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Abstract

Defining the aesthetic and emotional value of a product is an important consideration for its design. Furthermore, if several
designers are faced with the task of creating an object that describes a certain emotion/perception (aggressive, soft, heavy,
etc.), each is most likely to interpret the emotion/perception with different shapes composed of a set of different geometric
features. The authors propose an automatic approach to formalize the relationships between geometric information of three-
dimensional objects and the intended emotional content using fuzzy logic. In addition, the automatically generated fuzzy
knowledge base was compared to the user’s perceptions and to the manually constructed fuzzy knowledge base. The initial
findings indicate that the approach is valid to formalize geometric information with perceptions and validate the author’s
manually developed fuzzy models.

Keywords: Aesthetics; Automatic Optimization; Design Characteristics; Emotional Design; Fuzzy Logic; Genetic
Algorithms

1. INTRODUCTION

Designers are easily able to deal with quantifiable objective
aspects such as functionality, manufacturability, weight,
and other technical properties of the product. However, qual-
itative aspects such as aesthetics are contributing yet subjec-
tive factors in determining the success of a product.

This research concentrates on visual product aesthetics or
those characteristics that create a product’s appearance and
have the capacity to affect observers and consumers. Such
characteristics include materials, proportion, color, ornamen-
tation, shape, size, and reflectivity (Lawson, 1983).

The form of a product plays a significant role in the deci-
sions of consumers when purchasing products, with a survey
of senior marketing managers stating that 60% of respondents
mentioned design as the most important determinant of new
product performance (Bruce & Whitehead, 1988). The shape
of a product may contribute to its success through a number of
ways, including attracting customers in cluttered markets;
communicating information; adding quality to the lives of
consumers through the provision of sensory pleasure; and

providing a long lasting attachment to the product (Bloch,
1995). The significance of the emotive potential of products
has led to a growing interest in the fields of emotional design
and Kansei engineering.

Emotional design is an increasingly important approach to
differentiating a product within a competitive market. Nor-
man (2004) argues that emotional design can lead to users ac-
cepting nonoptimal functionality or usability. He states dif-
ferent ways to define how one responds emotionally to a
product: visceral, behavioral, and reflective; these interweave
both cognitive and emotional responses (Norman, 2004).
Visceral responses refer to the most immediate level of pro-
cessing and appeal to the senses before interaction with the
product occurs. Behavioral responses are related to the expe-
rience of using the product and are usually concerned with the
product’s interaction. Reflective responses are about one’s
thoughts after using and owning a product; thus, they are of-
ten connected to self-image and status. Visceral responses al-
low users to make quick judgments on a product and how that
product is perceived based upon his/her prior experiences. In
this paper, the focus is upon visceral responses only.

Ahmed and Boelskifte’s (2006) found that the designers of
a product and the user of the shape do not necessarily agree
about the perception that is described by it. Hence, the de-
signer is not always successful in conveying the desired mes-
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sage through the shape of their designs. Therefore, tools and
methods can be a useful support for designers to understand
how the shape of a product can be used to describe the desired
perception in the intended user group. Support can be through
identifying the relationships between the characteristics of the
shape of a product and the perceptions of the shape or through
user involvement early into the design process. To achieve
that link, several studies aiming to identify the relationships
between the characteristics of a product’s shape and its emo-
tive potential or perception have been carried out. A method
based upon perceptual psychology (perception of “safety,”
“friendliness” of a machine) was proposed by Lebbon and
McDonagh-Philp (2000). Methods based on design and com-
puter science approaches were employed by Wallace and Ja-
kiela (1993), Hsiao and Wang (1998), Van Bremen et al.
(1998), and Smyth and Wallace (2000). Tsai et al. (2006) pro-
posed a neural network-based method considering both color
and form and applied it to a door knob design. The authors
argued that the method is easily transportable to other prod-
ucts but did not elaborate further on this point. A neuro-
fuzzy-based method for affective design was proposed in
Diyar and Kurt (2009), where the link between physical ele-
ments and affective response to products was mapped using a
neurofuzzy classifier, which extracts rules from a semantic
differential scale. This method was combined with a multi-
ple-criteria group decision-making technique and a gray rela-
tional analysis applied to mobile phones. A similar study
using a method based on neural network and gray relational
analysis can be found in Lai et al. (2005), whereas an exten-
sion of this work proposing an automatic design approach
based on fuzzy logic applied to mobile phones was proposed
in Lin et al. (2007). Park and Han (2004) developed a fuzzy
rule-based method to model affective user perception and ap-
plied it to an office chair design. The product-specific design
variables were collected by experts to best describe an office
chair, three of which were chosen for model construction
using fuzzy logic models. The affective space and the design
space were both constructed using office chair characteristics
only. Lai et al. (2006) carried out an investigation on the in-
fluence of mobile phone form and color on product percep-
tion (product image) using a neural network.

A method based on a neurofuzzy model combined with a
genetic algorithm (GA) has been employed in Hsiao and
Tsai (2005). The GA enables automatic search for a product
form or evaluation of a product image prior to employing a
neurofuzzy model for matching with the aesthetics space.
The hybrid tool was applied to a door knob design as in
Tsai et al. (2006). Neural networks are a black box type of al-
gorithm, because the rules are not explicit. It is argued that the
proposed tool in this paper is easily transportable to other
products even though the conclusions and application are based
on the presented product case. Another product-oriented
study is proposed by Dore et al. (2007), where the links be-
tween the function of the product (design variables) and the
physical sensation/experience generated by the product (sen-
sory variables) were constructed using a regression analysis.

