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1. INTRODUCTION

In previous papers [Spear and Young (2014, 2015)], we surveyed the origins,
evolution, and dissemination of optimal growth, two-sector and turnpike models
up to the early 1970s. Regarding subsequent developments in growth theory,
a number of prominent observers, such as Fischer (1988), Stern (1991), and
McCallum (1996), maintained that after significant progress in the 1950s and
1960s, economic growth theory “received relatively little attention for almost
two decades” [Fischer (1988, p. 329)], and that “by the late 1960s early 1970s,
research on the theory of growth more or less stopped” [Stern (1991, p. 259)].
Stern went on to say “the latter half of the 1980s saw a rekindling of growth theory,
particularly in the work of Romer . . . and Lucas” (1991, p. 259), that is to say, in
the form of “endogenous growth” models. McCallum, for his part, wrote (1996, p.
41), “After a long period of quiescence, growth economics has in the last decade
(1986–1995) become an extremely active area of research.” Moreover, Brock and
Mirman’s (1972b) paper was the sole “extension” of Ramsey–Cass–Koopmans to
a “stochastic environment” mentioned by McCallum (1996, 49).

This paper deals with the evolution of the “classical” growth research program
of Ramsey–Cass–Koopmans vintage via its stochastic “variants” and “generaliza-
tions” [Samuelson (1976, note 1)]. Thus, here we trace the origins and impact
of the stochastic generalization that brought about a paradigm shift in modern
economics, and still generates significant research in the form of “quantitative
macroeconomics,” that is to say, “real business cycle theory” (RBC henceforth),
and its metamorphosis into the dynamic stochastic general equilibrium (DSGE)
approaches of both new classical and New Keynesian vintage. The evolution of
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endogenous growth approaches and “new” and “unified” growth models will be
dealt with in a separate paper.1

Our focus, then, is on the origins and development of optimal stochastic growth
models in continuous-time and discrete-time forms. The paper is divided into
three sections. The first section deals with unpublished and published papers
by Phelps (1960a, 1960b, 1961, 1962a, 1962b), and Mirrlees (1965, 1966).
Phelps’s unpublished Cowles Foundation Papers on both continuous-time and
discrete-time stochastic optimal growth (1960b, 1961) are also dealt with in this
context—the former never published, the latter the basis for his 1962 Econometrica
paper.

We then deal with Mirrlees’ unpublished papers, dating from 1965, which
had a significant impact on subsequent work in the area of stochastic opti-
mal growth, such as on the contributions of Merton, Mirman, and Brock and
Mirman. Mirrlees’s use of the conceptual and mathematical tools provided
by Wiener, Doob, and Ito is also dealt with, as they still influence the fi-
nancial economics developed by Merton based upon them. Merton’s contribu-
tions (1969, 1975) to the continuous-time approach are also dealt with in this
section.

The second section deals with the application of the dynamic programming
approach of Bellman and Blackwell over the period 1952–1970, its application
to economic planning and growth models, especially by Radner, over the pe-
riod 1963–1974, and cross-fertilization between Radner, Brock, and Mirman and
Radner’s Ph.D. student, Jeanjean. The third section tells the story of how Brock
and Mirman developed their watershed approach over the period 1970–1973. It
surveys the development of their 1972 JET (1972b) and 1973 IER papers from their
origins in their early joint work and Mirman’s thesis (1970b), through conference
presentation, and finally publication. This section also deals with the important,
albeit little-known third Brock–Mirman paper, that is, their 1971 conference paper
published in the volume Techniques of Optimization (1972a).

2. PHELPS, MIRRLEES, AND MERTON: UNPUBLISHED AND PUBLISHED
PAPERS, 1960–1975

2.1. Phelps: 1960–1962

In his June 1960 RAND paper “Optimal inventory policy for serviceable and
reparable stocks,” Phelps applied dynamic programming to the problem of deter-
mining “a unique stockage policy” regarding serviceable and reparable materials
that would correspond to specific “decision regions” (1960b). Phelps wrote that
“the model developed to treat this sequential decision problem, in being one of the
comparatively few two-dimensional dynamic programing models for which the
structure of the optimal policy has been ascertained, may be of some methodologi-
cal interest” (1960b, 4). He went on to apply Bellman’s “principle of optimality” to
“current” and “future decisions,” such that “all future decisions must be optimal”
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to achieve “overall optimality” (1960b, 7). In dealing with “the infinite-stage
program,” he applied the “fundamental theorems of dynamic programming for
decision processes” outlined by Bellman [Phelps (1960b, 11)].

In December 1960, Cowles Foundation Discussion Paper [CFDP] 101, entitled
“Capital risk and household consumption path: A sequential utility analysis,” by
Phelps appeared. The paper presented what Phelps called “a stochastic process of
capital growth” (1960a, 1) in “a continuous time formulation” (1961, 1). Phelps’s
CFDP 101 was never published. In our view, the paper is important in three
respects. First, it was perhaps the earliest paper to apply an ostensibly continuous-
time approach to optimal stochastic growth, although Phelps’s 1960 approach
will be shown to be problematic, to say the least. Second, it was also one of
the earliest papers to apply a dynamic programming approach and the Bellman
(1957) “principle of optimality” to stochastic optimal growth (1960a, 9). Third,
Phelps’s 1960 CFDP 101 provided the basis for the discrete-time extension of his
approach in the form of his subsequent February 1961 CFDP 109, entitled “The
accumulation of risky capital: a discrete-time sequential utility analysis.” Now,
although CFDP 101 (1960a) was cited by Phelps in his 1961 CFDP (1961, 1–3,
33), only CFDP 109 was mentioned by him in a note in his 1962 Econometrica
paper, albeit with its title referred to incorrectly as being “identical” to that of the
Econometrica paper (1962b, 733, note 6). This may explain why CDFP 101 has
gone uncited and CFDP 109 sparsely cited.

But more is involved here than the fact that Phelps’s CFDPs have gone virtually
unnoticed until now. In correspondence regarding CFDP 101, Phelps wrote (23
September 2014), “I don’t recall any reaction to CF 101 at all . . . I did not continue
with the work that started in CF 101 because it was not clear to me that I had the
analytical tools to push it any farther.”

With regard to the relationship between CFDP 101, CFDP 109 and his Econo-
metrica 1962 paper, he wrote (23 September 2014),

I did not really “switch” to the discrete-time framework. I had already done all or
most of the work for it in my first post-doctoral job at the RAND Corporation.2 (The
great Richard Bellman was there, as you very likely know, so I finally showed it to
him. “That’s trivial”, he exclaimed. “The capital stock goes to infinity!” Of course the
whole exercise was aimed at characterizing that path, solving for the consumption
function, etc.) When to my surprise I ended right back at Yale in September 1960, I
worked on the Golden Rule and what became CF 101. Then, frustrated by how hard
CF 101 was, I prepared the discrete-time paper for what became the CF 109.

Turning first to Phelps’s 1960 CDFP 101, a number of points stand out. Phelps
described what he was analyzing as a “continuous time formulation” of a “stochas-
tic process” (1960a, 8–10; 1961, 1). He then applied dynamic programming and
the optimality principle (Bellman 1957) as the analytical basis for his approach
(1960a, 9–17). As Phelps put it (1960a, 9, 16–17), “In what follows we take our
inspiration from Chapter 9 of Bellman . . . our continuous-time process can be
viewed as the limiting case of a discrete-time process in which the length of each
period goes to zero while the number of discrete periods goes to infinity.”
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A close reading of Phelps’s 1960 CFDP 101 reveals the difficulties Phelps
faced in attempting to apply and develop his ostensibly “continuous” approach.
First of all, he stated that in his model “capital gains and losses occur in unit
amounts . . . fluctuations in the capital stock occur at random times . . . Thus
capital grows according to a discontinuous Markov process” (1960a, 2) [our
emphasis]. In other words, this meant that the expected time path of wealth
shocks was continuous, even though the underlying random shocks were dis-
continuous, that is to say, a “mixed model” rather than a pure continuous-time
approach.

Second, the result Phelps outlined in his 1960 CFDP 101 was that a consumer
could end up “ruined” (1960a, 3) because of “absorbing” states and “cyclic”
states, although he noted that there could be both low and high capital persistence
states that occur with positive probability, given the finite time horizon he assumed
(1960a, 21–22). If, however, Phelps had pushed this through for an infinite horizon
setting, he would have ended up with an ergodic distribution of the recurrent states,
and the high or low capital “traps” (1960a, 21) would not occur, because there
would be no absorbing states. Now, although Phelps does in fact consider what
happens when the time horizon goes to infinity, and therefore the “ruin” probability
goes to zero, he does not discuss this in terms of ergodic theory.

