
Canad. Math. Bull. Vol. 65 (3), 2022, pp. 759–769
http://dx.doi.org/10.4153/S0008439521000576
© Canadian Mathematical Society 2021

A new complemented subspace for the
Lorentz sequence spaces, with an
application to its lattice of closed ideals
Ben Wallis

Abstract. We show that every Lorentz sequence space d(w, p) admits a 1-complemented subspace Y
distinct from �p and containing no isomorph of d(w, p). In the general case, this is only the second
nontrivial complemented subspace in d(w, p) yet known. We also give an explicit representation of Y
in the special case w = (n−θ)∞n=1 (0 < θ < 1) as the �p-sum of finite-dimensional copies of d(w, p). As
an application, we find a sixth distinct element in the lattice of closed ideals of L(d(w, p)), of which
only five were previously known in the general case.

1 Introduction

Little is known about the complemented subspace structure of Lorentz sequence
spaces d(w, p). Until recently, the only nontrivial complemented subspace discussed
in the literature was �p [ACL73]. Then, in [Wa20], it was shown that for certain weights
w (see Theorem 2.2 below), the space d(w, p) contains a 1-complemented subspace
isomorphic to (⊕∞n=1 �

n
∞)p . Up to now, these were the only nontrivial complemented

subspaces known to exist.
In this short note, we show that each Lorentz sequence space admits a

1-complemented subspace Y distinct from �p (Section 2). We also give an explicit
representation of Y for the case w = (n−θ)∞n=1 (0 < θ < 1), as the �p-sum of finite-
dimensional copies of d(w, p) (Section 3). Note that this choice of w = (n−θ)∞n=1
corresponds to the classical Lorentz sequence spaces �q , p with p/q = 1 − θ. Finally, as
an application, we find a sixth distinct element in the lattice of closed ideals in the
operator algebra L(d(w, p)), where only five were previously known in the general
case (Section 4).

Let us set up the main notation we need to use. We begin by fixing K ∈ {R,C}.
Denote by Π the set of all permutations of N, and denote by W the set of all sequences
w = (wn)∞n=1 ∈ c0 ∖ �1 satisfying

1 = w1 ⩾ w2 ⩾ w3 ⩾ ⋯ > 0.
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760 B. Wallis

Fix 1 ⩽ p < ∞ and w ∈W. For each (an)∞n=1 ∈ KN, we set

∥(an)∞n=1∥d(w, p) ∶= sup
π∈Π

(
∞

∑
n=1

∣aπ(n)∣pwn)
1/p

,

and let d(w, p) denote the linear space of all (an)∞n=1 ∈ KN with ∥(an)∞n=1∥d(w, p) < ∞
endowed with the norm ∥ ⋅ ∥d(w, p), called a Lorentz sequence space. Recall that if
(an)∞n=1 ∈ c0 then there exists a “decreasing rearrangement” (ân)∞n=1 of (∣an ∣)∞n=1. In
this case, the rearrangement inequality gives us

∥(an)∞n=1∥d(w, p) = (
∞

∑
n=1

âp
nwn)

1/p

for all (an)∞n=1 ∈ c0 .(1.1)

Because d(w, p) ⊂ c0 as linear spaces (although not as normed spaces), this represents
an alternative formulation of the Lorentz sequence space norm.

For each i , k ∈ N, we define

Wk ∶=
k
∑
n=1

wn and w(k)
i ∶= 1

Wk

i k
∑

n=(i−1)k+1
wn ,

and w(k) ∶= (w(k)
i )∞i=1. It is readily apparent that w(k) ∈W. When p is clear from

context, we also set

d(k)
i ∶= 1

W 1/p
k

i k
∑

n=(i−1)k+1
dn ,

where (dn)∞n=1 is the canonical unit vector basis for d(w, p). It is routine to verify that
(d(k)

i )∞i=1 is a normalized basic sequence isometrically equivalent to the d(w(k), p)
basis. If necessary, we may sometimes abuse this notation; for instance, if ( jk)∞k=1
is a sequence in N, then we could write ((d( jk)

i )k
i=1)∞k=1 for appropriately translated

successive normalized constant-coefficient blocks of lengths jk .
Our main tool for finding complemented subspaces of d(w, p) is the fact

that every constant-coefficient block basic sequence of a symmetric basis spans a
1-complemented subspace (cf., e.g., [LT77, Proposition 3.a.4]). We will use this well-
known fact freely and without further reference.