The product case that was used was a parabolic ski. Swarm-
optimization based affective modeling was used to model
the relationship between Kansei words and design parameters
applied to the design of pens. However, the design parameters
are case specific (a pen), and the search for an optimal model
was initiated by human input. The final result was a set of de-
sign parameters that would be considered optimal by users
(Mohais et al., 2007). In addition, a multiple-class fuzzy sup-
port vector machine recursive feature elimination algorithm
was developed and then used to streamline the selection of
optimum product form features (Shieh & Yang, 2008). The
fuzzy support vector machine recursive feature elimination al-
gorithm uses continuous and discontinuous product features
of mobile phones in order to select the smallest feature subset.
Prediction models are built from this subset in order to match
consumer perception without considering color and texture.
The method proved to be effective, but the identified features
in the continuous and the discontinuous spaces were specific
to mobile phones. A study using Kansei engineering and
neural networks to cluster objects with a similar perception
among users focusing upon color influence is proposed in
Jianning and Fenqiang (2007). Fuzzy logic was employed
to validate the sensitivity of aesthetics in automatic generation
of roof geometries (Tsutsumi & Sasaki, 2008) and to evaluate
aesthetics of buildings based upon specific features (Nori-
kazu et al., 2001), but these studies did not link geometric
properties to the emotional content. A major work on aesthet-
ics and perception is presented in Giannini et al. (2006),
where the relationship between aesthetic character and geo-
metric properties was built by including aesthetic/styling con-
straints in a computer-aided design (CAD) system. The styl-
ing tool used aesthetic functionalities such as acceleration,
lead-in, and tension, all collected from CAD designers’
knowledge. However, the study focused mainly on influenc-
ing a shape from a style point of view, while still fitting more
common engineering constrains (area, volume, etc.). The un-
derstanding of a more general link between geometric ele-
ments and a defined emotion/perception was missing. This
maybe because the tool was developed to help CAD design-
ers deal more easily with aesthetic constrains while respecting
a set of functional constrains.

In the research work reported above, no systematic, precise,
and product–context-free specification of a correspondence
between simple product shape elements and emotional terms
was provided, because all the models and tools were based on
an existing functional product that limits the portability and
generalization of the results. Furthermore, the number of
characteristics used in the models tended to be too high,
which might complicate the design work in practical use.

One of the issues surrounding research that attempts to link
user perception to the characteristics of a shape is the need to
cover all the possible ways to describe or perceive it. Further-
more, emotions can be classified in a number of different
ways and theories; from the field of psychology the basic
set of emotions can be described as between 2 and 10 differ-
ent emotions, as summarized in Table 1 (Ortony & Turner,
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1990). If a finite number of emotion categories can be defined,
then developing an approach to cover all the basic emotions
should be possible. However, user perceptions of three-
dimensional (3-D) shapes and products are not limited to words
that describe emotions. Several research works investigated this
issue, and from the literature survey no one finite set that
describes basic perceptions was found in the same way in which
emotions can be described. However, some approaches to cate-
gorize the perception were attempted; for instance, Pham (1999)
highlights that many philosophers have attempted to formalize
the properties and meanings of aesthetics for evaluative pur-
poses, which was based on Goldman’s (1995) eight categories
to classify perceptions where emotion is one of these categories.
These eight categories together with some examples are sum-
marized in Table 2.

Other researchers created lists of adjectives to be used for
specific products or applications, such us consumer products

(Bouchard et al., 1999), cars (Hsiao & Chen, 1997), and mo-
bile phones (Chuang et al., 2001). These lists are by no means
exhaustive, but they clearly show that some adjectives can be
better linked to some specific products. Another approach to
classify perceptions was proposed by Pedro Company et al.
(2004), where several lists of adjectives representing product
perceptions were collected from literature. Then, the adjec-
tives were clustered within three dimensions as an attempt
to form a taxonomy of attributes. However, they did not suc-
ceed in classifying all of the collected adjectives.

The approach undertaken in this paper is to understand how
to map features of a shape against the perception of the users.
In addition, the paper aims at using simple geometric features
combined with simple to use and explicit design rules in order
to build the mapping between the perception space and the
form space. The research aim and methods are further de-
scribed in the following sections.

2. RESEARCH AIM

The aim of this research is to identify basic characteristics of a
shape that can be used to describe the product’s emotional
content or perception as perceived by users. If this is possible,
the research aims to understand if these characteristics can be
represented in a fuzzy logic model (rule base and database)
that can be used to evaluate the ability of a shape to represent
a particular emotion or perception. The research presented
here extends upon a previous study where a manual fuzzy
logic model (steps 1–3 of the methodology below) was ob-
tained (Achiche & Ahmed, 2008), by adding a genetically
generated fuzzy logic model (step 4 of the methodology)
for comparison and validation purposes.

This methodology is based on the analogy of communica-
tion (Van Bremen et al., 1998), as presented in Figure 1, com-
bined with a design and computer science approach in order
to create a direct link between the space of design variables
and the space of aesthetic characteristics. The double framed
parts in Figure 1 were followed in the research presented here.
However, the “clustering of the objects based on feelings”
step was carried out differently in this paper, as all the objects
designed by the student were already intended to evoke the
perception that is investigated.

A four-step methodology was employed:

1. Students were asked to create a shape that represents a par-
ticular set of emotions. This represents the syntactical level
of designing aesthetically pleasing products in Figure 1.

2. Authors created the input premises and the rules repre-
senting their attempts to link shape to emotion and em-
bedded in a manually constructed fuzzy logic model
(Achiche & Ahmed, 2008). This represents the seman-
tical level of designing aesthetically pleasing products
in Figure 1.

3. An evaluation was conducted with users. This repre-
sents the pragmatic level of designing aesthetically
pleasing products in Figure 1.