We think that the reason for Phelps abandoning the ostensibly continuous-time
setting of his 1960 CFDP 101 for the discrete-time framework of his 1961 CFDP
109 may have been to get away from the awkwardness of mixing a discrete
stochastic process with a continuous-time model. We surmise that he could have
chosen to work with a continuous Markov process, as the works of Wiener (1923),
Ito (1951), and Doob (1953)—i.e., stochastic calculus—were available at the time,
but the move to a continuous stochastic process would, in turn, rule out purely
transient and cyclic states, and thereby “trap” behavior, even with finite time
horizons, as the continuity of the random shock process would make things look
as though there were infinitely many instants of time, so that ergodic behavior
would come into play, something Phelps may not have wanted in the context of
what he was trying to do in his 1960 CFDP 101.

As noted, Phelps CFDP 109, entitled “The accumulation of risky capital: A
discrete-time sequential utility analysis,” appeared in February 1961. In the open-
ing paragraph, Phelps wrote (1961, 1), “A continuous-time formulation of the
same problem was presented in a previous Cowles Foundation Discussion paper.”
His October 1962 Econometrica paper, based on CFDP 109, was entitled “The
accumulation of risky capital: A sequential utility analysis.” And, although not
cited in the references, Phelps did mention CFDP 109 as an “earlier version of this
paper” (733, note 8). Indeed, there were many additions, changes, and elisions
made in the text of CFDP 109 as published in Econometrica.

But perhaps the most important addition seen in the 1962 version is the statement
made by Phelps, which set out the “vehicle of analysis” for all further work done on
discrete optimal stochastic growth models. As he put it in his opening paragraph
(1962b, 729), “The vehicle of analysis is a stochastic, discrete-time dynamic
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programming model that postulates an expected lifetime utility function to be
maximized.”

2.2. Mirrlees: 1964–1974

According to Fischer and Merton, “Following the early unpublished work by
Mirrlees (1965), Brock and Mirman (1972[sic], 1973), Bourguignon (1974), and
Merton (1975) among others, extended the neoclassical growth model to include
uncertainty about technological progress and demographics” (1984, 58). Over a
decade earlier, in their seminal paper, Brock and Mirman wrote (1972b, 481),

The only work that is known to the authors which attempts to generalize deterministic
optimal growth models to uncertainty . . . is the work of Mirrlees [1965]. Works by
Phelps [1962] and Levhari and Srinivasan [1969] are somewhat related to optimal
growth under uncertainty. . . .

They went on to also cite Merton (1969) as using “techniques similar to those
employed by Mirrlees” (1972b, 482). We will deal with the Brock–Mirman in-
terpretation of these authors in the following. At this point, we note that Olson
and Roy, in their survey of stochastic optimal growth, wrote (2006, 298, note 1),
“there is a large literature on stochastic growth in continuous time that built on
Merton’s . . . early work [RES 1975],” and also referred to Brock and MacGill
(1979). They did not, however, refer to the seminal, albeit unpublished paper by
Mirrlees entitled “Optimum accumulation under uncertainty” (1965, 1966), which
was cited by many who dealt with the stochastic optimal growth model, as will be
seen in the following.

In his contribution to the IEA conference volume entitled Allocation under
Uncertainty, edited by Dreze, and published in 1974, Mirrlees wrote (1974, 36),
“In the theory of optimum growth it has been found that models with discrete time
are easier to treat rigorously than models with continuous time. But continuous-
time models often have the advantage of providing simpler results.”

Mirrlees worked with both nonstochastic and stochastic models. After his Cam-
bridge Ph.D. dissertation entitled “Optimum planning for a dynamic economy”
(Mirrlees, 1964b) he attended a number of Econometric Society and other meet-
ings. At the September Zurich 1964 Econometric Society meeting, he presented a
paper entitled “The structure of optimum policies in a macro-economic model with
technical change” (1964c), which later became the core of his 1967 RES paper
“Optimum growth when technology is changing” (1967, 96, 124), in essence a
continuous nonstochastic extension of Cass’s approach, with exogenous technical
change.

Two months earlier, in July 1964, Mirrlees attended the Rochester conference
“Mathematical models of economic growth,” sponsored by the SSRC, and led
by McKenzie. At this conference, according to McKenzie’s account (1998, 5),
Mirrlees presented two papers: a two-sector extension of Uzawa (1964), and an
attempt “to extend the Ramsey model to the case of uncertainty.” McKenzie wrote
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that in this paper, Mirrlees “apparently met a snag he was unable to overcome,”
and that although McKenzie later tried to discover “what the difficulty was,”
Mirrlees “could not recall, and had lost the paper” (1998, 5). When asked about
his Rochester presentation, Mirrlees replied (4 Sept 2014), “I recollect that at the
Rochester Conference I was trying to deal with the discrete-time model, also with
the assumption of a random factor multiplying output, not stationary as in the
later paper published in the Dreze book. I didn’t succeed after the conference any
better than I had in Rochester.” In a subsequent communication (30 December
2014), Mirrlees also recalled the title of his Rochester paper to be “Optimum
economic policies under uncertainty”(1964a), and that in “this unfinished paper”
he “was trying to work out optimal saving under uncertainty for a discrete-time
infinite-horizon model, and finding it remarkably difficult to get any results.”

Mirrlees also attended the July 1965 Stanford MSSB Conference on “Optimal
Economic Growth,” conducted by Arrow, and initiated by McKenzie himself “as
the economics member of the MSSB.” According to McKenzie’s recollections,
Mirrlees presented a paper on “planning in mixed economies with ‘surplus labor,”’
and also led a roundtable discussion “on population and growth” (1998, 6–7).

Mirrlees’s paper entitled “Optimum accumulation under uncertainty” was pre-
sented at the First World Congress of the Econometric Society, held in Rome,
in September 1965 (1965), and revised and circulated in December 1965 (1966).
And, as noted, this paper, albeit unpublished, was cited by leading growth theorists
and many of those who developed stochastic optimal growth.

A comparison of the abstract of the September 1965 version of Mirrlees’s paper
(Econometrica, Supplementary Issue, 1966) with parallel text and equations in the
December 1965 version shows only very minor differences.

Two interesting points emerge from Mirrlees’s December 1965 paper. The first
is its use of Bellman’s dynamic programming in a stochastic setting [(1966, 27);
Bellman (1957)]. The second is that it also contains a section entitled “Orders
of magnitude,” which comments on the “quantitative implications” of the theory
he presents in the paper, linking it to “the interesting values of the parameters
and the capital–output ratio” he dealt with in his 1964 Zurich paper (1965b, 44).
Mirrlees’ unpublished December 1965 paper was cited by most optimal growth
theorists and others [McKenzie (1968); Levhari and Srinivasan (1969); Merton
(1969); Stiglitz (1969); Dobell (1970); Sandmo (1970); Brock and Mirman (1972a,
1972b); Merton (1973, 1975); Leland (1974); Samuelson (1976); Fischer and
Merton (1984)]. What is strange is that two references said that the paper was
“forthcoming” in Econometrica [Dobell (1970); Sandmo (1970)].

When asked about this, Mirrlees replied (28 June 2014),

Econometrica more or less (I don’t remember precisely) accepted the paper subject
to revision. When I came to revise it, I found an error in the existence proof, and
didn’t succeed in correcting it. Later I convinced myself that the existence claim
was false, and it is old unfinished business for me to sort out the fundamental
existence problem with the model used in the paper. The worrying point is that
utility discounting seemed to me not enough to deal with it. By the time I realized

https://doi.org/10.1017/S1365100515000590 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100515000590


STOCHASTIC GROWTH 521

the problem, my interests had moved well away from optimum accumulation, but
I am ashamed of not having sorted the problem out. I have never seen a paper that
does.

Mirrlees also attended the July 1971 IEA Bergen conference, where he gave
a paper entitled “optimal growth with uncertainty” [Merton (1975)], which he
revised and expanded in May 1972, changing the title to “optimum growth and
uncertainty,” and eventually publishing it in the 1974 IEA conference volume
edited by Dreze, Allocation under Uncertainty, with the title “Optimum accumu-
lation under uncertainty: The case of stationary returns to investment” [Mirrlees
(1974, 36)].

