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ENAYAT MODELS OF PEANO ARITHMETIC

ATHAR ABDUL-QUADER

Abstract. Simpson [6] showed that every countable modelM |= PA has an expansion (M, X ) |= PA∗

that is pointwise definable. A natural question is whether, in general, one can obtain expansions of a
nonprime model in which the definable elements coincide with those of the underlying model. Enayat [1]
showed that this is impossible by proving that there isM |= PA such that for each undefinable class X
ofM, the expansion (M, X ) is pointwise definable. We call models with this property Enayat models. In
this article, we study Enayat models and show that a model of PA is Enayat if it is countable, has no proper
cofinal submodels and is a conservative extension of all of its elementary cuts. We then show that, for any
countable linear order �, if there is a modelM such that Lt(M) ∼= �, then there is an Enayat modelM
such that Lt(M) ∼= �.

§1. Introduction. Given a modelM of PA, a subset X ⊆M is called inductive if
(M, X ) |= PA∗. In other words, X is inductive if the structure (M, X ) satisfies the
induction schema for all formulas in the expanded languagewith a predicate symbol
forX . A setX ⊆M is called a class if, for each a ∈M , {x ∈ X : x < a} ∈ Def(M);
that is, X is a class if every initial segment of X is definable with parameters inM.
Every inductive subset of a model of PA is a class. Simpson [6] showed that every
countable modelM |= PA has an undefinable inductive subset X such that every
element ofM is definable in (M, X ). Simpson’s argument uses arithmetic forcing.
Onemay askwhether arithmetic forcing canbeused to find anundefinable, inductive
setX ⊆M so that no new elements are definable in (M, X ). Enayat [1] showed that
this is impossible: for every completionT ofPA, there are 2ℵ0 nonisomorphicmodels
M |= T with the property that for any undefinable class X ⊆ M , the expansion
(M, X ) is pointwise definable. Enayat’s result inspires the following definition:
Definition 1.1. LetM |= PA be countable. IfM is not prime and, for every
undefinable classX ofM , (M, X ) is pointwise definable, thenM is called anEnayat
model.

IfM ≺ N , we say thatN is aminimal extension ofM if wheneverM � K � N ,
then either K = M or K = N . Given a model M |= PA and a set X ⊆ M ,
the Skolem closure of X , denoted SclM(X ) is the smallest elementary submodel
ofM containing X . We often suppress the reference to the larger modelM and
write Scl(X ). An elementary extensionM ≺ N is called superminimal if, for all
a ∈ N \M , N = Scl(a); it is clear that superminimal extensions are also minimal
extensions.
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An extensionM ≺ N is conservative, denotedM ≺cons N if, for allX ∈ Def(N ),
X ∩M ∈ Def(M). N is an elementary end extension ofM, denotedM ≺end N ,
if, for each b ∈ N \M and a ∈M , N |= a < b. In such a case,M is a cut ofN . N
is a cofinal elementary extension ofM, writtenM ≺cof N , if for each a ∈ N there
is b ∈M such thatN |= a < b. Conservative elementary extensions are always end
extensions.
Enayat [1] showed that, for each completion T of PA, any minimal conservative
extension of the prime model of T is Enayat. By a similar proof, if α is a count-
able ordinal, then the union of an elementary chain of superminimal conservative
extensions of length α is Enayat. Such models exist because every countable model
of PA has a superminimal conservative extension ([3, Corollary 2.2.12]).
The work in this article is based in large part on the discussion of substructure
lattices of models of PA given in [3, Chapter 4]. We will repeat some definitions and
results here.
GivenM |= PA, the set of all K ≺ M forms a lattice under inclusion, called the
substructure lattice ofM and denoted Lt(M). GivenM ≺ N , the interstructure
lattice, denoted Lt(N/M) is the set of allK such thatM � K � N . Given a lattice
L, a ∈ L is compact if whenever X ⊆ L and a ≤ ∨

X , then there is a finite Y ⊆ X
such that a ≤ ∨

Y . L is algebraic if it is complete and each a ∈ L is a supremum of
a set of compact elements. If κ is a cardinal, then L is κ-algebraic if it is algebraic
and each compact a ∈ L has less than κ compact predecessors. IfM |= PA, then
Lt(M) is ℵ1-algebraic.
Section 2 of this article characterizes which finite lattices can be realized as the
substructure lattice of an Enayat model. Section 3 contains the first main result
of this article, Theorem 3.2, which states that a countable model of PA that is a
conservative extension of all its submodels, and contains noproper cofinal submodel
is Enayat. Section 4 contains the secondmain result, Theorem 4.1, which shows that
any countable linear order that canbe the substructure lattice of amodel ofPAcanbe
the substructure lattice of an Enayat model. We conclude with some open problems
in Section 5.