Table 2. Categorization of evaluative aesthetic terms

Category Examples

Broadly evaluative Beautiful, ugly, sublime, dreary
Formal Balanced, graceful, concise
Emotional Sad, angry, joyful, serene
Evocative Powerful, stirring, amusing, hilarious, boring
Behavioral Sluggish, bouncy, jaunty
Representational Realistic, distorted, artificial
Perceptual Vivid, dull, flashy
Historical Derivative, original, conservative

Note: The emotions are according to Goldman (1995).

Table 1. Basic emotions

Theorist Basic Emotions

Plutchik Acceptance, anger, anticipation, disgust, joy,
fear, sadness, surprise

Arnold Anger, aversion, courage, dejection, desire,
despair, fear, hate, hope, love, sadness

Ekman, Friesen, &
Ellsworth

Anger, disgust, fear, joy, sadness, surprise

Frijda Desire, happiness, interest, surprise, wonder,
sorrow

Gray Rage and terror, anxiety, joy
Izard Anger, contempt, disgust, distress, fear,

guilt, interest, joy, shame, surprise
James Fear, grief, love, rage
McDougall Anger, disgust, elation, fear, subjection,

tender emotion, wonder
Mowrer Pain, pleasure
Oatley & Johnson-Laird Anger, disgust, anxiety, happiness, sadness
Panksepp Expectancy, fear, rage, panic
Tomkins Anger, interest, contempt, disgust, distress,

fear, joy, shame, surprise
Watson Fear, love, rage, based on what infants feel
Weiner & Graham Happiness, sadness

Note: The emotions are according to Ortony and Turner (1990).
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4. A genetically generated fuzzy rule base and a database
were created. This represents the manual and automatic
mapping between the space of design variables and the
space of aesthetic characteristics of designing aestheti-
cally pleasing products in Figure 1.

The human perception of the forms was used as a learning set
to automatically generate an equivalent fuzzy logic model auto-
matically without the use of the authors’ knowledge (avoiding
human bias). The fuzzy rules and sets are compared to those
that are manually created (in steps 2 and 3). If the automatically
derived fuzzy logic model correlates the manually constructed
one, then it would validate the authors’ manually developed
fuzzy logic model for both the rule base and the database.

In this paper the evaluation of the perception of the models
was conducted on the aggressive adjective only, whereas the
adjective friendly was used as an antonym for control pur-
poses. In other words, only the shapes created by the design
students to represent aggressiveness and friendliness were
shown to the group of users for them to evaluate the level
of aggressiveness. In practice, a group of people were shown
shapes in the aggressive and edgy category and were asked to

rate only the aggressiveness of each of the shapes. As a con-
trol test, the shapes that were designed to be friendly were in-
cluded in the evaluation. The evaluators were not informed
about which shape was intended to be aggressive or friendly
or that some of the shapes were designed to be friendly, but
were simply asked to rate the level of aggressiveness. The
work in this paper investigates the perception of images, rather
than any associations. Each of the steps of the methodology is
discussed together with results in the following sections.

3. CREATING OBJECTS USING TERMS
AS CONSTRAINTS

We created 3-D objects to describe given emotions by 60 en-
gineering design students working individually. By selecting
3-D shapes as opposed to finished products, the fuzzy logic
model and subsequent evaluation could focus on visceral re-
sponses and therefore separate behavioral and reflective re-
sponses. In addition, the functionality and usability of a
product could influence the perception of the user toward a
shape; hence, products were not used for the experiment.
By evaluating the shape alone, the aesthetics are taken out

Fig. 1. The two-way process for understanding and design for aesthetics (Van Bremen, 1998). [A color version of this figure can be viewed
online at journals.cambridge.org/aie]
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of any functional/behavioral context (Ahmed & Boelskifte,
2006). Each student was presented with a set of words de-
scribing a certain emotion or perception. The terms given
were massive and static, light and friendly, dynamic and inte-
grated, and aggressive and edgy. The choice of these terms
was inspired by previous research presented in Lenau and
Boelskifte (2004, 2005). Two terms were provided as rarely
can the perception of a product be limited to a single term.

The students were provided with cubes of foam (200 mm3)
and one of the four pairs of adjectives. The students were free
to use color on their shapes; however, in this study only the
shapes are considered and not the color. Each of the shapes
was photographed from a fixed distance at 45-degree incre-
ments. All of the eight models created by the students to ex-
press aggressive and edgy were used, together with the four
expressing light and friendly. The choice of using the aggres-
sive adjective (and its antonym for control) was guided by the
geometric properties, related to the adjective, identified by the
authors. These properties can be evaluated using images only.
Figure 2 shows the collected shapes, where shapes 2, 5, 8, and
11 were designed to be friendly and light; the remainder were
designed to be aggressive and edgy. This data set was used as it
was not influenced by the authors’ perception of a form, but
allows for subjectivity by collecting multiple perceptions
from the students.

4. FUZZY DECISION SUPPORT SYSTEM

Fuzzy logic techniques, based on the compositional rule of in-
ference, are used to handle vague/imprecise knowledge (Zadeh,
1965). Such knowledge can be collected and delivered by a hu-
man expert. A fuzzy rule-based model uses the fuzzy set theory
proposed by Zadeh (1965). A fuzzy set is a set with a smooth
boundary, which allows partial membership. The notion of a
membership in a fuzzy set is a degree that can vary between
0 and 1 (Yen & Langari, 1998). For example, the degree that
we can say a person is “tall” varies with the height.