2.3. Merton 1969–1975

Merton submitted his MIT Ph.D. thesis, supervised by Samuelson, and entitled
“Analytical optimal control theory as applied to stochastic and non-stochastic
economics,” in September 1970. The thesis consisted of five chapters, three of
which were published in 1969. Chapter II, entitled “Lifetime portfolio selection
under uncertainty: The continuous-time case,” was published in August 1969
in the Review of Economics and Statistics. In the introduction, Merton wrote,
“Phelps (1962) has a model used to determine the optimal consumption rule
for a multiperiod example where income is partly generated by an asset with
an uncertain return. Mirrlees (1965) has developed a continuous time optimal
consumption model of the neoclassical type with technical progress a random
variable” (1969, 247). In the concluding section, Merton wrote (1969, 256–257),

A more general production function of the neoclassical type could be introduced to
replace the simple linear one of this model. Mirrlees (1965) has examined this case
in the context of the growth model with . . . technical progress a random variable. His
equations (19) and (20) correspond to my equations (35) and (37) with the obvious
proper substitution for variables.

Thus, the technique employed for this model can be extended to a wide class of
economic models. However, because the optimality equations involve a partial dif-
ferential equation, computational solution of even a slightly generalized model may
be quite difficult.

Two things should be pointed out here. First, Merton was referring to equations
in the unpublished December 1965 paper by Mirrlees. It would seem, then, that a
number of leading economists, and especially growth theorists, were familiar with
this paper. Indeed, in the copy of the Mirrlees’s paper provided to the authors by
Merton, there are marginal notes made by Samuelson, who seems to have given a
copy of the paper to Merton. Second, regarding his “equation 19,” Mirrlees wrote
(1966, 13),

It is also interesting to note that (19) generalizes what is often called the Keynes–
Ramsey formula for optimum policy . . . In that case, of course, (19) solves the
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problem, provided the side conditions are satisfied. Mathematically (19) and (20)
are a fairly decent pair of partial differential equations. The trouble is that the side
conditions are of such an odd kind, and that creates serious computational difficulties.

In the 1971 published version in Journal of Economic Theory of Chapter 5 of
his thesis—which had earlier been presented at the Second World Conference of
the Econometric Society—entitled “Optimum consumption and portfolio rules in
a continuous time model,” Merton wrote (1971, 412), “By the introduction of Ito’s
Lemma and the Fundamental Theorem of Stochastic Dynamic Programming . . .
we have shown how to construct systematically and analyze optimal continuous-
time dynamic models under uncertainty.”

Merton’s seminal paper on growth, “An asymptotic theory of growth under un-
certainty,” was published in the Review of Economic Studies in July 1975. It started
as a paper presented “in various forms” at venues such as the December 1971 Yale
NBER growth conference, the March 1973 Rochester mathematical economics
seminar, and the April 1973 mathematical economics seminar at Columbia [Mer-
ton (1975, 375)]. It was subsequently circulated as MIT Sloan School working
paper 673-73 in August 1973 [Merton (1973)]. The paper was submitted to the
Review of Economic Studies a month later, and finally accepted in May 1974
[Merton (1975)].

A comparison between the 1973 working paper and the 1975 published version
shows a number of significant additions in the published paper in the form of
explanatory notes, a result both of editorial suggestion (1973, 11; 1975, 383, note
1) and of Merton’s efforts to explain his use of various methods and issues in the
paper. For example, he added notes explaining his use of the Bellman approach
and optimality in solving dynamic programming problems in continuous time,
boundary conditions, and generalizations of maximization to uncertainty (1973,
14,16; 1975, 384, notes 1 and 2, 386, note 1).

In the introduction to his paper (1973, 1; 1975, 375), Merton cited works
that dealt with “capital accumulation under uncertainty” and “the optimal
consumption–savings decision under uncertainty,” based upon “a given linear
production technology” [Phelps (1962b), Levhari and Srinivasan (1969), among
others]. He also cited the unpublished December 1965 and the early version of
the 1964 conference volume paper by Mirrlees, as examples of dealing with
“the stochastic Ramsey problem and a continuous time neoclassical one-sector
model subject to uncertainty about technical progress.” He went on to describe
the work of Brock and Mirman (1972b) and Mirman (1973) as “important con-
tributions,” albeit having “little to say about the specific structure” of “steady
state” or “asymptotic distributions” regarding the “capital–labor ratio” when “out-
comes are uncertain.” And as against the model he proposed one “where the
dynamics of the capital–labor ratio” is “described by a diffusion-type stochastic
process.”

The Brock–Mirman assessment of Mirrlees–Merton will be dealt with later,
in the section on the development of the work of Brock and Mirman from
1970 onward. At this point, suffice it to say that Merton (1969, 248; 1971, 412;
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1973, 6; 1975, 377), like Mirrlees before him (1965, 3) had utilized an approach
based upon “a generalized theory of stochastic differential equations developed
by Ito,” and extended by Ito and McKean, “which is applicable to diffusion
processes.”

Ito calculus is a variety of stochastic calculus, which extends the normal oper-
ations of calculus—differentiation and integration—to stochastic processes. Un-
like smooth (i.e., continuous and continuously differentiable) functions, stochastic
processes can be discontinuous and nondifferentiable, manifesting sudden random
jumps in value.

At the core, stochastic calculus operations follow conventional operations, with
the difference being the recognition that over even small intervals of time, nonva-
nishing changes in the value of the stochastic process can occur, and hence need
to be included in computations of things such as rates of change, in the case of
differentiation, or weighted suitably in taking the limits of partitions that define
the Riemann integral.

The specific version of the stochastic calculus applied by Mirrlees and Merton,
Ito’s calculus, was formulated between 1938 and 1945 by the Japanese mathe-
matician Kiyoshi Ito while he was working at the National Statistical Office [Ito
(1942, 1951, 1960); Ito and McKean (1964)].

3. DYNAMIC PROGRAMMING, ECONOMIC PLANNING, AND
GROWTH: 1948–1973

3.1. Bellman, Karlin, and Blackwell

As mentioned in the preceding, in their survey on stochastic optimal growth, Olson
and Roy (2006) did not cite Mirrlees’s seminal, albeit unpublished, paper (1966).
They also did not cite Bellman’s famous book Dynamic Programming (1957),
although they did cite Blackwell’s paper “Discounted dynamic programming”
(1965). What is important to recall here is that Bellman’s 1957 book was based
upon his work at RAND and elsewhere, and published and unpublished papers,
from 1948 onward, and this according to Bellman’s own recollections and accounts
[Bellman (1984); Bellman and Lee (1984, 24)].

Bellman first visited RAND to attend its 1948 summer program, which was
also visited by Morgenstern. Among the other attendees were Dantzig, Karlin,
Tukey, Blackwell, Arrow, and Shubik [Assad (2011, 422)]. Bellman wrote that
his introduction to Dantzig’s linear programming algorithm while there was his
“first exposure to effective numerical solutions,” which, as he recalled, “sub-
sequently became a central theme” of his research program [Bellman (1984,
135)]. He then went to Stanford to take up a position as associate professor in
its Mathematics Department. In the summer of 1949, Bellman returned to visit
RAND again. This time, at the suggestion of a colleague at RAND, he shifted
the focus of his research to “multistage decision processes” [Bellman (1984,
157); Assad (2011, 424)]. During this period, according to his recollections,
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he had to essentially “find a name for multistage decision processes” [Bellman
(1984, 159)].

In a July 1951 RAND paper entitled “On a general class of problems involving
sequential analysis,” Bellman set out the basis for what he subsequently called
“dynamic programming.” As he put it (1951, 1),

We wish to discuss a general class of multi-stage problems involving a sequence of
operations . . . This class of problems is characterized by the fact that at each time the
problem may be described by a set of parameters which change from operation to
operation, which is to say that each operation performs a mapping of the parameter
space upon itself, and secondly, that the purpose of the operations is to optimize
according to a criterion which has the important property that after any initial number
of operations, starting from the state one finds oneself in, one optimizes according to
the same criterion. . . . this last point . . . allows a mathematical formulation by means
of recurrence relations which are very useful both theoretically and computationally.

Over the period 1952–1957, Bellman produced a significant number of papers on
dynamic programming and on its applications to many areas, including problems
in mathematical economics, as will be seen. The central message of these papers,
as manifest in what he called “the principle of optimality,” and the method he de-
veloped, as reflected in what became known as the “Bellman equation,” eventually
appeared in his 1957 monograph. Indeed, as one reviewer said, Bellman’s 1957
book brought “under one cover the introduction and development of the theory of
dynamic programing, which to a great extent has appeared previously in many pa-
pers scattered throughout many journals and pamphlets” [Newhouse (1958, 788)].