§2. Enayat models with finite substructure lattices. The ultimate goal of this
project is to give a complete characterization of Enayat models in terms of better-
known model-theoretic properties. So far, we can identify a few such properties.
First we show that Enayat models cannot have proper cofinal submodels.

Lemma 2.1. Let M |= PA be countable and suppose K ≺cof M is a proper
submodel. ThenM is not Enayat.

Proof. Because K is countable, it must have an undefinable inductive subset X .
Such anX can be foundusing arithmetic forcing (see [6], for example, or [3, Chapter
6]). Recalling that inductive sets are classes, we can extend this X to Y ⊆ M as
follows: for each a ∈ K , there is a formula φa(x) (possibly using parameters from
K) which defines

{x ∈ K : (K, X ) |= x ≤ a ∧ x ∈ X}.
Let Y =

⋃
a∈K

{x ∈ M : M |= φa(x)}, and one can show that (K, X ) ≺ (M, Y ).
Since Scl(M,Y )(0) ⊆ K,M is not Enayat. 	
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In the above proof, the construction of Y given an inductive set X ⊆ K is due to
Kotlarski and Schmerl independently; see [3, Theorem 1.3.7].
Lemma 2.1 gives us an easy characterization of which finite lattices can appear as
the substructure lattices of an Enayat model. To state this characterization, we use
the “lattice sum” notation. Given two lattices L1 and L2, if L1 has a top element
and L2 has a bottom element, then the lattice L = L1 ⊕ L2 is the lattice formed by
identifying the top element of L1 with the bottom element of L2. In particular, for
any lattice L, L⊕ 2 is the lattice formed by adding one new element above the top
element of L. As an example, if N is a superminimal elementary extension ofM,
then Lt(N ) ∼= Lt(M)⊕ 2.
The proof of the next result relies on Theorems 4.5.21 and 4.5.22 from [3] which
involve n-CPP representations of lattices. The following definition and these results
are originally due to Schmerl and can be found in [3, Section 4.5]. We include the
definition and the results here for the sake of completeness. If A is a set, the lattice
Eq(A) is the lattice of equivalence relations on A, with a maximum element 1A
being the trivial relation and a minimum element 0A the discrete relation. If B ⊆ A
and α : L → Eq(A) is any function, the function α|B : L → Eq(B) is defined by
(α|B)(r) = α(r) ∩ B2.
Definition 2.2. Let L be a finite lattice and A a set. α : L → Eq(A) is a
representation if it is an injection, α(0) = 1A, α(1) = 0A, and, for each r, s ∈ L,
α(r ∨ s) = α(r) ∧ α(s). α is a 0-CPP representation if, for each r > 0, α(r) has
more than two classes. α is an (n + 1)-CPP representation if for all Θ ∈ Eq(A),
there is r ∈ L and B ⊆ A such that Θ ∩ B2 = α(r) ∩ B2 and α|B is an n-CPP
representation.

If L is a finite lattice, there is a Σ1 formula cpp(L, x) such that if n < �, the
sentence cpp(L, n) is true in N if and only if L has an n-CPP representation.
Moreover, if N |= cpp(L, n), then PA � cpp(L, n).
Theorem 2.3 ([3, Theorem 4.5.21]). LetL be a finite lattice and supposeM ≺ N .
If Lt(N/M) ∼= L, then M |= cpp(L, n) for each n < �. M be a countable
nonstandard model of PA and let L be a finite lattice. IfM |= cpp(L, n) for each
n < �, thenM has a cofinal extension N such that Lt(N/M) ∼= L.
Theorem 2.4 ([3, Theorem 4.5.22]). LetL be a finite lattice and supposeM ≺ N .
If Lt(N/M) ∼= L, thenM |= cpp(L, n) for each n < �.
Combining these results, if L is a finite lattice and M ≺ N is such that
Lt(N/M) ∼= L, then M has a cofinal extension N1 such that Lt(N1/M) ∼= L.
Furthermore, ifM is a model of TA such that Lt(M) ∼= L, then for any completion
T �= TAofPA, there isM |= T which is a cofinal extension of itsminimal submodel,
such that Lt(M) ∼= L.
Corollary 2.5.
1. LetM |= PA be an Enayat model. If Lt(M) is finite, then it is of the formL⊕ 2
where L is some finite lattice.