A fuzzy rule-based model consists of membership functions
and fuzzy if–then rules. Each fuzzy if–then rule associates a

condition of input data with a specific conclusion of output.
The “if” part of a fuzzy rule is in charge of a specific region
of an input space (fuzzy sets), and the “then” part has a local
model that fits best to the data in the corresponding region (out-
put fuzzy sets). The regions allow partial memberships and can
overlap with each other. From a knowledge representation
viewpoint, a fuzzy if–then rule can be viewed as a scheme
for obtaining knowledge (especially human knowledge).

The degree to which the input matches the condition of
each rule is computed by the distance between the input
data point and the center of each local region. This is consid-
ered as a confidence level of the suggested answer. The model
obtains a final output after giving a weight to each answer ac-
cording to its confidence score, and averaging them; this step
is called defuzzification.

In this study, the center of gravity is used for the defuzzifi-
cation. FDSS Fuzzy-Flou software (Baron et al., 2001) is used
as a validation tool for the fuzzy knowledge bases (FKBs).
Fuzzy logic was selected because of its ability to handle impre-
cise knowledge as described earlier and to allow rules to be eas-
ily refined and tested (as opposed to black-box approaches).
Explicit rules may assist the creation of design guidelines.

5. MAPPING SHAPE PARAMETERS AND
AESTHETIC CHARACTERISTICS

In this section, the mapping of the shape parameters to aes-
thetic characteristics of the objects is described. Several geo-
metric parameters were selected depending on the emotion
represented, based on inspiration from the Gestalt rules of de-
sign. Gestalt psychology can provide designers with an un-
derstanding of “aesthetic perception and cognition” (Lyons,
2001). There is disagreement on how many rules are part of
Gestalt rules for perception; however, the following seem to
be the most frequently cited: Law of Proximity, Law of Sym-
metry, Law of Similarity, Law of Common Fate, Law of Con-
tinuation, Law of Isomorphism, Law of Closure, Law of Fig-
ure–Ground, Law of Focal Point, Law of Simplicity, Law of
Prägnanz (good form), and Law of Unity.

Fig. 2. The three-dimensional shapes considered for the study.
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It can be observed that the Gestalt rules are simple and tend
to consider the whole picture, while still influenced by how
several elements are connected to each other. This principle
is used in the work presented in this paper. The considered
objects are 3-D shapes, and hence the focus of the authors
of this paper is on geometric properties.

Any element of a 3-D shape is composed of points from
which one can create lines and curves, then surfaces and vol-
umes that will form a 3-D solid; this principle is illustrated
in Figure 3. However, when dealing with perception from
shapes presented as pictures this can be limited to surface
3-D modeling principles, which deal with points, lines/
curves, and the surfaces they form when interconnected.

Consequently, from a visual inspection of all the shapes de-
signed by the students for the adjective aggressive and the ad-
jective friendly, the choice was made to use the two lower
levels of definition of 3-D shape in terms of lines and curves,
whereas the points were not considered as they are not visible.
A line was perceived as a linear edge and a curve was per-
ceived as a nonlinear edge.

When the lines are connected to each other, they create an-
gles that are considered as the next dimension. When two
curves are connected to each other, the considered angle is
the one formed by the two tangents to the curves. Figure 4
shows an example using two basic 2-D shapes. Note that an
angle is considered acute when inferior or equal to 90 degrees
and obtuse when an angle is greater than 90 degrees but less

than 180 degrees inclusive. When in the presence of a reflex
angle, an angle that is greater than 180 degrees is considered
an obtuse angle.

In addition, the objects that were designed to be aggressive
presented more shape irregularities and obeyed fewer symme-
try rules or patterns. This led to considering the regularity
level of the shapes based on symmetry.

Finally, and considering the details given above, the com-
mon parameters identified by the authors are as follows: lines/
curves ratio (LCR), acute/obtuse angles ratio (AOR), and reg-
ularity level (RL). These parameters were defined by the au-
thors as a result of the visual analysis made of the 3-D objects
designed by the students. The visual analysis was done by
both the authors considering the points cited above, and mu-
tual agreement was achieved on using the above parameters.
It is worth noting that the first author has a product design
background and the second has a machine and CAD/compu-
ter-aided manufacturing design background.

For each shape that was considered, the number of curves
(NC), lines (NL), acute angles (NAA), and obtuse angles
(NOA) were counted using the different views of the photo-
graphs. The RL is based on invariance in symmetry; more de-
tails can be found in Achiche and Ahmed (2008). Only the sym-
metry of the whole object is considered and not the subparts.

The following parameters were used as the universe of dis-
course of the input premises:

LCR ¼ NL
NCþ NL

� 100, (1)

AOR ¼ NAA
NAAþ NOA

� 100, (2)

and the RL. Each object is tested for symmetry and scores 1
point for each (3 points maximum for three plans of sym-

Fig. 5. Counting the geometric properties from an image. [A color version of
this figure can be viewed online at journals.cambridge.org/aie]

Fig. 3. The structuring of visual information (Schamber, 1986).

Fig. 4. An illustration of lines and curves on simple planar shapes. [A color
version of this figure can be viewed online at journals.cambridge.org/aie]
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metry) when compared to the initial position. The RL is eval-
uated as follows:

RL ¼
X3

1Ri

3
� 100: (3)

Figure 5 illustrates a partial enumeration of the geometric
quantities described above; in the two faces selected one can
count five lines and zero curves, four obtuse angles, and one
acute angle, and the other surface has three lines, zero curves,
and three acute angles. The same approach was followed until
all the visible faces available on the each view of the 3-D shape
(eight views were available per shape) were covered.

6. CONSTRUCTION OF THE FKB

The FKB is composed of a database and a rule base; the con-
struction of both is detailed below.

6.1. Manual construction of the FKB

The manual construction of the FKB was carried out in the
two steps described in the following sections.