Now, one of the problems emanating from the fact that Bellman’s 1957 book
was, in essence, a compilation of his previously published papers and RAND
reports is that the focus has been on his 1957 book rather than on his earlier work.
This, in turn, has led to some misunderstanding regarding the origin of his central
message, that is to say, the principle of optimality. For example, Puterman (1994,
155) noted that his book “presented the optimality equations and the principle
of optimality together with references to his earlier papers (dating back to 1952)
which introduced and illustrated many of the key ideas of dynamic programming.”

Acemoglu, for his part, wrote (2008, 222), “the basic ideas of dynamic program-
ming, including the principle of optimality, were introduced by Richard Bellman
in his famous monograph (Bellman, 1957).” And Acemoglu, like Puterman, noted
that Karlin (1955) had provided “a formal mathematical structure for the analysis
of dynamic programing models” (Puterman 1994, 155) and “a simple formal proof
to the principle of optimality” (Acemoglu 2008, 222).

Both Puterman and Acemoglu, however, overlooked the fact that Bellman’s ear-
liest published contribution specifically regarding dynamic programming. entitled
“On the theory of dynamic programming,” appeared in the 1952 Proceedings of the
National Academy of Sciences, “communicated by Von Neumann in June 1952”
[Bellman (1952, 716)], in which he acknowledges that dynamic programming was
“intimately related to the theory of sequential analysis due to Wald [1950]” (1952,
717).3 Had they also looked carefully at Karlin’s 1955 paper they would have seen
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that Karlin (1955, 285) pointed to the fact that the principle of optimality appeared
in Bellman’s Econometrica paper, “Some problems in the theory of dynamic
programming,” published in January 1954 (1954a, 47). Moreover, in July 1954, in
his RAND paper P-550, entitled “The theory of dynamic programming,” Bellman
again presented the principle of optimality (1954b, 4), as in the published version
of this RAND paper, which appeared in the November 1954 issue of the Bulletin
of the American Mathematical Society (1954c, 504).

Another interesting aspect of the Bellman–Karlin nexus is that prior to Karlin’s
paper, published in the December 1955 issue of the Naval Research Logistics
Quarterly, Bellman had discussed Karlin’s paper “Some aspects of dynamic pro-
gramming,” presented on 1 September 1955, at the Ann Arbor meeting of the
Econometric Society, at a session also attended by Koopmans [Report of 1955
Ann Arbor Meeting (1956, 208)].

What is also important to mention here is that in a number of papers that
appeared both before and after his 1957 book, Bellman specifically dealt with the
application of dynamic programming to mathematical economics. In 1956, his
RAND paper “Dynamic programming and its application to variational problems
in mathematical economics” appeared (1956). It was subsequently presented at the
Eighth American Mathematical Society’s Symposium in Applied Mathematics,
held at the University of Chicago in April 1956, and was eventually published in
the symposium Proceedings in 1958 (1958). He wrote (1958, 115),

The purpose of this paper is to discuss some variational problems arising from
mathematical economics, and some of the methods that can be used to treat these
questions both analytically and computationally.

Since the range of mathematical economics is so extensive—and indeed the subject
possesses no precise boundaries—and since the array of mathematical techniques
which have been borrowed, begged, stolen, or improvised to cope with this field
is so imposing, we cannot hope to present any adequate survey in any reasonably
sized article. In consequence, we have restricted our attention to two important
and interesting classes of processes, allocation and smoothing processes, and to
a discussion of the application of the theory of dynamic programming to these
processes.

Later, in March 1963, Bellman’s RAND paper, “Dynamic programming and
mathematical economics” (1963) appeared. Here, he toned down his language a
bit, and wrote (1963, Preface, iii),

In this memorandum, the author describes the uses and contributions of the mathe-
matical theory known as dynamic programming to certain problems in economics.
Examples of these are the optimal allocation of resources, and multistage decision
processes that involve planning and learning in the face of uncertainty (i.e., adaptive
control processes).

He went on to say (1963, Introduction, 1),

The functions of a mathematical theory in the scientific field are to furnish
the systematic means of formulation of classes of problems, to indicate various
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techniques for their analysis, and to provide methods for obtaining numerical an-
swers to numerical questions.

At one point in the nineteenth century, serious doubt was expressed that problems in
the field of economics could ever be handled mathematically. The introduction of the
digital computer changed the situation drastically. Nevertheless, much remains to be
done, and many new approaches must be devised, before we can consider ourselves
to have a firm hold in the domain of mathematical economics.

In this memorandum we outline briefly some of the principal contributions of the the-
ory of dynamic programming the formulation, analysis, and computational treatment
of economic processes.

In a series of papers from 1961 onward, Blackwell also focused on dynamic
programming (1961, 1962, 1964a, 1964b, 1965). Interestingly enough, as early as
1952, Blackwell had assisted Bellman in obtaining a solution to at least one of the
fundamental theorems of Bellman’s dynamic programming approach [Bellman
(1952, Theorem 7, 719)]. Later, in his 1961 paper, “On the functional equation of
dynamic programming,” Blackwell demarcated stable, optimal, and stable optimal
policy (1961, 274) and extended Bellman’s1957 treatment to the case of policy
switching and its effects on optimal policy and stability (1961, 274). In a subse-
quent paper entitled “Discrete dynamic programming” (1962), Blackwell turned
to simplifying the results obtained by Howard (1960) regarding the introduction
of discount factors less than and equal to unity into “the general dynamic pro-
gramming problem” set out in the works, as he put it, of “Dvoretzky, Kiefer and
Wolfowitz (1957), Karlin (1955) and Bellman (1957).”

In his 1965 paper “Discounted dynamic programming,” Blackwell wrote (1965,
2–6),

Soon after the appearance of Wald’s work on sequential analysis, Richard Bellman
recognized the broad applicability of the methods of sequential analysis, named
this body of methods of dynamic programming, and applied the methods to many
problems. . . The first development of a general theory underlying these methods is
due to Karlin (1955), and a rather complete analysis of the finite case was given
by Howard (1960) . . . Our formulation of the dynamic programming problem is
somewhat narrower than Bellman’s.

3.2. Bellman and Blackwell

We now try to explicate the contributions of Bellman and Blackwell in the con-
text of a discrete-time model, but the extensions to continuous time are relatively
straightforward. Let us consider a multisector capital model with a single infinitely
lived representative agent. The objective function for the planning problem is to
maximize an infinite discounted sum of utilities of consumption in each period
subject to the constraints that output is produced using labor (fixed) and capital
(variable) inputs and that output allocations of consumption goods must be allo-
cated feasibly. Further, assume that the period utility functions are strictly concave,
and production functions exhibit constant returns to scale.
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Now, look at a subproblem where we want to do the maximization over some
finite number of periods T. In this case, because the objective function is a sum
of concave functions, and constraint sets are convex, the standard results from
concave programming theory will be applicable, once we recognize that we need
a terminal condition on what the period-(T+1) vector of capital stocks should
be. One approach, which Lucas and Stokey use to get the standard transversality
condition, is to set the terminal stock to zero. If we are interested, however, in
looking instead at short-run efficient allocations, we should maximize the sum
of utilities up to T plus K(T+1). In between, we can specify whatever terminal
condition we like. Once we do this, concave programming theory says that the first-
order conditions (more generally, the Kuhn–Tucker conditions) will be necessary
and sufficient to characterize the solution.

To get an answer to our original question, we need to let T go to infinity.
Doing this formally in a way that answers the original question then requires
the techniques of Pontryagin for dealing with the terminal condition and getting
the right limiting transversality condition. This is what Cass did in Chap. 1 of
his thesis (1965). What would not be correct, though, would be to claim that in
the T = infinity case, we have an infinite discounted sum of concave utilities,
so that we are in the world of concave programming and the first-order con-
ditions (i.e., the Euler equations) are necessary and sufficient. Indeed, they are
not, as Malinvaud’s counterexample to Koopmans showed (1964), even though
they are for any finite T. Something is very different in the infinite-dimensional
case.

To see what is different, one needs to go back to how the concave programming
(Kuhn–Tucker theory) result is proven, and what we find is that it relies, not
surprisingly, on applying the separating hyperplane theorem (i.e., Minkowski’s
theorem). Now, Minkowski’s theorem holds in very general spaces, but it does have
one stringent requirement: one of the two disjoint, convex sets being separated must
have a nonempty interior. One of things that John Tukey (1942) is famous for is
having provided a counterexample to the claim that the nonemptiness requirement
in Minkowski’s theorem can be dispensed with. He constructed two disjoint convex
sets in �2 (classic Hilbert space), neither of which had an interior, and showed that
there was no linear functional that would separate them.