2. Let L be a finite lattice, T a completion of PA and T �= TA. If there is N |= T
such thatLt(N ) ∼= L, then there is anEnayatM |= T such thatLt(M) ∼= L⊕2.

Proof. To prove (1), all we need to show here is that the top element of Lt(M)
cannot have more than one immediate predecessor. Suppose there are two: K1
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and K2. Notice that, since these are immediate predecessors ofM, the extensions
Ki ≺ M are minimal. By Gaifman’s Splitting Theorem ([2]), there is K̄i such that
Ki �cof K̄i �end M. By minimality, for each i , either Ki = K̄i or K̄i = M. So
either Ki ≺end M or Ki ≺cof M. Suppose neither K1 nor K2 is cofinal inM, and
therefore they are both cuts. Because K1 and K2 are incomparable in Lt(M), there
are a ∈ K1 \ K2 and b ∈ K2 \ K1. Then either M |= a < b or M |= b < a.
Because theKi are cuts, in the former case, that means a ∈ K2 and in the latter case,
b ∈ K1. These are both contradictions, so one of theKi must be a cofinal submodel
ofM. IfM is Enayat, by Lemma 2.1 it has no proper cofinal submodels, so this
cannot be the case; therefore, the top element of Lt(M) does not have more than
one immediate predecessor. Since Lt(M) is finite, the top element in Lt(M) has
exactly one immediate predecessor, and so Lt(M) ∼= L⊕ 2 for some finite lattice L.
For the proof of (2), letMT |= T be a prime model of T . Since there is N |= T
with Lt(N ) ∼= L, then by Theorems 4.5.21 and 4.5.22 in [3], there is a cofinal
extension K ofMT such that Lt(K) ∼= L. LetM be a superminimal conservative
extension of K. Theorem 2.2.13 in [3] shows that thisM must be Enayat. 	
Corollary 2.5 characterizes the finite lattices which can appear as the substructure
lattice of an Enayat model. To see this, we note that if L is a finite lattice that is
the substructure lattice of a model of TA, then, for any completion T �= TA of PA,
there is a cofinal extensionM of the prime modelMT such that Lt(M) ∼= L. To
get such an extension, we again appeal to Theorems 4.5.21 and 4.5.22 in [3].
There is a strong caveat to the preceding paragraph which should be mentioned
here: the question ofwhich finite lattices are isomorphic toLt(M) for someM |= PA
is very much open. In particular, it is unknown if there are any finite lattices which
are not isomorphic to a substructure lattice. See [3, Chapter 4] formore information
on this problem.
Even granting the above caveat, the following remains open:

Question 2.6. Which finite lattices can be realized as the substructure lattice of
an Enayat model of TA?

We can modify the proof of Corollary 2.5(2) to get that, for a finite lattice L,
if there is a modelM |= TA such that Lt(M) ∼= 2 ⊕ L, then there is an Enayat
model of TA whose substructure lattice is 2 ⊕ L ⊕ 2. This is done in much the
same way: first we find a minimal, conservative extensionM of N, and then find
a cofinal extensionM1 ofM such that Lt(M1) ∼= 2 ⊕ L and so that the greatest
common initial segment betweenM andM1 contains a nonstandard element. Then
a superminimal conservative extension ofM1 is Enayat.
Other Enayat models of TA can be found using results in the next section. As an
example, there is an Enayatmodel ofTAwhose substructure lattice is isomorphic to
B2 ⊕ 2, showing that substructure lattices of models of TA need not be isomorphic
to a lattice of the form 2 ⊕ L ⊕ 2 for some finite lattice L. To find such a model,
let p(x) be a minimal type over TA and let a and b be two elements realizing it.
Then ifM is a superminimal conservative extension of Scl(a, b), it is Enayat and
Lt(M) ∼= B2 ⊕ 2.
Corollary 2.5 implies that there are Enayat models of PA whose substructure
lattice is isomorphic to N5 ⊕ 2. It is unknown whether there is an Enayat model
of TA whose substructure lattice is isomorphic to this lattice; more generally, it
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is unknown if there are Enayat models which are not conservative over all their
elementary cuts. If M |= TA is such that Lt(M) ∼= N5 ⊕ 2, then M is not a
conservative extension of N.