6.1.1. Defining the database

The database is composed of the inputs/outputs of the
FKB. In this paper, the inputs are composed of the geometric
parameters defined in Section 5. Each of the inputs has two
membership functions (low, high). The choice of a simple da-
tabase (only two triangular fuzzy sets on each input premise)
is motivated by two reasons: the rules are constructed manu-
ally, so keeping the rules to a low number allows for a tighter
design; and a simpler FKB tends to have higher generaliza-
tion properties, which allows it to be used on a broader range
of shapes (Balazinski et al., 2000; Duda et al., 2001). The out-
put is the level of aggressiveness ranging from 1 (nonaggres-
sive) to 10 (very aggressive), where five membership func-
tions were used: not, slightly, moderately, quite, and very.

6.1.2. Defining the rule base

At this step the rule base was manually defined by the au-
thors to map the relationships between the different member-
ship functions of the input premises to the membership func-
tions of the output premise. Table 3 presents the sets of fuzzy
rules, and Figure 6 illustrates the manually constructed FKB
(MFKB).

6.2. Automatic generation of the FKB

The automatic generation of the FKB is performed using a
specialized GA developed by the author (Achiche et al.,
2003). GAs are powerful stochastic optimization techniques
based on the analogy of the mechanics of biological genetics
and imitate the Darwinian survival of the fittest approach
(Goldberg, 1989). Each individual of a population is a poten-
tial FKB (see Fig. 7), where four basic operations of the real/
binary-like coded GA (RBCGA) learning are performed: re-
production, mutation, evaluation, and natural selection. The
RBCGA developed by the authors combines a real coded
and a binary coded GA. The reproduction mechanisms are
a multiple crossover and a fuzzy set reducer (Achiche et al.,
2004). A uniform mutation is used for the mutation mecha-
nism (Cordon et al., 2000).

Fig. 6. A manually constructed fuzzy knowledge base (MFKB). [A color
version of this figure can be viewed online at journals.cambridge.org/aie]

Table 3. Set of if–then rules

LCR AOR RL Conclusion

Low Low High Not
Low Low Low Slightly
Low High High Slightly
Low High Low Moderately
High Low High Moderately
High Low Low Quite
High High High Quite
High High Low Very

Note: LCR, lines/curves ratio; AOR, acute/obtuse angles
ratio; RL, regularity level.
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The genotype of an FKB is the coding of its parameters into
chromosomes. The genotype RG corresponds to several inde-
pendent sets of real numbers and a set of integers.

RC ; {RGsets, RGrules}, (4)

where RGsets and RGrules are the genotypes of the fuzzy sets
and the fuzzy rules, respectively. The genotype contains the
following items:

1. Input/output premises: A set of real numbers, which are
coordinates of the tip of the triangular fuzzy sets. For
the sake of coding simplicity, only nonsymmetrical–
overlapping triangular fuzzy sets for premises and sym-
metrical triangular fuzzy sets were considered for the
conclusion. There are as many real number sets as there
are premises in the problem, and one set for the conclu-
sion. Each set contains a predefined maximum number
of real numbers representing the location of the summit
of each fuzzy set on each premise and the conclusion.
The two summits located at the minimum and maxi-
mum limits of each premise and the conclusion are
not coded, because they are constant throughout the
evolution.

The genotype of the fuzzy sets of premise i is given as the
following:

RGXi ¼ x1|{z}
summit1

, x2|{z}
summit2

, . . . , xi|{z}
summitKi

8<
:

9=
;; (5)

where Ki is the number of fuzzy sets on the premise i (or the

conclusion). The limits of the premises (range) are not in-
cluded in the sets. RGsets is then given as

RGsets ¼ RGX1|ffl{zffl}
premise1

, RGX2|ffl{zffl}
premise2

, . . . , RGXi|ffl{zffl}
premisei

, . . . , RGXc|ffl{zffl}
conclusion

8><
>:

9>=
>;: (6)

2. Fuzzy rules: The fuzzy rules were coded as a set of in-
tegers representing an ordered list of the combination of
the premises. Each integer in the set represented a con-
clusion fuzzy set summit (Fig. 8). The genotype of the
fuzzy rules is given as

RGXi ¼ r1|{z}
rule1

, r2|{z}
rule2

, . . . , rk|{z}
ruleK

8<
:

9=
;: (7)

The initial population of FKBs is composed of P randomly
generated FKBs. The genotype of each new solution contains
all of the sets mentioned above. However, as explained be-
low, the size of the sets can decrease. The maximum number
of fuzzy rules is computed as

K ¼ (K1)� (K2)� � � � � (KN ): (8)

Reproduction is performed by crossover of the parent’s geno-
type to obtain the offspring’s genotype. The reproduction of
the FKBs in the RBCGA is performed through three cross-
over mechanisms, each one having a certain purpose to
achieve, as explained below.

Fig. 7. The genetic learning paradigm.
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6.2.1. Multiple crossover

The multiple-crossover mechanism is a combination of two
crossovers applied on different parts of the genotype. These
two mechanisms are governed by an initial probability pr1

and are described as follows:

6.2.2. Premises/conclusion crossover

The mechanism used is called blending crossover a (BLX-
a; Michalewicz, 1992), where a determines the exploitation/
exploration level of the offspring (see Fig. 9), knowing that

† in the exploitation zone, the offspring inherits behaviors
close to those of its parents; and

† in the exploration zone, the offspring is a result of an ex-
ploration; therefore, its attributes will be distant from its
parent’s average.

The parametera is set to 1.0 for the first third of the generations
(exploration), 0.5 for the second third (relaxed exploitation),
and 0.1 for the last third of the evolution (exploitation).