Because the discounted sum of utilities specification of the capital model
necessarily involves looking at something in the positive orthant of an infinite-
dimensional space, the interiority criterion becomes relevant, and a direct ap-
plication of the Minkowski theorem is not available. So we are left with the
situation in which the Euler equations are necessary, but not sufficient. What
Pontryagin et al. (1962) demonstrate is how to augment this with the right spec-
ification of the terminal conditions to pick out the one correct trajectory satis-
fying the Euler equations, so that the two conditions together are necessary and
sufficient.

Now, the forward dynamic programming (DP) algorithm gets around the prob-
lem of terminal conditions by embedding the optimization problem in a recursive
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time structure where the future looks like a steady-state extension of the past.
Specifically, given a function specifying the continuation value of the DP given
the values of the state variables one period hence, we are left with a simple, finite-
dimensional programming problem. If all of the functions involved are concave, we
have a simple, finite-dimensional concave programming problem, and, of course,
the FOCs here are necessary and sufficient.

The genius of Bellman and Blackwell was to recognize that they were not
actually getting rid of the infinities that cause problems in the control theory
setting; rather, they were converting the problem of the infinite time horizon
into that of finding one among an infinity of possible continuation functions. In
the problems that involve discounting (or other setups that satisfy the Blackwell
conditions for a contraction), the functional equation that replaces the infinite
discounted sum of utilities turns out to be a contraction mapping, and the Banach
theorem therefore applies, yielding a fixed point to the Bellman equation, and,
via the obvious recursion, a solution to the original optimization problem. Again,
because the Bellman equation evaluated at the fixed-point value function is a
finite-dimensional concave programming problem, the FOCs are necessary and
sufficient.

The solution that comes out of the DP approach can also be used to demonstrate
the sufficiency of the transversality condition in the original problem. The ascen-
dance of the DP approach in growth theory is clearly due to the availability of the
contraction mapping results, and their computational tractability. We think this
also explains why the profession brushed aside the whole question of the moral
implications of discounting so widely discussed in the Vatican Conference volume
(1964), at least until the issue was resurrected in the contemporary discussion of
global warming.

3.3. Cross Fertilization: Radner, Brock–Mirman, and Jeanjean

As noted in the preceding, Phelps was perhaps the first to introduce Bellman’s
dynamic programming approach into economics in both continuous- and discrete-
time settings in his work between 1960 and 1962. Over the period 1963–1974, Roy
Radner also advanced the application of dynamic programming in economics. For
example, his ONR-supported 1963 technical report entitled “Notes on the Theory
of Planning” utilized dynamic programming, which, as he wrote (1963, 2), “is
relatively new to the theory of economic planning.” He gave accounts of “the
dynamic programming valuation function for various functions and programs”
(1963, Lecture 4, Sects. 2, 3). In February 1964, Radner’s Berkeley Center for
Research in Management Science Technical Report Number 17 (also supported
by the ONR), entitled “Dynamic programming of economic growth,” appeared.
The abstract of the paper read as follows:

A class of problems of optimal economic growth is formulated in terms of the
functional equation approach of dynamic programming (Bellman, 1957). A study is
made of the continuity and concavity properties of the state valuation function,
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i.e., the function indicating a maximum total discounted welfare (utility) that
can be achieved starting from a given initial state of the economy. Under suit-
able conditions this function is characterized by a certain functional equation.
Both the cases of a finite and an infinite planning horizon are treated, the
latter case being discussed under the assumption of constant technology and
tastes. Here iteration of a certain transformation associated with the functional
equation is shown to provide convergence to the state valuation function. Ex-
act solutions are given for the case of linear-logarithmic production and welfare
functions.

Radner’s 1964 Technical Report 17 went virtually unnoticed. It was only cited
in his 1966 International Economic Review paper “Optimal growth in a linear-
logarithmic economy” [Radner (1966)]. An abridged version of the report was
published in 1967 under the same title, that is, “Dynamic programming of eco-
nomic growth” (1967, 111–141). Now, the introductory paragraph in the 1967
abridged version was identical to the abstract of his 1964 Technical Report.
However, in contrast to the “relatively new” description of dynamic program-
ming he used in his 1963 Technical Report 9, in his 1967 paper Radner wrote
(1967, 111),

The techniques used are familiar to workers in the field of dynamic programming,
although the particular assumptions appropriate to a study of optimal economic
growth differ from those commonly encountered in other applications (e.g. inventory
and replacement theory) [such as in Phelps, 1960].

Radner continued,

The interest in such an approach must ultimately derive from its power, if any, in
producing new characteristics of optimal growth and/ or new and more efficient
computational techniques.

Over the period 1971–1973, Radner both presented, at various meetings, and
published two important papers relating “optimal steady-state” programs and
stochastic production. One was presented at the Mathematical Social Science
Board (MSSB) workshop at the University of California, Berkeley, July–August
1971, and published in the Journal of Economic Theory in February 1973. The
other was presented at the symposium on mathematical analysis of economic
systems at the Fall 1971 meeting of the Society for Industrial and Applied Math-
ematics (SIAM), held at the University of Wisconsin–Madison, 11–13 October
1971, and published in Mathematical Topics in Economic Theory and Computation
(1972). In both his 1972 and 1973 papers, Radner used the identical “bibliographic
note,” in which he cited two papers by Brock and Mirman, one a paper they
presented at the summer 1971 Berkeley MSSB workshop, the other their now
famous 1972 Journal of Economic Theory paper. Radner wrote (1972, 89; 1973,
110–111),

W.A. Brock and L.J. Mirman (1971), (1972) have studied optimal growth
under uncertainty in a model with one commodity and a sequence
of independent and identically distributed states of the environment. In
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particular, in the second paper they considered the problem of optimal stationary
programs.

We will return to the MSSB meeting later.
Another work cited by Radner in his SIAM (1972) and JET (1973) papers was

the unpublished September 1972 Berkeley Ph.D. thesis of Jeanjean, supervised
by Radner, entitled Optimal Growth with Stochastic Technology in a Multi-sector
Economy. In May 1971 Jeanjean had circulated his Berkeley Center for Research in
Management Science working paper 332, entitled “Optimal growth with stochastic
technology in a closed economy.”

Interestingly enough, in 1974, Jeanjean published two additional papers, one
in French, which was, in effect, the translation of his thesis (1974a). The other
was a paper published in JET entitled “Optimal development programs under un-
certainty: The undiscounted case” (1974b). In the French translation of his thesis
(1974a, 98), Jeanjean cited an unpublished paper by Mirman entitled “The steady
state behavior of a class of one sector growth models with uncertain technology”
(1970a). This paper was later published by Mirman in the June 1973 issue of
JET under the same title. According to Mirman (9 November 2014, personal
communication to authors), he gave the 1970 paper, and other papers, to Radner at
the MSSB meeting. This cross fertilization continued, with Jeanjean’s thesis being
cited by Brock and Mirman in their paper in the volume Techniques of Optimiza-
tion (1972a), and in their 1973 International Economic Review paper “Optimal
economic growth and uncertainty: The no discounting case.” They reported that
Jeanjean had “extended some” of their “results to multisector models” (1972a,
418) and that “Recently our results have been generalized to the multisector case
by Jeanjean” (1973, 572), citing his unpublished thesis accordingly (1972a, 418;
1973, 573). The summer 1971 Berkeley MSSB workshop on “Theory of Markets
and Uncertainty” was conducted by Radner. The participants were William Brock,
Peter Diamond, Jerry Green, Theodore Groves, Werner Hildebrand, Leonard Mir-
man, Michael Rothschild, Jose Scheinkman, Michael Spence, Bernt Stigum, and
Shmuel Zamir [Cutler (1973)]. Now, according to McKenzie (1999 [1998], 10),
two papers by Brock and Mirman on growth with uncertainty, dealing with the
undiscounted and discounted cases, were given at Radner’s workshop. There are,
however, some problems regarding McKenzie’s account. First, only one Brock–
Mirman paper is ever cited as having been presented and discussed at the MSSB
meeting, that is, their paper entitled “Optimal economic growth and uncertainty:
The Ramsey–Weizacker case,” that is to say, the “undiscounted case.” This was
later published by Brock and Mirman in the October 1973 issue of IER under
the title “optimal economic growth and uncertainty: The no discounting case,”
according to Mirman (9 November 2014, personal communication to authors).
Second, the “discounted” case, that is to say, the now classic 1972 Brock–Mirman
JET paper, was “received June 28, 1971” by the journal (1972b, 479), or in other
words, immediately prior to the July–August 1971 MSSB conference. Finally, as
will be seen later, the Brock–Mirman “discounted” case paper was first circulated
as a Rochester/Cornell mimeo in 1970, and also presented at an NBER conference
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at Yale led by Stiglitz and at the North American Meeting of the Econometric
Society in December 1970. And thus, it is to the intriguing story of the evolution
and impact of the Brock–Mirman approach that we now turn.