2 Lorentz sequence spaces contain at least two nontrivial
complemented subspaces

The first discovery of a nontrivial complemented subspace in d(w, p) came almost
half a century ago, with the following result.

Theorem 2.1 ([ACL73, Lemma 1]) Fix 1 ⩽ p < ∞ and w ∈W, and let

x i =
p i+1−1

∑
n=p i

andn , i ∈ N,
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A new complemented subspace for the Lorentz sequence spaces 761

form a seminormalized block basic sequence in d(w, p). If an → 0, then (x i)∞i=1 admits
a subsequence equivalent to �p and complemented in d(w, p).

By taking sufficiently long constant-coefficient blocks, it follows that d(w, p)
contains a 1-complemented copy of �p . Much later was shown the following.

Theorem 2.2 ([Wa20, Theorem 4.3]) Let 1 ⩽ p < ∞ and w = (wn)∞n=1 ∈W. If

inf
k∈N

∑2k
n=1 wn

∑k
n=1 wn

= 1,

then d(w, p) admits a 1-complemented subspace spanned by constant-coefficient blocks
and isomorphic to (⊕∞n=1 �

n
∞)p.

Thanks in large part to the ideas of William B. Johnson, our main result in this
section is to generalize this to all Lorentz sequence spaces, as follows.

Theorem 2.3 Let 1 ⩽ p < ∞ and w ∈W. Then, there exists an increasing sequence
(Nk)∞k=1 ∈ NN such that ((d(k)

i )Nk
i=1)∞k=1 spans a 1-complemented subspace Y which

contains no isomorph of d(w, p) and which is not isomorphic to �p .

To prove it, we need a few preliminaries.

Lemma 2.4 If 1 < p < ∞, then every complemented subspace of Lp[0, 1] with a
subsymmetric basis (xn)∞n=1 is isomorphic to either �p or �2.

Proof The case p = 2 is trivial, because every complemented subspace of L2[0, 1] is
isomorphic to �2. For the case p > 2, recall from [KP62, Corollary 6] that every semi-
normalized basic sequence in Lp[0, 1], p ∈ (2,∞), admits a subsequence equivalent to
�p or �2, and so because (xn)∞n=1 is also subsymmetric, then it is in fact equivalent to �p
or �2. In case 1 < p < 2, because (xn)∞n=1 is complemented in Lp[0, 1], its corresponding
sequence of biorthogonal functionals (x∗n)∞n=1 is contained in Lp′[0, 1], where 1

p + 1
p′ =

1. Because p′ > 2, a subsequence of (x∗n)∞n=1 is equivalent to �p′ or �2, whence by
subsymmetry (xn)∞n=1 is equivalent to �p or �2. ∎

Lemma 2.5 Let X be a Banach space whose canonical isometric copy in X∗∗ is
complemented. Then, for any free ultrafilter U on N, the canonical copy of X in XU

is complemented in XU.

Proof Let q ∶ X → X∗∗ denote the canonical embedding, and define the norm-1
linear operator V ∶ �∞(X) → X∗∗ by the rule

V(xn)∞n=1 = weak*-lim
U

qxn ,

which exists by the weak∗-compactness of BX∗∗ together with the fact that if K is
a compact Hausdorff space, then for each (kn)∞n=1 ∈ KN, the (unique) limit limU kn
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762 B. Wallis

exists in K. Note that if limU xn = 0, then V(xn)∞n=1 = 0, and so V induces an operator
V̂ ∶ XU → X∗∗ which agrees with V along the diagonal. In particular, V̂ sends the
canonical copy of X in XU isomorphically to the canonical copy of X in X∗∗. ∎

Theorem 2.6 Fix 1 ⩽ p < ∞, and let (xn)∞n=1 be a basis for a Banach space X whose
canonical copy in X∗∗ is complemented. If the finite-dimensional spaces [xn]N

n=1, N ∈ N,
are uniformly complemented in Lp(μ) for some measure μ, then X is complemented in
Lp[0, 1].

Proof Let XN = [xn]N
n=1 and PN ∶ X → XN the projection onto XN . By uniform

complementedness of XN , we can find uniformly bounded linear operators AN ∶
XN → Lp(μ) and BN ∶ Lp(μ) → XN such that BN AN is the identity on XN . Let U
be any free ultrafilter on N. Define the bounded linear operators A ∶ X → Lp(μ)U
by the rule Ax = (AN PN x)U, and B ∶ Lp(μ)U → XU by B(yN)U = (BN yN)U. Let
x ∈ span(xn)∞n=1, so that, for some k ∈ N,

BAx = (P1x , . . . , Pk x , x , x , . . .)U = xU .