§3. Characterizing Enayat models. In this section, we show our first main result:
amodel is Enayat if it has no proper cofinal submodel and is a conservative extension
of each of its elementary cuts. First, we prove a lemma which will be needed for
this result. This lemma is very similar to [3, Theorem 2.2.13]. If A is any first order
structure with universe A, and Y ⊆ A, the definable closure of Y in A, denoted
dclA(Y ), is the set of those x ∈ A such that {x} is definable in A using parameters
from Y .

Lemma 3.1. Suppose N |= PA, X is an undefinable class of N ,M ≺cons N , and
C is a cofinal subset ofM. Then there is b ∈ N \M such that b ∈ dcl(M,X )(C ).
Proof. Recall that conservative extensions are end extensions. Let c > M . Since
X is a class, the set {x ∈ X : x < c} ∈ Def(N ). By conservativity, we have, for
some b ∈M :

X ∩M = {x ∈M :M |= φ(x, b)}.
Because C is cofinal inM, there is some a ∈ C such that b < a. Consider the set

Y = {z ∈ N : (N , X ) |= ∃y < a ∀x < z (φ(x, y)↔ x ∈ X )}.
This set containsM. It must also be bounded, since, if it were not, then Y = N ,
and there would be some b < a such that

X = {x ∈ N : N |= φ(x, b)}.
However, since X is undefinable, there can be no such b. Let b be the maximum of
Y . Clearly b is a definable element in (N , X ) using only parameters from C , and is
aboveM. 	
LetM |= PA and X ⊆ M . Then sup(X ) = {x : ∃a ∈ X (M |= x ≤ a)}. If

K ≺ M, then K �cof sup(K) �end M. This is another form of Gaifman’s Splitting
Theorem ([2]).

Theorem 3.2. SupposeM is countable, has no proper cofinal submodel, and is a
conservative extension of each of its elementary cuts. ThenM is Enayat.
Proof. Let X ⊆ M be an undefinable class and let C be the set of all elements
definable in (M, X ). Since C is closed under Skolem terms, it is an elementary
submodel ofM. To be more precise, the structure C = (C,+ � C,× � C, 0, 1) ≺ M.
Let K = sup(C ). Then K �cons M. If C is bounded in M, then K is properly
contained inM, and by Lemma 3.1, there is c ∈M \K definable in (M, X ) using
a parameter from C . Since each element of C is a definable element in (M, X ), c is
also a definable element. This is a contradiction; therefore C must be cofinal inM.
SinceM has no proper cofinal submodels, C =M . 	
We can find many examples of Enayat models as a result of this theorem. As
mentioned before, Corollary 2.2.12 of [3] states that every countable model of PA
has a superminimal conservative extension. This means we can form countable
elementary chains of superminimal conservative extensions, which, by Theorem
3.2, are Enayatmodels. That is, if α is a countable ordinal,N = ⋃

�<α

M� , whereM0
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is prime,M�+1 is a superminimal conservative extension ofM� , andM� =
⋃
�<�

M�

whenever � is a limit ordinal, then N is Enayat.
Corollary 2.5 characterized the finite lattices which can be the substructure lattices
of anEnayatmodel. For infinite lattices, we do not have a complete characterization;
however, we note the following corollary of Theorem 3.2.

Corollary 3.3. Let T �= TA be a completion of PA,MT |= T a prime model of
T , and L a lattice. Suppose there is a countable N �cof MT such that Lt(N ) ∼= L.
Then there is an Enayat modelM |= T such that Lt(M) ∼= L⊕ 2.
Proof. Let M be a superminimal conservative extension of N . N is the only
proper elementary cut ofM andM has no proper cofinal submodels. By Theorem
3.2,M is Enayat. 	
Many examples of lattices can be realized as substructure lattices of Enayat
models in this way. Paris [4] proved if L is a countable algebraic distributive lattice,
then for any completion T of PA, there isM |= T with Lt(M) ∼= L. This proof
can be modified (see [3, Theorem 4.7.3]) to obtain the following: if L is a countable
algebraic distributive lattice, then every countable nonstandard M |= PA has a
cofinal extension N such that Lt(N/M) ∼= L. A more general result is shown in
[5], which covers a class of lattices properly including all distributive lattices. For
such lattices L, there is an Enayat model whose substructure lattice is isomorphic
to L⊕ 2.

§4. Linearly ordered substructure lattices. In this section, we show that if � is
a linear order such that there is some model of PA whose substructure lattice is
isomorphic to �, then there is a model M |= PA whose substructure lattice is
isomorphic to � with the property that for each K ∈ Lt(M),M is a conservative
elementary extension ofK. If, in addition, � is countable, then such anM is Enayat.
Recall that ifM |= PA, then the lattice Lt(M) is ℵ1-algebraic; in other words, it
is complete, compactly generated, and each compact element has countably many
compact predecessors. If Lt(M) is a linear order, then the compact elements are
successors, and there can only be countably many compact elements.