4. BROCK AND MIRMAN: FROM THESIS TO META-SYNTHESIS,
1970–1973

Brock and Mirman’s 1972 JET and 1973 IER papers are well known, and the former
is widely cited. What is less well known is that they also published another joint
paper on the stochastic growth model. As Mirman wrote (personal communication,
13 June 2014), “there is a third Brock-Mirman paper, which mirrors the discounted
case paper” [JET 1972]. This paper, albeit not widely cited, was presented at an
October 1971 conference on “optimization techniques,” and will be discussed in
the following. All three Brock–Mirman papers were the outcome of Mirman’s
1970 thesis and their collaboration in developing, as they put it, “the unification”
of previous approaches to growth (1972a, 483) or, in other words, their meta-
synthesis. But before proceeding to a discussion of the evolution of the joint work,
we deal with the development of Mirman’s approach to uncertainty and growth,
his 1970 thesis, and early papers.

4.1. Mirman, Uncertainty, and Growth: Chicago and Rochester

Mirman’s interest in issues surrounding uncertainty and growth started as a gradu-
ate student. He recalled (personal communication,14 June 2015) that his interest in
the study of uncertainty in economics “was a big problem for me early on, so many
people—including Hirofumi Uzawa and David Cass—disparaged my interest in
uncertainty.” Mirman recalled that in 1967 he went to the summer workshop on
growth at University of Chicago organized by Uzawa, also attended by Ethier,
Calvo, and Razin, among others. Mirman also wrote (personal communication 15
June 2014),

I was a graduate student, at the end of my second year, just finishing my course
work, when I was sent by the department (or by McKenzie) to a summer workshop
on growth at the University of Chicago run by Hiro Uzawa. In my early discussions
with Hiro about my work he was dead set against my working on uncertainty and
growth, I had some very preliminary ideas but needed much more thought and work
and help before anything could develop from these ideas. I remember he thought
that putting uncertainty in a growth model was too hard and not enough was known
about certainty and growth to waste time on uncertainty. He didn’t let me work on
uncertainty all summer, he had me working on a project he found interesting but I
had no idea what he was talking about. At the end at the summer I was at wits end
because I needed a second year paper for Rochester. Luckily the only thing that made
sense to me then was uncertainty and I was able to write a paper on an uncertain Von
Neumann growth model. It mimicked the work McKenzie was doing and it began
to lay the foundation for my thesis. In any case, I had met Cass at the conferences
run by Uzawa and discussed my ideas with him. In my view both Cass (who was a
student of Uzawa) and Uzawa were (are) brilliant economists. In fact, Uzawa was
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a brilliant mentor, too bad he had no use for uncertainty. But lucky for me that was
my only idea.

4.2. Mirman’s Thesis and Early Papers

In their JET paper, “Optimal growth and uncertainty: The discounted case,” Brock
and Mirman wrote (1972b, 482), “The basic framework for the paper was de-
veloped by Mirman in [9, 10], for discrete time one-sector stochastic growth
models.” Reference 9 was to Mirman’s 1970 Ph.D. thesis, entitled “Two Essays
on Uncertainty and Economics”(Mirman, 1970b); reference 10 was to Mirman’s
as yet “unpublished” 1970 paper, entitled “The steady state behavior of a class of
one sector growth models with uncertain technology” (1970a), which emanated
from his thesis, and was later published in JET in 1973.

With regard to his thesis and influences on it, Mirman recalled (personal com-
munication 9 February 2007),

Brock and I overlapped at Rochester, he as an assistant professor and I as a graduate
student, for one semester, and he told me he had no idea what I was doing, but
we were friends. I turned in my thesis the next spring—I was at Cornell—and he
was assigned to read it. My advisor was McKenzie—Brock and Zable were on my
committee from economics—but the biggest help I got was from a mathematician
named Kemperman, who was also on my committee. A statistician—who taught me
stochastic processes—was also on the committee, Keilson. I was really lucky to be
surrounded by a group of great scholars.

Another paper Mirman wrote at the time was his 1971 Econometrica paper,
entitled “Uncertainty and Optimal Consumption Decisions,” received in March
1969, the final revision dated November 1969. In the first note to the paper, Mirman
acknowledged “the encouragement and advice of Prof. J.H.B. Kemperman” (1971,
179).

In January 1971, Mirman sent his second thesis paper, entitled “On the ex-
istence of steady state measures for one sector growth models with uncertain
technology,” for publication to IER, and after revision in September 1971, it was
published in June 1972. Now, in his IER paper, Mirman cited his then “unpub-
lished” 1970 thesis paper “The steady state behavior of a class of one-sector
growth models with uncertain technology” as having introduced “a stochastic
generalization of the concept of a steady state equilibrium for a model of eco-
nomic growth” (1972, 271). However, in his IER paper, Mirman did not cite
his own 1970 thesis [as against its citation in Brock and Mirman (1972b)],
and in the IER paper, Mirman cited his JET paper with Brock as “forthcoming”
(1972, 286).

Mirman’s 1970 paper, “The steady state behavior of a class of one sector
growth models with uncertain technology,” finally appeared in the June 1973
issue of JET. When asked about the differential citations, Mirman replied [personal
communication 8 February 2007], “This is easy to answer. I think my thesis paper
and the . . . IER paper are almost exactly the same so there was no need to quote
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the thesis, but then I needed to quote the not yet forthcoming JET paper [our
emphasis, as Mirman is talking here about the June 1973 JET version of his 1970
paper]. But the 1973 JET paper and the thesis paper are different—the referee
insisted that I change the proof.”

And indeed, in the introductory note to the June 1973 JET version of his 1970
paper, Mirman wrote, “This paper contains results reported in my Ph.D. thesis . . .
However, the organization of the paper and the proofs of the main theorem have
undergone considerable change.” In the references to his 1973 JET paper, which, as
Mirman wrote (1973, 219), was based on his 1970 Ph.D. thesis, both Cass (1965)
and Koopmans (1965) are cited, as is Radner (1971). Brock and Mirman (1972b),
however, cite only Cass and Koopmans and a paper by Brock entitled “Sensitivity
of optimal growth paths with respect to a change in final stocks,” actually published
[Brock (1971)] in the same conference volume as Radner (1971).

4.3. Brock–Mirman Papers: Recollections, Presentations, Meta-synthesis

Over the period 1970–1973, the interaction between Brock and Mirman took
place on two levels. The first was the relationship emanating from Brock being
Mirman’s thesis examiner and intellectual catalyst for extending his approach.
The second was as partners in presenting their joint papers at conferences and
publishing them to achieve the widest possible audience for what they described
as “the unification” of the approaches to growth their framework provided.

In the preceding, we discussed the 1973 and 1975 versions of Merton’s paper
“An asymptotic theory of growth under uncertainty.” In both versions, he cited a
paper by Brock and Mirman entitled “The stochastic modified golden rule in a one-
sector model of economic growth with uncertain technology” as being published
in the June 1972 issue of JET (1973, 33; 1975, 392). Moreover, Samuelson (1976,
491) also cited the 1972 JET Brock–Mirman paper under the same title used by
Merton, “The stochastic modified golden rule in a one-sector model of economic
growth with uncertain technology.” The title of the oft-cited 1972 Brock–Mirman
1972 JET paper, however, was “Optimal economic growth and uncertainty: The
discounted case.”

In their citations, Merton and Samuelson actually referred to the title of the
earlier versions of Brock and Mirman’s watershed paper, which was initially
circulated and presented at conferences in 1970. The paper, under its original title,
first appeared as a “mimeo” emanating from “Rochester and Cornell”; Mirman by
then at Cornell, Brock at Rochester.