By continuity, BA is the canonical injection of X into XU. Because its range is
complemented by Lemma 2.5, we have the identity on X factoring through Lp(μ)U.

It was proved in [He80, Theorem 3.3] that ultrapowers preserve Lp lattice structure,
and in particular Lp(μ)U is isomorphic to Lp(ν) for some measure ν. Although Lp(ν)
itself is nonseparable, we could pass to the closed sublattice generated by AX to find a
space isomorphic to a separable Lp containing a complemented copy of X. Due mostly
to a famous result of Lacey and Wojtaszczyk, it is known that separable and infinite-
dimensional Lp spaces are isomorphic to either �p or Lp[0, 1] [JL01, Section 4, p. 15].
This means an isomorph of X is complemented in Lp[0, 1]. ∎

An immediate corollary to Lemma 2.4 and Theorem 2.6 is as follows.

Corollary 2.7 Let 1 < p < ∞ and w ∈W. Then, no Lp(μ) space contains uniformly
complemented copies of [dn]N

n=1, N ∈ N.

Now, we are ready to prove the main result of this section, Theorem 2.3.

Proof Fix k ∈ N, and note that (d(k)
i )∞k=1 is isometric to the d(w(k) , p) basis.

Consider the case where p = 1. Then, we can choose the Nk ’s large enough that
each (d(k)

i )Nk
i=1 fails to be k-equivalent to �Nk

1 , and hence ((d(k)
i )Nk

i=1)∞k=1 fails to be
equivalent to �1. As �1 has a unique unconditional basis by a result of Lindenstrauss
and Pełczyński, it follows that Y is not isomorphic to �1.

Next, consider the case where 1 < p < ∞. By Corollary 2.7, we can select Nk ’s
large enough that [d(k)

i ]Nk
i=1 fails to be k-complemented in �p . As [d(k)

i ]Nk
i=1’s are all

1-complemented in Y, that means Y is not isomorphic to �p .
It remains to show that Y contains no isomorph of d(w, p). Suppose toward a

contradiction that it does. As (dn)∞n=1 is weakly null (cf., e.g., [ACL73, Proposition 1]),
we can use the gliding hump method together with symmetry to find a normalized
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block sequence of ((d(k)
i )Nk

i=1)∞k=1 equivalent to (dn)∞n=1. However, every such block
sequence is also a block sequence w.r.t. (dn)∞n=1 with coefficients tending to zero. By
Theorem 2.1, it follows that (dn)∞n=1 admits a subsequence equivalent to �p , which is
impossible. ∎

3 A special case

In this section, we show that when w = (n−θ)∞n=1 for some fixed 0 < θ < 1, the space Y
described in Theorem 2.3 can be chosen to be isomorphic to the space

Yw, p ∶= (
∞

⊕
N=1

DN)
p

,

where DN ∶= [dn]N
n=1, for each N ∈ N. As usual, we require some preliminaries.

Lemma 3.1 Let 0 < θ < 1 and j, k ∈ N. Then,

( j + 1
k

+ 1)
1−θ

− ( j + 1
k

)
1−θ

⩽
∑ j+k

n= j+1 n−θ

∑k
n=1 n−θ

⩽ ( j/k + 1)1−θ − ( j/k)1−θ

21−θ − 1
.

Proof Observe that the map

f (t) = (1 + 1/t)1−θ − (1/t)1−θ

is increasing on [1,∞) and hence has a minimum f (1) = 21−θ − 1. Hence,

( j + 1
k

+ 1)
1−θ

− ( j + 1
k

)
1−θ

⩽ ( j + k + 1)1−θ − ( j + 1)1−θ

k1−θ − θ

= ∫
j+k+1

j+1 t−θ dt

1 + ∫
k

1 t−θ dt

⩽
∑ j+k

n= j+1 n−θ

∑k
n=1 n−θ

⩽ ∫
j+k

j t−θ dt

∫
k+1

1 t−θ dt

= ( j + k)1−θ − j1−θ

(k + 1)1−θ − 1

= ( j/k + 1)1−θ − ( j/k)1−θ

(1 + 1/k)1−θ − (1/k)1−θ

⩽ ( j/k + 1)1−θ − ( j/k)1−θ

21−θ − 1
. ∎
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Lemma 3.2 Let 0 < θ < 1 and w = (wn)∞n=1 = (n−θ)∞n=1 ∈W. Then,

1 − θ
2

⋅ w i ⩽ w(k)
i ⩽ 2 − 2θ

21−θ − 1
⋅ w i for all i, k ∈ N.