Theorem 4.1. Let T be a completion of PA and let � be an ℵ1-algebraic linear
order. There isM |= T such that Lt(M) ∼= � and, for each K ∈ Lt(M), K ≺cons M.
The cofinality quantifier C is defined so that Cxφ(x) is shorthand for ∀w∃x >
wφ(x). It is understood that the variable w does not appear in φ. The cobounded
quantifier C∗ is the dual of C; that is, C∗xφ(x) is ¬Cx¬φ(x). It can be thought of
as shorthand for ∃w∀x > wφ(x) (where w does not appear in φ).
We extend C and C∗ to apply to n-tuples x̄ = x0, x1, . . . , xn−1 so that Cx̄ is

Cx0Cx1 . . .Cxn−1, and similarly for C∗. We note that the order is important here.
Fix T a completion of PA.

Definition 4.2. If 1 ≤ n < �, an n-ary formula 	(x0, x1, . . . , xn−1) is big if
T � Cx̄	(x̄).

The 1-ary formula x = x is big. The following lemma is a simple observation
which allows us to extend big n-ary formulas to big (n + 1)-ary formulas.
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Lemma 4.3. If 	(x0, x1, . . . , xn−1) is a big n-ary formula and i < n, and x′

is a new free variable, the formula φ(x0, x1, . . . , xi , x′, xi+1, . . . , xn−1) defined as
	(x0, x1, . . . , xi , xi+1, . . . , xn−1) is a big (n + 1)-ary formula.
As an example, if 	(x) is a big 1-ary formula, then it is not hard to see that
T � CyCx	(x) and T � CxCy	(x).

Lemma 4.4. Let n ≥ 1. If M0 ≺end M1 ≺end · · · ≺end Mn are models of T ,
then the n-ary formula 	(x̄) is big if and only if there are ci ∈ Mi+1 \Mi such that
Mn |= 	(c̄).
Proof. Let n = 1 and letM0 ≺end M1. First suppose 	(x) is big. ThenM1 |=

∀w∃x > w	(x). Let w ∈ M1 \M0, and let c > w be such thatM1 |= 	(c). Since
M1 is an end extension ofM0, c ∈ M1 \M0. Conversely, if there is c ∈ M1 \M0
such thatM1 |= 	(c), then, for eachw ∈M0,M1 |= ∃x > w	(x). By elementarity,
this statement is also true inM0, soM0 |= Cx	(x), and so 	 is big.
If n > 1, let M0 ≺end · · · ≺end Mn. First suppose 	(x̄) is big and let
φ(x0, . . . , xn−2) be the formula Cxn−1	(x̄). Since 	(x̄) is big, φ(x̄) is a big (n − 1)-
ary formula. By induction, there are ci ∈ Mi+1 \Mi , for each i < n − 1, such that
Mn−1 |= Cxn−1	(c0, . . . , cn−2, xn−1). By elementarity, this statement is true inMn.
Let w ∈ Mn \Mn−1, and let cn−1 > w be such thatMn |= 	(c0, . . . , cn−2, cn−1).
SinceMn is an end extension ofMn−1, cn−1 ∈Mn \Mn−1.
Lastly, suppose ci ∈Mi+1 \Mi are such thatMn |= 	(c̄). Let φ(x0, . . . , xn−2) be
the formula Cxn−1	(x̄). Since, for each w ∈Mn−1,

Mn |= ∃xn−1 > w	(c0, . . . , cn−2, xn−1),
by elementarity Mn−1 |= ∃xn−1 > w	(c0, . . . , cn−2, xn−1). Therefore, Mn−1 |=
φ(c0, . . . , cn−2). By induction, φ is a big (n−1)-ary formula, and so by the definition
of φ, 	 is a big n-ary formula. 	
Definition 4.5. Suppose 1 ≤ n < �, t(u, x̄) is an (n + 1)-ary Skolem term and
	(x̄) is an n-ary formula. We say that 	(x̄) handles t(u, x̄) if:

∀u
∨
i≤n

C∗x̄C∗ȳ[(	(x̄) ∧ 	(ȳ))→ (t(u, x̄) = t(u, ȳ)↔
∧
j<i

xj = yj)].