Recollections. In a series of queries from the authors, and replies from Brock
and Mirman, they recounted the evolution of their 1972 JET and 1973 IER pa-
pers, which they identified as “Brock–Mirman I” and “II,” respectively (1973,
560 footnote 2). When asked about the origins and dissemination of the 1970
“Cornell/Rochester mimeo”(1970a) and the first version of the 1972 JET pa-
per, Mirman recalled (personal communications 12 June and 10 August 2014),
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“I do remember that we wrote, what is from hindsight, a preliminary version
of the [1972 JET] . . . The first version of the paper was sent out to a rather
wide audience and we did get comments on it” (12 June). He went on to say
(10 August),

I believe that my first communication with Brock . . . was in the spring of 1970. I was
to defend my thesis in May at Rochester and he was a member of the committee and
had just read the thesis. He told me he had an idea for extending my thesis, which
was for a positive growth model under uncertainty, to the optimal case. My work
used the notion of stochastic technical progress, which was taken from the work of
Mirrlees that inspired me . . . to study the question of growth under uncertainty.

Brock, for his part, recalled (personal communication 12 June 2014),

Rochester was my first job. I had just arrived there. I was reading Len’s thesis and
I got very excited about the possibility of generalizing his work on the stochastic
Solow type model to the infinite horizon optimization case. I recall not only talking
to Len by phone about this problem, but also going to Cornell to visit him, where
we worked on this problem and probably the undiscounted one too . . . I recall it
[the 1970 version of the 1972 JET paper] being well known to researchers in growth
before it actually was published.

In a subsequent communication (13 June 2014), Mirman expanded his account
and recalled,

I was an assistant professor at Cornell and just finished my defense, when I received
a call from Brock who was relatively new in the department at Rochester. He told me
that he had been assigned to read my dissertation and was upset because he had just
finished reading a dissertation that was very boring and uninteresting. He thought
mine would be the same. He told me he was very surprised that my dissertation was
very interesting; in fact he was sure that we can generalize it to the optimal case,
and he asked McKenzie why he had never told him about my work. My dissertation
studied the steady state behavior of a stochastic growth model, similar to what Solow
did in his classic paper for the deterministic growth model. So Brock and I did the
optimal case, both in the discounted case and in the non-discounted case, the latter
never got the audience of the former.

When asked about the citations by Samuelson and Merton and impact of the
published paper, Mirman replied (personal communication 14 June 2014),

I do remember that Brock got a short note from Samuelson. He praised the work and
introduced his student Merton, who was working on similar problem in continuous
time. Actually, over time, it turns out that not many people actually read the published
version, for several reasons.

Mirman continued, relating the paper to his later work with Zilcha,4

There, I think, are two main reasons which are related. The first is that the paper is
well known and taught a lot so people think they understand and know very well
what’s in it. The role of the other is that the books of Sargent cover it in a way that
people don’t think they need to read it. For example, our paper does not contain any
examples. But most people think that a Brock–Mirman model is with log utility and
Cobb Douglas production. This is from my paper with Zilcha, and is presented by
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Sargent as the Brock–Mirman model. So many people I’ve spoken with have never
read the original.

When asked about conference presentations of their 1972 JET paper, Mirman
recalled (personal communication, 10 August 2014),

Brock came down to Cornell, where we wrote (what is now) a barebones version
of our paper. This is the paper, “The stochastic modified golden rule in a one-sector
model of economic growth with uncertain technology.” In the fall . . . we went to
a conference on growth theory at Yale at which Brock gave our paper, in a pretty
rough form.

Mirman continued,

In attendance was among others Karl Shell and David Cass. Karl was at MIT
the time and I believe that is how the paper got to Samuelson (but I conjecture
here) . . . In the meantime Brock and I corresponded by mail and the paper started to
expand with many of the cracks and holes filled in. I would be remiss not to mention
that every time he sent me the paper I would send it back with the key inequalities
backwards, which drove him crazy . . . In the meantime Brock and I worked on the
paper.

Mirman went on to say,

My next recollection is a visit by Brock to Cornell, I was writing a proposal for
the NSF and he suggested that the introductory material for the grant application be
part of the paper. But at the same time Brock had an idea for a second paper, the no
discounted case. We realized at this time that the work was more general than just the
stochastic technical progress case and that the dynamics played an important part.
So we decided that the reference to modified golden rule was too narrow. We then
changed the title to take account of the generality of the paper and to link it to the
second paper. We continued to fill cracks and holes, as well as added the appropriate
diagrams. I think that it was in this form with the name change that we sent it
to JET.

Presentations. In the following, we complement the recollections of Brock
and Mirman by reference to the published record of conference presentations of
the three Brock–Mirman papers.

Brock–Mirman I. With regard to their 1972 JET paper, they recalled that
it was first presented at Yale in fall 1970 at a conference on “growth theory.”
An examination of the record of 1970 conferences shows that the paper was
actually presented in November 1970 at the NBER conference on econometrics
and mathematical economics funded by the NSF, and organized by Joseph Stiglitz
(NBER Record, 1970).

The 1970 version of their 1972 JET paper was presented to a wider audience
at the December 1970 North American regional conference of the Econometric
Society held in Detroit (Report of North American Regional Conference, Econo-
metrica, July 1971, 300) at Session 15, “Growth Models,” chaired by Stiglitz. The
abstract of their paper, “The stochastic modified golden rule in a one-sector model
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of economic growth with uncertain technology” (1970b), read as follows (Report
of North American Regional Conference, Econometrica, July 1971, 345–346):

In a discrete time one sector model of economic growth with uncertain technology
we show that the distribution functions of optimal consumption and capital stock
at time t (which are random variables) converge pointwise to limit distributions.
The limit distribution, F, of optimal capital stock is a natural generalization of the
modified golden rule. Hence our result is an extension of the Cass, “Optimal Growth
in an Aggregative Model of Capital Accumulation,” RES 1965; Koopmans “On the
Concept of Optimal Economic Growth,” Pontificae Academiae Scientiarum Scripta
Varia, 1965, results to the case where technology is uncertain. All of our assumptions
are similar to Cass–Koopmans except for the random technology and the planning
objective which is assumed to be maximization of the capital value of the discounted
sum of utilities. We assume that technology can be represented by F(K, L, r) where F
satisfies the usual assumptions for each value of the random variable r, and increases
in r for each K, L. We have found an elementary set of techniques to deal with this
rather difficult problem. First we follow Levhari and Srinivasan, RES 1969, and use
dynamic programming to establish the existence of time invariant policy functions,
giving optimal consumption and capital stock at time t+1 as a function of capital
in existence at time t. Hence the evolution of optimal capital stock is given by a
stochastic process. This stochastic process is shown to converge in distribution by
exploitation of the necessary conditions of optimality.

Brock–Mirman II. In his 1973 JET paper “Optimal stationary consumption
with stochastic production and resources,” Radner cited a paper by Brock and Mir-
man entitled “Optimal economic growth and uncertainty: The Ramsey–Weizacker
case” as Working Paper number 7, emanating from the Mathematical Social Sci-
ence Board Workshop on “The theory of markets and uncertainty,” held at the
Department of Economics, University of California, Berkeley, in 1971. As noted
earlier, this paper became their October 1973 IER Paper “Optimal economic
growth and uncertainty: The no discounting case,” which was received at that
journal in January 1972, and revised in November 1972 (1973, 560).

Brock–Mirman III. In October 1971, what Brock and Mirman have called
“Brock–Mirman III” was presented by Brock at the Fourth International Federation
for Information Processing colloquium on optimization techniques, Los Angeles,
19–22 October. This paper was entitled, “A one-sector model of economic growth
with uncertain technology: An example of steady state analysis in a stochastic
optimal control problem.” It was published in the 1972 conference volume on
techniques of optimization edited by Balakrishnan [Brock and Mirman (1972b,
407–419)].

What is interesting about this sparsely cited paper is that it is what could be
considered an “executive summary” of their more extensive 1972 JET paper. This
is evident in the introduction, literature survey, and concluding remarks of the
paper. For example, in the introduction to Brock–Mirman III, they pointed to
their extension of Cass–Koopmans to the case of stochastic “output or technical
progress,” while departing from the Cass–Koopmans approach, as Brock and
Mirman deal with “uncertain technology or technological progress,” and this “in
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discrete time,” thereby establishing “a stochastic analog” of steady state con-
vergence, which they termed “the modified golden rule.” They then described
their approach as “essentially a blend of dynamic programming and discrete-time
stochastic optimal control theory” (1972a, 407).

In their literature review, they cited the work of Mirman [1970, Ph.D. thesis] and
Mirrlees [1965] as “most relevant.” However, they went on to say that “Mirrlees
operates in continuous time where the theory of stochastic processes is messy,”
counterpointing this by then saying, “we avoid the messy mathematics by working
in discrete time” (1972a, 408).

