the individual concentration fields for different values of ε for Gr =6.
We can readily extend this result to the case of stochastic modulation which contains
multiple frequencies, both smaller and larger than the characteristic frequency, whose
amplitudes depend on λ. Thus as λ is varied, the amplitudes of the individual frequency
components vary, and hence, as suggested by our simple three-frequency model, the
mixed volume also varies non-monotonically.

5. Summary
We have investigated the physical mechanisms by which zero-mean stochastic

gravity modulation affects the mixing of two miscible fluids which are initially
separated by a thin vertical diffusion layer. The probability distribution function
associated with the gravity modulation is Gaussian and the autocorrelation function
is an exponentially damped cosine, given by 〈g(t)g(t + τ )〉/〈g2(t)〉 = e−λτ cos(ωτ ). The
gravity power spectrum is a Lorentzian with peak at ω and width λ. We define our

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

53
93

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007005393


The effects of gravity modulation on fluid mixing. Part 2 465

y

0

100

200
(a)

500 1000

500 1000

500 1000

500 1000

y

0

100

200
(b)

y

0

100

200
(c)

x

y 100

200
(d )

0

0.3 0.4 0.5 0.6 0.7

Figure 19. The individual concentration fields for different values of ε for three-frequency
modulation with Gr = 6, r1 = 0.25 and r2 = 1.75, φ = π/4 after 20 periods. (a) ε = 0, (b) ε = 1,
(c) ε =10, (b) ε = 100.

characteristic time scale based on the reciprocal of ω. We note that λ=0 corresponds
to monochromatic (harmonic) gravity modulation, small to moderate values of λ cor-
respond to narrow-band modulation, and large values of λ correspond to broadband
modulation. We invoke the Boussinesq approximation, solve the resulting equations
numerically, and observe the evolution of the interface. The problem is governed by
six parameters: the Grashof number, Gr; the Schmidt number, Sc; the correlation
exponent, λ; the aspect ratio of the domain, A; the non-dimensional length of the
domain, l; and the steepness of the initial concentration profile, δ.

In contrast to the case of harmonic modulation, which we considered in Part 1, we
found that for narrow-band stochastic modulation with λ= 1, Kelvin–Helmholtz and
Rayleigh–Taylor instabilities occur on the mixing front for a much smaller equivalent
Gr = 0.3, which was the smallest Gr that we considered. Consequently, for any given
Gr, the concentration field was more disordered and the fractional mixed volume was
found to be much larger for the case of narrow-band modulation than for harmonic
modulation. The individual realizations of the concentration field which exhibited
higher mixing were characterized by the presence of large vortices, which are formed
at the centre of the domain, owing to the merging of smaller rollers. The various
phases in the merging of vortices were identified. This merged vortex acts as a stirring
mechanism, which brings packets of different concentrations close together, thus
increasing the concentration gradient, so that viscous diffusion can smooth them.
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We found that the mixed volume at any given time is larger for narrow-band
modulation, followed by harmonic modulation, and the smallest for broadband (white
noise) modulation. This non-monotonicity of the mixed volume with λ is explained
on the basis of the competition between the effects of excitation of lower frequencies
and the effects of the attendant reduction in the energy content at the dominant
frequency. The value of the correlation coefficient, λ, at which the mixed volume is
the largest was found to be independent of Gr.

In order to further investigate this non-monotonicity of the mixed volume, we con-
sidered the effects of two- and three-frequency modulations. We found that increasing
the amplitude of a secondary component whose frequency is smaller than that of the
primary component leads to the occurrence of KH and RT instabilities at smaller
Gr than those observed in the case of single-frequency modulation, whereas the
reverse trend was observed when the secondary frequency is larger than the primary
frequency. The critical amplitude of the secondary component for excitation of these
instabilities was found to increase with the secondary frequency, confirming that
lower-frequency modulation is more effective at exciting instabilities. By considering
a three-frequency modulation, where one of the frequencies is smaller than the charac-
teristic frequency and the other larger, as a simple prototype of stochastic modulation,
we have explained the non-monotonic variation in the mixed volume.

This work was supported by the Microgravity Science Program of NASA.
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