Tomotivate this definition, notice that if t(u, x̄) is an (n+1)-ary Skolem term, we
can define a family of equivalence relations Θu on n-tuples by letting (x̄, ȳ) ∈ Θu
iff t(u, x̄) = t(u, ȳ). In addition, for each i ≤ n, there is a canonical equivalence
relation Θ̃i given by ((x0, . . . , xn−1), (y0, . . . , yn−1)) ∈ Θ̃i iff xj = yj for all j < i .
Θ̃0 is the trivial equivalence relation, Θ̃n is the discrete relation, and, for each i < n,
Θ̃i+1 refines Θ̃i . If an n-ary formula 	(x̄) handles an (n+1)-ary Skolem term, then
for each u there is some i ≤ n for which Θu is eventually equal to Θ̃i on the set
defined by 	. In particular, if 	(x) is a 1-ary formula which handles t(u, x), then,
for each u, the function t(u, ·) is eventually one to one or constant on the set defined
by 	.
The following lemma states that every Skolem term can be handled.

Lemma 4.6. If 	(x̄) is a big n-ary formula and t(u, x̄) is an (n + 1)-ary Skolem
term, then there is a big n-ary formula 	 ′(x̄) such that T � ∀x̄[	 ′(x̄) → 	(x̄)] and
	 ′(x̄) handles t(u, x̄).
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Proof. We prove the lemma by induction on n. First suppose n = 1. LetM0 be
the prime model of T andM0 ≺ M1 a superminimal conservative extension. Since
	(x) is big, by Lemma 4.4, there must be c0 ∈M1 \M0 such thatM1 |= 	(c0).
Let F = {〈u,m〉 :M1 |= t(u, c0) = m}. By conservativity, F ∩M0 ∈ Def(M0),
so there is a partialM0-definable function f such that f(u) = m if and only if
〈u,m〉 ∈ F for all u,m ∈M0. Let D be the domain of f, and let

X = {x :M0 |= 	(x) ∧ ∀u ∈ D(t(u, x) = f(u))}.
SinceM1 |= c0 ∈ X (that is, c0 satisfies the definition for X as interpreted inM1),
X must be unbounded by Lemma 4.4.
D is the set of those u for which t(u, c0) ∈M0. The setM0 \D is the set of those
u for which t(u, c0) > M0. EnumerateM0 \D as u0, u1, . . . (we can assume this set
is infinite; if it is finite, the argument is similar). Let x0 be the least x ∈ X . Given
x0, . . . , xi , let xi+1 be the least x ∈ X such that x > xi and

∀j, k ≤ i(t(uj, xk) �= t(uj, x)).
Let Y = {xi : i ∈ M0}. This set is definable; informally, x ∈ Y iff there are k and
s such that s codes a finite sequence of length more than k, (s)0 = x0, (s)i+1 is the
least element ofX satisfying the conditions above (for each i < k), and (s)k = x.Y
is unbounded since each xi is different for all i ∈M0 (in other words, the function
i �→ xi is a definable, injective function with unbounded domain, so its image must
be unbounded). Let 	 ′ be the formula defining Y . 	 ′ is big and handles the term
t(u, x).
Let n > 0 and assume that the lemma holds for (n − 1)-ary big 	(x̄) and n-ary
Skolem terms t(u, x̄). Let 	(x̄) be a big n-ary formula and t(u, x̄) an (n + 1)-ary
Skolem term. We again letM0 be the prime model of T and letM0 ≺ M1 ≺ · · · ≺
Mn be a chain of superminimal, conservative extensions. Since 	(x̄) is big, there
are ci ∈Mi+1 \Mi such thatMn |= 	(c̄).
We again let F = {〈u,m〉 : Mn |= t(u, c̄) = m}. By conservativity, the set
F∩Mn−1 is definable by a formulaφ(u,m, a),wherea ∈ Mn−1. By superminimality,
we can find a formula 
(u,m, x0, . . . , xn−2) such that

Mn−1 |= ∀u,m[
(u,m, c0, . . . , cn−2) ⇐⇒ 〈u,m〉 ∈ F ].
That is, 
 defines a partialM0-definable function f(u, x0, . . . , xn−2). Let D =

{u :Mn−1 |= ∃m[〈u,m〉 ∈ F ]}, and by conservativity,D ∩M0 is definable without
parameters. We again call this set D. D is the set of those u ∈ M0 such that
t(u, c̄) ∈Mn−1.
Let φ(x0, . . . , xn−2) be the formula