6.2.3. Fuzzy rules crossover

Because the part of the genotype representing the fuzzy rule
base is composed of integer numbers, the crossover on this part
of the genotype is done by simple crossover. The operation is
performed by inverting the end part of the sets of the parents at
a randomly selected crossover site as shown in Figure 10.

6.2.4. Fuzzy-set reducer

This mechanism aims to increase the simplicity level of the
FKBs by randomly selecting a fuzzy set on a premise and
erasing it together with its corresponding fuzzy rules. This
mechanism allows one to obtain different and simpler (less
information) solutions (i.e., FKBs). This mechanism is gov-
erned by the initial probability pr2.

6.2.5. Mutation

Mutation is the creation of an individual by altering the
gene of an existing one. The initial probability pr3 governs
the occurrence of this mechanism. The mutation used in the
RBCGA is a random mutation (uniform), which is applied
to one randomly selected individual (Cordon et al., 2000).

6.2.6. Natural selection

Natural selection is performed on the population by keep-
ing the “most promising” individuals, based on their fitness.
The first generation begins with P FKBs and the same num-
ber is generated by crossover and mutation. To keep the pop-
ulation constant, natural selection on the 2P FKBs was ap-
plied by ordering them according to the performance
criterion and keeping the P first FKBs.

The optimization process is formulated as an optimization
problem applied to the numerical data, using the RBCGA in

Fig. 9. The blended crossover a (BLX-a).

Fig. 10. A simple crossover.

Fig. 8. The reproduction mechanisms.
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order to produce nearly optimal FKBs. An FKB contains the
following entities or information:

1. the number of premises (inputs) and the number of con-
clusions (outputs),

2. the number of fuzzy sets and their distribution on the
premises and the conclusions, and

3. the fuzzy rules (fuzzy rule base).

Item 1 is a part of the problem’s input data and all the features
in items 2 and 3 are a part of the optimization process. The
maximum complexity on each premise (i.e., maximum num-
ber of fuzzy sets) is fixed at the beginning of the optimization,
and therefore these entities are not a part of the optimization
process. It is worth noting that the maximum complexity can
differ from premise to premise. After a few executions, max-
imum complexity can be readjusted to a higher number if re-
quired. The goal of the optimization process is to generate
FKBs while maximizing the fitness function in terms of accu-
racy ( fRMS ), where RMS is the root mean square. Criterion
fRMS is defined in the next section.

The optimization problem can be defined as follows: max f
(fRMS ), with G as the genotype.

6.3. Fitness function of the RBCGA

The fitness function allows one to compute the ratings of each
FKB. Those performance ratings are used by the RBCGA in
order to perform natural selection. The main performance cri-
terion is the accuracy level of the FKB (approximation error)
in reproducing the outputs of the learning data (belonging to
the design context). The approximation error DRMS is mea-
sured using the RMS error method:

DRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

(RBCGAoutput � dataoutput)2

N

s
; (9)

where N represents the size of the learning data. The RMS fit-
ness value f is evaluated as a percentage of the output length
of the conclusion L, that is,

frms ¼
L� DRMS

L
� 100: (10)

6.3.1. Generation of the database and the rule base

To generate the FKB using the RBCGA one has to set up
the maximum complexity allowed, the multiple-crossover
probability, and the mutation probability.

In this paper the maximum complexity is 5 fuzzy sets per
input premise and 10 fuzzy sets on the output. These numbers
are set higher than the ones used for the manual construction
in order to allow the RBCGA to select from several tradeoffs.
The reproduction probabilities are set to pr1 ¼ 60% (multiple
crossover), pr2 ¼ 40% (simplification rate), and pr3 ¼ 5%
(mutation); more details on these mechanisms can be found
in Achiche et al. (2004). The simplification percentage was

set high, in order to put emphasis on the generalization of
the fuzzy model because the optimization starts with a possi-
ble 53 (125) possible rules. The population size is set to 200
and the number of generations to 200. Each run was repeated
three times to ensure the robustness of the optimization pro-
cess. At the end of the optimization the best individual is
selected according to the highest fRMS.

The selected FKB contains two fuzzy sets on each premise
that corroborates the choices made for the manual construc-
tion. Figure 11 shows the selected genetically generated
FKB (GFKB). One can see from Figure 11a that premise 2
(AOR) covers the discourse domain from 0 to 86.52% (and
not up to 100%), the reason being that none of the shapes
had a 100% AOR. The same goes for the output premise
where the values range from 1.3 to 7.6.

For a more generalized GFKB the upper limit of the AOR
premise is stretched to 100% and the output was changed to
cover the range 1 to 10; this will be called the generalized ge-
netically generated FKB (GGFKB). These alterations will re-
duce the accuracy of the FKB regarding the reproduction of the
learning set but increase its usability. These alterations are also
necessary in order to be able to compare the performance of the
GFKB to the MFKB. Figure 11b illustrates the GGFKB.

7. VALIDATION OF THE FKBS

In order to validate the FKBs, 12 different shapes were used
(8 aggressiveþ 4 friendly designs). To avoid differences due
to different perceptions among different user groups, the par-
ticipants selected for the evaluation all had an engineering de-
sign or industrial design background, either as undergraduate
or graduate students, or worked in product development.

Using subjects without a design background would not
provide a suitable data set to extract design rules because
the participants would have difficulties distinguishing clearly
between the different aspects of design for the desired per-
ception. An assessment of perception using a limited number
of shapes demands knowledge of design that subjects without
design backgrounds may not possess. Therefore, expert par-
ticipants were used, using the criterion of whether they had
an engineering design or product design background.