In particular, if 1 ⩽ p < ∞, then there is a constant C ∈ [1,∞), depending only on θ,
such that

(dn)∞n=1 ≈C (d(k)
i )∞i=1 for all k ∈ N.

Proof We can assume i , k ⩾ 2. Observe that

t ↦ t − (t − 1)1−θ ⋅ tθ

is decreasing on [2,∞), and hence has the maximum 2 − 2θ . Furthermore, the
function

t ↦ t − (t − 1/2)1−θ ⋅ tθ

is decreasing on [2,∞) and hence has infimum

lim
t→∞

(t − (t − 1/2)1−θ ⋅ tθ) = 1 − θ
2

.

Thus, by the above, and applying Lemma 3.1 with j = k(i − 1),

1 − θ
2

⋅ i−θ ⩽ (i − (i − 1/2)1−θ ⋅ iθ) i−θ

= i1−θ − (i − 1/2)1/θ

⩽ (i + 1/k)1−θ − (i − 1 + 1/k)1/θ

⩽
∑i k

n=(i−1)k+1 n−θ

∑k
n=1 n−θ

(which is equal to w(k)
i )

⩽ i1−θ − (i − 1)1−θ

21−θ − 1

= i − (i − 1)1−θ ⋅ iθ

21−θ − 1
⋅ i−θ

⩽ 2 − 2θ

21−θ − 1
⋅ i−θ . ∎

Remark 3.3 Suppose x = ∑n∈A andn and y = ∑n∈B bndn for finite and disjoint sets
A, B ⊂ N, where (an)n∈A and (bn)n∈B are sequences of scalars. Then,

∥x + y∥p ⩽ ∥x∥p + ∥y∥p .

Lemma 3.4 Let ( jk)∞k=1 be a sequence of positive integers, and, for each k, set

Jk = j1 + 2 j2 + 3 j3 +⋯+ k jk .
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Suppose that there are constants A, B ∈ (0,∞) such that

w( jk)
i ⩽ Aw i(3.1)

and

Bw i ⩽
1

Wjk

Jk−1+i jk

∑
n=Jk−1+(i−1) jk+1

wn ,(3.2)

for all i = 1, . . . , k and all k ∈ N. Then, ((d( jk)
i )k

i=1)∞k=1 is equivalent to the canonical
Y w, p basis.

Proof Due to (3.1), we have (d( jk)
i )k

i=1 ≲A d(w, p)k . Now, using Remark 3.3, for any
finitely supported scalar sequence ((a(k)

i )k
i=1)∞k=1,

∥
∞

∑
k=1

k
∑
i=1

a(k)
i d( jk)

i ∥
p

⩽
∞

∑
k=1

∥
k
∑
i=1

a(k)
i d( jk)

i ∥
p

⩽ Ap
∞

∑
k=1

∥(a(k)
i )k

i=1∥
p

d(w, p)

= Ap ∥((a(k)
i )k

i=1)∞k=1∥
p

Yw, p
.

For the reverse inequality, let (â(k)
i )k

i=1 denote the decreasing rearrangement of
(∣a(k)

i ∣)k
i=1. Then, applying (3.2),

∥
∞

∑
k=1

k
∑
i=1

a(k)
i d( jk)

i ∥
p

=
$$$$$$$$$$$$$

∞

∑
k=1

k
∑
i=1

a(k)
i

W 1/p
jk

Jk−1+i jk

∑
n=Jk−1+(i−1) jk+1

dn

$$$$$$$$$$$$$

p

⩾
∞

∑
k=1

k
∑
i=1

â(k)p
i

Wjk

Jk−1+i jk

∑
n=Jk−1+(i−1) jk+1

wn (from (1.1))

⩾ B
∞

∑
k=1

k
∑
i=1

â(k)p
i w i

= B ∥((a(k)
i )k

i=1)∞k=1∥
p

Yw, p
. ∎

Theorem 3.5 Let ( jk)∞k=1 and (Jk)∞k=1 be as in Lemma 3.4. Suppose there is M ∈ [1,∞)
such that

Jk−1

jk
⩽ M , for all k = 2, 3, 4, . . . .

Then, ((d( jk)
i )k

i=1)∞k=1 is equivalent to the canonical Y w, p basis.