∀wCxn−1	(x̄) ∧ ∀u ∈ D[t(u, x̄) = f(u, x0, . . . , xn−2)] ∧ ∀u �∈ D[t(u, x̄) > w].
SinceMn−2 |= φ(c0, . . . , cn−2), φ is a big (n − 1)-ary formula. By induction, there
is a big (n − 1)-ary formula 	0 that handles f, such that T � ∀x̄[	0(x̄) → φ(x̄)].
Let d0 ∈ M1, . . . , dn−2 ∈ Mn−1 be such thatMn−1 |= 	0(d̄ ). SinceMn−1 |= φ(d̄ ),
there is dn−1 ∈Mn \Mn−1 such that

Mn |= 	(d̄ ) ∧ ∀u ∈ D[t(u, d̄ ) = f(u, d0, . . . , dn−2)],
and, if u �∈ D, t(u, d̄ ) > Mn−1.
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Since Scl(dn−1) =Mn, we also have a Skolem term g such thatMn |= g(dn−1) =
〈d0, d1, . . . , dn−2〉. Given x̄ an (n − 1)-tuple, we let

Yx̄ = {x :M0 |= g(x) = x̄ ∧ ∀u ∈ D[t(u, x̄, x) = f(u, x̄)]}.
Notice thatMn−1 |= 	0(d̄ )∧Cx[g(x) = d̄ ], and so the formula 	0(x̄)∧Cx[g(x) =
x̄] is a big (n − 1)-ary formula which handles f. We abuse notation by referring to
this formula as 	0 again. Now ifM0 |= 	0(x̄), then Yx̄ is unbounded.
Similar to the above proof, we enumerateM0\D as u0, u1, . . . andwewill construct
a sequence y0, y1, . . . as follows. Enumerate those (n − 1)-tuples x̄ such thatM0 |=
	0(x̄) as x̄0, x̄1, . . ., so that each such x̄ appears infinitely often. Let y0 be the least
element of Yx̄0 . Given y0, . . . , yi , let yi+1 be the least y > yi such that y ∈ Yx̄i+1 and

∀j ≤ i, k ≤ i [t(uj, x̄k , yk) �= t(uj, x̄i+1, y)].
Such a y exists because, if u �∈ D, then for each tuple (x0, . . . , xn−2) such thatM0 |=
	0(x̄), the function h(x) defined as h(x) = t(u, x0, . . . , xn−2, x) has unbounded
range on the set Yx̄ . Let Y = {yi : i ∈M0}; this is definable in a similar manner as
the set Y in the case n = 1 above. Let 	 ′(x0, . . . , xn−1) be the formula

	0(x0, . . . , xn−2) ∧ xn−1 ∈ Y ∧ g(xn−1) = 〈x0, . . . , xn−2〉.
	 ′ is as required. To see that 	 ′ handles t, first note that, if u �∈ D, then for large
enough j, k, t(u, x̄j , yj) �= t(u, x̄k, yk). If u ∈ D, then

M0 |= ∀x0 . . . ∀xn−1[	 ′(x̄)→ t(u, x̄) = f(u, x0, . . . , xn−2)].
Since 	0 handles f, 	 ′ handles t. 	
Proof of Theorem 4.1. Let M0 |= T be the prime model. Let t0(u, x̄),
t1(u, x̄), . . . be an enumeration of all Skolem terms so that each tn has at most
(n + 1) free variables. Let s0, s1, . . . be an enumeration of the (countably many)
compact elements of �. Given n < �, let �n be the permutation of {0, . . . , n} such
that s�n(0) < s�n(1) < · · · < s�n(n). For an (n + 1)-ary formula 	(x̄), by 	(�n(x̄))
we mean 	(x�n(0), . . . , x�n(n)). Similarly, for an (n + 2)-ary Skolem term t(u, x̄), by
t(u, �n(x̄)) we mean t(u, x�n(0), . . . , x�n(n)).
UsingLemmas 4.3 and 4.6,we construct a sequence of formulas 	0(x0), 	1(x0, x1),
. . . such that, for each n < �:

• 	n(�n(x̄)) is big and
T � ∀x̄(	n+1(x̄)→ 	n(x̄)),

• If tn is (m + 1)-ary, then there is an m-ary formula 	(x̄) such that 	(�m−1(x̄))
handles tn(u, �m−1(x̄)) and