In their concluding remarks, they cited Mirman’s 1971 University of Mas-
sachusetts paper “The steady state behavior of a class of one-sector growth mod-
els with uncertain technology,” which became his 1973 JET paper, and their own
summer 1971 MSSB Working Paper 7, which became their 1973 IER Paper on
the “non-discounted case.” They also referred to Jeanjean’s 1971 Ph.D. thesis as
extending some of “their results to multisector models.” Finally, they concluded
by saying that in Brock–Mirman III “they chose to take the self-contained route
in order to delineate the ideas and to reach a wider audience” (1972a, 418).

Meta-synthesis. A close reading of Brock and Mirman’s seminal 1972 JET
paper reveals three major issues they dealt with: (i) the dynamics of optimal
processes and steady states; (ii) the use of dynamic programming; and (iii) the
synthesis of approaches to optimal growth. The first and second issues were set
out by Mirman in a communication to the authors (12 August 2014). He wrote
that in the 1972 Brock–Mirman paper there were

Two issues that needed to be dealt with. The first is the dynamics of the optimal
process and its corresponding steady state. Mirrlees [1965] dealt with an economy
that had a concave technology and thus, although not done, could deal with the
stochastic dynamics and corresponding steady state as, say, Cass [1965] does in the
deterministic case. The work of Levhari and Srinivasan [1969] and Phelps [1962]
deals with a linear technology. Hence, although it might have, the issue of the
dynamics and steady state does not arise . . . The second issue is the use of dynamic
programming. Mirrlees does not use dynamic programming techniques. He takes a
deterministic “Euler conditions” and linearizes them . . . Both Levhari–Srinivasan
and Phelps use dynamic programming techniques, in a very rudimentary form to get
at the results, which were done in a linear technology setting. Hence their method at
getting at the optimal program is foundationally similar to ours.

The third issue relates to Brock and Mirman’s “unification,” that is to say, “meta-
synthesis” of previous approaches to optimal growth. This is expressed in what we
take to be the central message of their 1972 JET paper, in a paragraph that, in our
view, has been overlooked by most observers up to now, possibly reflecting the
situation that they may not have actually read the full text of the paper, as Mirman
noted in his recollections cited earlier. They wrote (1972b, 483),

The model used in this paper is analogous to the Mirrlees and Mirman model of
a one sector economy under uncertainty, which is essentially the generalization of
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the Cass–Koopmans model with a random variable in the production function. In
fact, our methods unify the structure of growth theory. The dynamic programming
formulation makes the Cass–Koopmans results somewhat easier to obtain. It is thus
seen that this paper represents a nontrivial extension and unification of the work of
Cass, Koopmans, Mirman and Solow. [Our emphasis]

But let us leave the last word regarding the impact of their “unification”
to Lucas, who recognized the Brock–Mirman approach as one of the starting
points for Kydland and Prescott’s own “meta-synthesis” that led to quantitative
or empirical macroeconomics. Indeed, as Lucas put it, “technically the immedi-
ate ancestor of Kydland and Prescott” was the Brock–Mirman 1972 JET paper
[Lucas (1987, 32, note 1)]. Just how Brock and Mirman’s approach influenced
subsequent developments in growth and cycle theory is another story [see Young
(2014, Chap. 1)].

5. CONCLUSION

With the unification of growth theory around the three elements of optimization,
dynamic programming, and stochastic control, the modern development of the
neoclassical growth model reaches completion in the work of Brock and Mirman.
The model that now bears their name has become a workhorse in real business
cycle theory and is the basis for models of repeated games and optimal taxation.
The basic techniques of stochastic dynamic programming have spun off from
the Brock–Mirman nexus into applied microeconomics, finance, contract theory,
and even dynamic game theory. But the underlying theory encapsulated by the
model has not changed in the forty-plus years since the Brock–Mirman paper
appeared.

It is worth reflecting, then, on what the model and theory deliver, because it is
only against the backdrop of these results that we can begin to understand why the
neoclassical framework has fallen short as a theory not just of growth but also of
microfounded macroeconomics. The key results we associate with the neoclassical
model are as follows:

• optimality—the equilibria generated by the model satisfy the first welfare theorem,
generating Pareto-optimal outcomes;

• determinacy—the application of dynamic programming converts the model into one
amenable to analysis via concave programming, so that optimal trajectories of the
model have a saddlepath property that implies the solutions are unique;

• ergodicity—under reasonable specifications of the discount factor, the deterministic
steady state of the model is locally stable; hence the stochastic extension of the model
will exhibit ergodic behavior asymptotically.

Although these features seem eminently reasonable (and seem to reflect the
fundamental results one obtains from the static Arrow–Debreu model of general
equilibrium), when we confront these results with empirical facts, the shortcom-
ings of the model become apparent.
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On the question of optimality, particularly in the context of real business cycle
theory, the optimality of equilibria means that there can be no such thing as
involuntary unemployment of input resources. During the period from the 1980s
through the first decade of the 2000s, the so-called “Great Moderation” in the
world macroeconomy relegated this issue to a back burner, because spells asso-
ciated with downturns in the business cycle were short, and the world economy,
for the most part, spent most of the time near the full-employment threshold.
It was also easy to ignore the experience of Japan in the 1990s, blaming their
woes on demographic effects or the peculiarities of government regulation. But
the financial crisis of 2008 and the subsequent long-lived downturns in the United
States and Europe saw the economics profession arguing with itself (as it had in
the 1930s) over whether or not there was anything to be done about the slump.
Proponents of real business cycle theory stated clearly that the observed unem-
ployment resulting from the crash was entirely due to a marked reduction in
productivity that made continuing to work undesirable. This, of course, is part and
parcel of the so-called freshwater–saltwater divide in macroeconomics, but the
distinctly unmoderated effects of the ‘08 crash and its aftermath have brought the
optimality implication of the RBC model and its neoclassical underpinnings to the
fore.

A second issue that RBC macro has pushed to center stage is the question of
what gives rise to aggregate shocks. Although the Brock–Mirman assumption was,
as a theoretical construct, entirely acceptable, confronting the mechanism with
actual data in the calibrated versions of Brock–Mirman pioneered by Kydland and
Prescott has posed problems. Specifically, actual shocks large enough to impact
the economy as whole (particularly large economies such as the United States or
European Union) do not occur at anything close to business-cycle frequencies.
Sectoral shocks do occur more frequently, but the connectedness of input–output
relationships between different sectors leads to the conclusion that the law of large
numbers should dampen the overall effect of these shocks on the economy as a
whole. So, despite the success of RBC models in explaining many macroeconomic
comovements, the question remains of what actually drives business cycles.

Finally, as a model of economic growth (independent of any other applications of
the model or its methodology), the neoclassical growth model never actually moves
beyond Solow’s original work and its finding that, except for population growth,
nothing in the neoclassical model explains the economic growth experienced since
the onset of industrialization in the mid-1700s (i.e., what we now routinely refer
to as the Solow residual). This problem is particularly galling, because it means
that all of the work that went into the development of optimal growth theory
cannot actually explain growth, optimal or not. And, in this problem, we find the
seeds for the development of a new theory of growth that ultimately leads to the
unraveling of the key features of the neoclassical growth model, as optimality
gives way to equilibrium in environments in which the perfect competition and
complete markets assumptions of the static Arrow–Debreu model and its dynamic
extension in the neoclassical model must give way to increasing returns and
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knowledge externalities. We pursue this topic in our next paper on the endogenous
growth revolution.

NOTES

1. It should be noted that the relatively new approach manifest in stochastic endogenous growth
models will not be surveyed here, nor will the von Neumann–Gale model in its determinis-
tic and stochastic versions; the evolution and development of these models will be dealt with
elsewhere.

2. Phelps had utilized Bellman’s dynamic programming approach in his RAND papers on “Optimal
inventory policy for serviceable and replaceable stocks” (1960b), as indicated in the preceding, and in
his paper “Optimal decision rules for procurement, repair or disposable spare parts” (1962a).

3. There are both priority and multiple discovery issues regarding Bellman’s approach. These were
raised by colleagues at RAND, in the early 1950s, and recently, by historians of mathematics. On these
issues, see Pesch (2012) and Pesch and Plail (2009, 2012).

4. The Mirman–Zilcha growth model (1975) is based upon log utility and Cobb–Douglas produc-
tion with exponential uncertainty. In three seminal papers, Mirman and Zilcha (1975, 1976, 1977)
extended and amended the original Brock–Mirman model. Here, we only deal with the origins of
Brock–Mirman, and thus we do not discuss the Mirman–Zilcha papers. However, the Mirman–Zilcha
papers deserve careful reading by those applying the Brock–Mirman framework.
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