Proof Due to Lemma 3.4, it suffices to show that (3.2) and (3.1) both hold. To do
this, fix an arbitrary k ∈ N. We may assume, without loss of generality, that jk ⩾ 2.
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Now, by Lemma 3.1,

1
Wjk

Jk−1+i jk

∑
n=Jk−1+(i−1) jk+1

wn ⩾ ( Jk−1 + (i − 1) jk + 1
jk

+ 1)
1−θ

− ( Jk−1 + (i − 1) jk + 1
jk

)
1−θ

= ( Jk−1

jk
+ i + 1

jk
)

1−θ

− ( Jk−1

jk
+ i − 1 + 1

jk
)

1−θ

⩾ ( Jk−1

jk
+ i)

1−θ

− ( Jk−1

jk
+ i − 1 + 1

2
)

1−θ

= iθ
⎡⎢⎢⎢⎢⎣
( Jk−1

jk
+ i)

1−θ

− ( Jk−1

jk
+ i − 1

2
)

1−θ⎤⎥⎥⎥⎥⎦
w i .

Applying the Mean Value Theorem to the function x ↦ (ϕ + x)1−θ , ϕ ∈ [1,∞), we can
find xϕ ∈ (−1/2, 0) such that

ϕ1−θ − (ϕ − 1/2)1−θ =
(1 − θ)(ϕ + xϕ)−θ

2
⩾ (1 − θ)ϕ−θ

2
.

Hence, letting ϕ = Jk−1/ jk + i, we have

iθ
⎡⎢⎢⎢⎢⎣
( Jk−1

jk
+ i)

1−θ

− ( Jk−1

jk
+ i − 1

2
)

1−θ⎤⎥⎥⎥⎥⎦
⩾ iθ [(1 − θ)(Jk−1/ jk + i)−θ

2
]

= 1 − θ
2

( i
Jk−1/ jk + i

)
θ

⩾ 1 − θ
2

( 1
M + 1

)
θ

.

This proves (3.2), and (3.1) follows immediately from Lemma 3.2. ∎

Taking inductively j1 = 1 and jk+1 = Jk , the following is now immediate.

Corollary 3.6 Let 1 ⩽ p < ∞, 0 < θ < 1, and w = (wn)∞n=1 = (n−θ)∞n=1 ∈W. Then,
d(w, p) admits a 1-complemented subspace isomorphic to Y w, p.

4 Application to the lattice of closed ideals

In [KPSTT12], it was shown (among other results) that the lattice of closed ideals for
the operator algebra L(d(w, p)) can be put into a chain:

{0} ⊊K(d(w, p)) ⊊ SS(d(w, p)) ⊊ Sd(w, p)(d(w, p)) ⊊ L(d(w, p)).

Here,K denotes the compact operators, SS the strictly singular operators, and Sd(w, p)
the ideal of operators which fail to be bounded below on any isomorph of d(w, p).
While, in [Wa20, Corollary 2.7], for the special case where 1 < p < 2 and w ∈W ∩
�2/(2−p), a chain of distinct closed ideals with cardinality of the continuum were
identified lying between K(d(w, p)) and SS(d(w, p), for the general case, the only
distinct elements known were those of the above chain.
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For an operator T, let JT denote the class of operators factoring through T. If Z is
any Banach space, we then set JZ = JIdZ . By Theorem 4.3 below, we can extend the
chain above as follows:

{0} ⊊K(d(w, p)) ⊊ SS(d(w, p)) ⊊ (J�p ∨ SS)(d(w, p))
⊊ Sd(w, p)(d(w, p)) ⊊ L(d(w, p)).

Furthermore, by [KPSTT12, Corollary 3.2 and Theorem 5.3] together with the fact that
d(w, p) has the approximation property, any additional distinct closed ideals in the
above chain must lie between K(d(w, p)) and SS(d(w, p)), or else between (J�p ∨
SS)(d(w, p)) and Sd(w, p)(d(w, p)), although there may be other ideals in the lattice
which are not a part of the chain.

To prove Theorem 4.3, we need a couple of preliminary results.

Proposition 4.1 Let X and Z be an infinite-dimensional Banach spaces such that Z2 ≈
Z, and X fails to be isomorphic to a complemented subspace of Z. Then, JZ(X) is a
proper ideal in L(X). Furthermore, if P ∈ L(X) is a projection with image isomorphic
to Z, then

JP(X) = JZ(X).