There is no agreement about the sample size and no stan-
dards by which a sample size selection could be evaluated
to select the number of expert participants required (Lai
et al., 2006). The number of expert participants is usually
far less than the number of general participants. In the studies
of Norman and Olaf (1963) and Strasser et al. (2005), a respec-
tive 6 and 7 experts participated; in Dore et al. (2007) only 4
designers were surveyed. Therefore, in this study 20 experts
were used to evaluate the shapes designed by the students.

The authors acknowledge the subjectivity involved in per-
ception, for example, because of cultural differences, hence
minimize the effect of this through selecting “homogeneous”
groups. The chosen group of 20 experts, without knowledge
of the purpose of the study, evaluated each shape. The group
consisted of 5 females and 15 males. Each object was illus-
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Fig. 11. (a) A genetically generated fuzzy knowledge base (FKB) and (b) a generalized genetically generated FKB. [A color version of this figure can be viewed online at
journals.cambridge.org/aie]
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trated by two photographs in the evaluation grid to give a
clear idea of the shape to the evaluator, and four view of
each shape was also shown on a PowerPoint presentation.
Each of the views lasted 3 s. During the evaluation, the par-
ticipants were shown color photos but asked to focus on the
shape; however, color photos were necessary for clarity of
the images. The authors are aware of the influence of the col-
ors, textures, and so forth on the emotional perception of an
object; however, in this particular work they were not consid-
ered in order to focus on the link between geometry and emo-
tion. The participants awarded scores on a scale from 1 to 10.
The response average of the 20 evaluators was computed and
used as the gold standard. Ideally, low scores for the friendly
designs and high ones for the aggressive designs were ex-
pected if the MFKB were to correlate successfully to the
users’ perception. The GFKB reproduces the users’ percep-
tions through a fuzzy model.

7.1. Experimental data treatment

In order to detect outliers the extreme Studentized deviate
method was used, also commonly referred to as the Grubbs’
test. First, one has to calculate the ratio Z as the difference be-
tween the outlier and the mean divided by the standard devia-
tion (SD). If Z is large, the value is far from the others.

Z ¼ jmean� valuej
SD

: (11)

In this paper the SD is calculated from the data including the
outliers. Grubbs and others have tabulated critical values for
Z (Zc); for 20 values Zc ¼ 2.71.

If the calculated value of Z is greater than the critical value
in the table, then the P value is less than 0.05 (5%). In this pa-
per Z was calculated for all values, and the P value for
Grubbs’ test was calculated for the largest values of Z.

To calculate an approximate P, one has to evaluate the in-
termediate value T using the following equation:

T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N(N � 2)Z2

(N � 1)2 � NZ2

s
, (12)

where N is the number of values in the sample and Z is calcu-
lated for the suspected outlier as shown above.

The next step is to evaluate the two-tailed P2 value for the
Student t distribution, using the calculated value of T and (N –
2) degrees of freedom: P2 ¼ TDIST(T, N – 2, 2).

Finally, the approximate P value is given by

P ¼ P2 � N: (13)

This P value is the chance of observing one point so far from the
others if the data were all sampled from a Gaussian distribution.
Once the outliers were identified, they were excluded from the
data set. The test was run until no outliers were present in the
data. Two outliers were detected in the evaluation of shape 8.

7.2. Geometric properties of the shapes and learning
performance

The LCR, AOR, and RL were calculated for each shape. Ta-
ble 4 summarizes the obtained results, and these values were
submitted as an observation file into MFKB and the GGFKB.
The same set was used as a learning/validation set for the
GFKB. The outputs of the fuzzy models assessed the pre-
dicted level of aggressiveness of the shapes.

The correlation between the human evaluation and the
MFKB prediction of the shapes aggressiveness was about
0.883 with a two-tailed P value of 0.000137, which can be con-
sidered satisfactory and extremely statistically significant. The
correlation to the GFKB is 2% higher with 0.897 with a two-
tailed P value of 0.0001 and to GGFKB is 0.890 with a two-
tailed P value of 0.000106. Figure 12 illustrates the predicted
aggressiveness of the shapes versus the perception of the users.
One can see that the GGFKB prediction is closer to the real per-
ception values than the MFKB, for the majority of the time;
however, the general behavior of the curves was similar.

7.3. Comparing the databases

From comparing Figure 6 and Figure 11 one can notice that
the two fuzzy models are very similar; this confirms our
choices when it comes to the database of the MFKB. The
only difference is the absence of the fuzzy set “moderately”
on the output of the GGFKB. However, because the center
of gravity is used as a deffuzification mechanism, the absence
of the latter does not highly affect the output, because middle
values can be obtained by firing rules involving the extreme
fuzzy sets at the same time.

7.4. Comparing the fuzzy rule bases

Table 5 represents the genetically generated fuzzy rule base;
when compared to Table 3, one can see that the first two rules
and the last two rules are identical but rules 3–6 are different.

Table 4. Characteristics of shapes

Shape
LCR
(%)

AOR
(%)

RL
(%)

1 100.00 62.24 33.33
2 0.00 0.00 66.67
3 100.00 86.52 33.33
4 96.49 61.11 33.33
5 0.00 0.00 100.00
6 100.00 65.75 33.33
7 83.65 61.02 66.67
8 12.50 0.00 66.67
9 100.00 69.02 66.67

10 100.00 0.00 33.33
11 0.00 69.51 66.66
12 94.23 53.15 0.00

Note: LCR, lines/curves ratio; AOR, acute/obtuse angles
ratio; RL, regularity level.
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The difference in the middle rules can partially be ex-
plained because the fuzzy set “moderately” was omitted in
the genetically generated FKB; this means that rules 4 and
5 cannot be identical. This change also has an influence on
the immediate neighboring rules. Furthermore, the common
point of rules 3–6 is switching between the high and low
memberships for the premises LCR and AOR, respectively
(low–high and high–low).