Proof Because Z2 ≈ Z, [KPSTT12, Lemma 2.2] guarantees that JZ(X) is an ideal
inL(X). Suppose toward a contradiction that IdX ∈ JZ(X). Then, IdX = AB for oper-
ators A ∈ L(Z , X) and B ∈ L(X , Z). By [KPSTT12, Lemma 2.1], BX is complemented
in Z and isomorphic to X, which contradicts our hypotheses. It follows that JZ(X)
is a proper ideal in L(X). Recall that the closure of a proper ideal in a unital Banach
algebra is again proper; in particular, JZ(X) is a proper ideal in L(X).

To prove the “furthermore” part, assume A ∈ L(Z , X) and B ∈ L(X , Z).
Let Q ∶ Z → X be the canonical embedding, so that PQ = IdZ and hence AB =
APQB ∈ JP(X). It follows that JZ(X) ⊆ JP(X), and the reverse inclusion is even
more obvious. ∎

For the next result, F denotes the class of finite-rank operators and E the class of
inessential operators. Recall also that a basisB is called semispreading whenever every
subsequence of B is dominated by B itself. In particular, the unit vector basis of �p is
semispreading.

Proposition 4.2 ([LLR04, Corollary 3.8]) Let Z be a Banach space with a semis-
preading basis (zn), and let X be a Banach space with basis (xn) such that any
seminormalized block sequence of (xn) contains a subsequence equivalent to (zn) and
spanning a complemented subspace of X. Then,

{0} ⊊ F(X) =K(X) = SS(X) = E(X) ⊊ JZ(X),

and any additional distinct closed ideals must lie between JZ(X) and L(X).

In the proof of what follows, we use the fact that if I and J are ideals in L(X), then
I ∨ J = I + J.
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Theorem 4.3 Fix 1 ⩽ p < ∞ and w ∈W. Let Y be as in Theorem 2.3, and PY ∈
L(d(w, p)) any continuous linear projection onto Y. Then,

PY ∈ Sd(w, p)(d(w, p)) ∖ (J�p ∨ SS)(d(w, p)).

Proof Let P�p ∈ L(d(w, p)) be any projection onto an isomorphic copy of
�p spanned by basis vectors of Y. (Such a copy exists by Theorem 2.1.) By
Theorem 2.3, Y contains no isomorph of d(w, p) and hence PY ∈ Sd(w, p)(d(w, p)).
Because Sd(w, p)(d(w, p)) is the unique maximal ideal in L(d(w, p)), and
JP�p

(d(w, p)) = J�p(d(w, p)) by Proposition 4.1, it is sufficient to prove that
PY ∉ (JP�p

∨ SS)(d(w, p)).
Next, we claim that PY ∈ (JP�p

∨ SS)(d(w, p)) only if IdY ∈ (J�p ∨ SS)(Y). To
prove it, fix ε > 0, and suppose there are A, B ∈ L(d(w, p)) and S ∈ SS(d(w, p)) such
that

∥AP�p B + S − PY∥ < ε.

Let JY ∶ Y → d(w, p) be an embedding satisfying PY JY = JY , or PY JY = IdY when
viewed as an operator in L(Y). Composing PY on the left and JY on the right, we
have

∥PY AP�p BJY + PY SJY − IdY∥L(Y) < ∥PY∥ ⋅ ε ⋅ ∥JY∥.

On the other hand, because AP�p = A∣Y P�p and P�p = P�p PY , we have

PY AP�p BJY = (PY A∣Y)P�p(PY BJY),

and hence

∥(PY A∣Y)P�p(PY BJY) + PY SJY − IdY∥L(Y) < ∥PY∥ ⋅ ε ⋅ ∥JY∥.

Because J�p(Y) = JP�p
(Y) by Proposition 4.1, where P�p is likewise viewed as an

operator in L(Y), from the above together with the ideal property of SS, the claim
follows.

Let BY = ((d(k)
i )Nk

i=1)∞k=1 denote the canonical basis of Y from Theorem 2.3. Note
that becauseBY is made up of constant coefficient blocks of (dn) of increasing length,
any seminormalized blocks of BY will contain a subsequence equivalent to �p by
Theorem 2.1. In fact, in [CL74, Lemma 15], this result was refined to show that we can
choose that subsequence to span a complemented subspace of d(w, p), and hence
of Y itself. We can therefore apply Theorem 4.2 to conclude that SS(Y) ⊂ J�p(Y).
Meanwhile, again by Proposition 4.1, J�p(Y) is a proper ideal in L(Y), which means
IdY ∉ J�p(Y). Hence, PY ∉ (JP�p

∨ SS)(d(w, p)) as desired. ∎
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