By analyzing Table 4, the closest shapes having those pairs
are numbers 10 and 11. The rest of the shapes represent
mainly the low–low and high–high pairs.

This leads the RBCGA to give lower priority to the high–
low, low–high pairs because the learning was about reducing

the DRMS. The middle rules were mainly used as a support to
the extreme rules. Furthermore, one can see that when it
comes to RL for both shapes 10 and 11 it is neither high
nor low, which further complicates the rule extraction.

The automatic generation validated the distribution of the
fuzzy sets in the database of the FKB, and the extreme rules
were also reproduced. Both the automatically and manually
constructed FKBs reproduced satisfactorily the human per-
ception of the shapes.

8. CONCLUSION

This paper has shown manually constructed and genetically
generated fuzzy logic models for evaluating aggressiveness
in shapes, and has been validated through an empirical study
with design students and design professionals. The initial re-
sults have shown that there are characteristics in a shape that
characterize how it is perceived.

The genetically generated model that does not suffer any
bias (bias that the authors might have) was very similar to
the one manually constructed by the authors, which confirms
the statement above. It also points to the possibility of using
automatically generated fuzzy logic models as an evaluation/
validation method for manually developed ones. Hence, the
methodology used may provide an alternative way to triangu-
late between multiple measures of the same phenomenon be-
cause the GFKB correlates with an expert rule base (MFKB)
and an empirical knowledge base (participants’ ratings, 20
evaluators).

Fig. 12. The perception versus prediction of the aggressiveness level. [A color version of this figure can be viewed online at journals.
cambridge.org/aie]

Table 5. Rules base of the generalized genetically
generated functional knowledge base

LCR AOR RL Conclusion

1. Low Low High Not
2. Low Low Low Slightly
3. Low High High Quite
4. Low High Low Quite
5. High Low High Very
6. High Low Low Slightly
7. High High High Quite
8. High High Low Very

Note: LCR, lines/curves ratio; AOR, acute/obtuse angles ratio;
RL, regularity level. Rules 1, 2, 7, and 8 are identical, but rules 3–6
are not.
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The results indicate that design rules for aggression are pos-
sible, and hence, establishing fuzzy logic models for other ad-
jectives is likely to be possible for both emotions and percep-
tions. The implications of the work are that a set of design
rules may be established in a fuzzy model and can be easily ac-
cessible. This can assist designers in understanding how a
shape may be perceived by users and how they can change cer-
tain geometric ratios to change the emotions induced by their
product. Furthermore, the fuzzy logic model can be used along
with shape grammar techniques (Knight, 1999) for both origi-
nal and analytical shape grammars (Pupo et al., 2007). For the
original type, an emotional evaluation of the generated designs
can be predicted by the fuzzy models and compared against a
desired emotion, whereas for the analytical type, one can vali-
date the emotional value of an already existing design by ex-
tracting the relevant parameters from the shapes and using these
as an observation set for the fuzzy logic model. For both the
original and analytical shape grammars, and within a scope
of evolutionary generation/analysis of designs, these evalu-
ation/predictions could serve as a fitness function.

The limitation in respect to the automatic extraction of
fuzzy models for other adjectives is the lack of variety of
some of the shape characteristics. More shapes would be
needed for the learning. Hence, future sets may be supple-
mented through shapes deliberately created to obey certain
rules; because ideally a first subset should be used for learn-
ing, a second subset for cross-validation, whereas the final
should be used for validation.

REFERENCES

Achiche, S., & Ahmed, S. (2008). Mapping shape geometry and emotions
using fuzzy logic. Proc. 2008 ASME IDETC/CIE, Paper No. DETC2008-
49290.

Achiche, S., Balazinski, M., & Baron, L. (2004). Multi-combinative strategy to
avoid premature convergence in genetically-generated fuzzy knowledge
bases. Journal of Theoretical and Applied Mechanics 42(3), 417–444.

Achiche, S., Baron, L., & Balazinski, M. (2003). Real/binary like coded ge-
netic algorithm to automatically generate fuzzy knowledge bases. Proc.
IEEE 4th Int. Conf. Control and Automation, pp. 799–803, Montreal.

Ahmed, S., & Boelskifte, P. (2006). Investigation of designers intentions and
users’ perception of product character. Proc. Nordesign, pp. 372–381,
Reykjavik, Iceland.

Balazinski, M., Achiche, S., & Baron, L. (2000). Influences of optimization
criteria on genetically generated fuzzy knowledge bases. Proc. Int. Conf.
Advanced Manufacturing Technology, pp. 159–164.

Baron, L., Achiche, S., & Balazinski, M. (2001). A genetic-based learning
process for fuzzy decision support systems. International Journal of
Approximate Reasoning 28(2–3), 125–148.

Bloch, P.H. (1995). Seeking the ideal form: product design and the consumer
response. Journal of Marketing 59, 16–29.

Bouchard, C., Christofol, H., Roussel, B., Auvray, L., & Aoussat, A. (1999).
Identification and integration of product design trends. Proc. Int. Conf.
Engineering Design, ICED 99, pp. 1147–1150.

Bruce, M., & Whitehead, M. (1988). Design into the picture: the role of
product design in consumer purchase behaviour. Journal of Market Re-
search Society 30(2), 147–162.

Chuang, M.C., Chang, C.C., & Hsu, S.H. (2001). Perceptual factors under-
lying user preferences toward product form of mobile phones. Interna-
tional Journal of Industrial Ergonomics 27, 247–258.

Company, P., Vergara, M., & Mondragón, S. (2004). Contributions to
product semantics taxonomy. Proc. 8th Congreso Int. Ingenierı́a de
Proyectos, Bilba, Spain.
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