T � ∀x̄(	n(x̄)→ 	(x̄)).
The set {	n(x̄) : n ∈ �} determines a complete, consistent type: if 	(u, x̄) is
any formula, then the corresponding Skolem term t(u, x̄) (defined as t(u, x̄) = 0
iff 	(u, x̄) and t(u, x̄) = 1 otherwise) is handled at some stage n. Let c0, c1, . . . be
elements realizing this type and let M |= T be generated by these elements. We
claim thatM is as desired.
First, we show that Lt(M) ∼= �. Let si and sj be compact elements of �. We show

that si ≤ sj ⇐⇒ Scl(ci) � Scl(cj). Suppose si ≤ sj . Let m be the maximum
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of i and j and let t(u, x0, . . . , xm) be the term defined as t(u, x0, . . . , xm) = xu
if u ≤ m and t(u, x0, . . . , xm) = 0 otherwise. There is 	(x0, . . . , xm) such that
	(�m(x̄)) handles t(u, �m(x̄)). Let X be the set defined by 	; that is,

X = {〈x0, . . . xm〉 :M0 |= 	(x0, . . . , xm)}.
Then, for large enough x, if there are 〈x0, . . . , xm−1〉, 〈y0, . . . , ym−1〉 such that
〈x0, . . . , xm−1, x〉 ∈ X and 〈y0, . . . , ym−1, x〉 ∈ X , then xk = yk for each k ≤ m−1.
Let tk(x) be the Skolem term defined (on all such large enough x) as that unique
such xk . Then, if k is such that �m(k) = i ,M |= tk(cj) = ci .
Conversely, suppose Scl(ci) � Scl(cj). There is a term f such that Scl(cj) |=
f(cj) = ci . Let n be the maximum of i and j. We claim that if ki and kj are such
that �n(ki) = i and �n(kj) = j, then ki ≤ kj . To see this, let t(u, x̄) = f(xkj ),
and then suppose 	(�n(x̄)) is big and handles t(u, �n(x̄)). Then if kj < ki , if we
fix x0, . . . , xkj , there would be infinitely many different xki such that f(xkj ) = xki ,
which is impossible.
Next, we show that if b ∈ M , then there is some ci such that Scl(b) = Scl(ci).
Let n < �, m ∈ M0, and t(u, x0, . . . , xn−1) be such that

M |= t(m,�n−1(c̄)) = b.
Then there is some 	(x̄) such that 	(�n−1(x̄)) handles t(u, �n−1(x̄)). Let i ≤ n be
such that, inM0, the following statement holds:

M0 |= C∗x̄C∗ȳ[	(�n−1(x̄)) ∧ 	(�n−1(ȳ))→ (t(m,�n−1(x̄)) = t(m,�n−1(ȳ))↔∧
j≤i
x�n−1(j) = y�n−1(j))].

Therefore, there are Skolem functions f and g so that

M |= f(c�n−1(0), . . . , c�n−1(i)) = b

andM |= g(b) = 〈c�n−1(0), . . . , c�n−1(i)〉. Combining this with the argument above,
we have that Scl(b) = Scl(c�n−1(i)).
This means that all the finitely generated substructures ofM are the Scl(ci) for
each i < � and therefore that Lt(M) ∼= �.
Lastly, we show that Scl(ci) ≺cons M for each i < �. Let X ⊆M be defined as

X = {u :M |= φ(u, �n−1(c̄))}.
Then if cj is such that c0, . . . , cn−1 ∈ Scl(cj), clearly X ∩ Scl(cj) ∈ Def(Scl(cj)).
Suppose i is such that there are some k < n such that ck �∈ Scl(ci). Let t(u, x̄)
be the Skolem term such that t(u, x̄) = 0 iff φ(u, x̄) and t(u, x̄) = 1 otherwise. If
	(�n−1(x̄)) is big and handles t(u, �n−1(x̄)), it must be the case that, for each u,

C∗x̄(	(�n−1(x̄))→ φ(u, �n−1(x̄))) ∨ C∗x̄(	(�n−1(x̄))→ ¬φ(u, �n−1(x̄))).
Let 	 be such that 	(�n−1(x̄)) handles t(u, �n−1(x̄)), and let c�n−1(0), . . . , c�n−1(j) ∈
Scl(ci). Then u ∈ X ∩ Scl(ci) if and only if
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Scl(ci) |= C∗xj+1 · · ·C∗xn−1 	(c�n−1(0), . . . , c�n−1(j), xj+1, . . . , xn−1)

∧ φ(u, c�n−1(0), . . . , c�n−1(j), xj+1, . . . , xn−1). 	

Corollary 4.7. Suppose � is a countable algebraic linear order. Then there is an
Enayat modelM |= PA such that Lt(M) ∼= �.
§5. Open problems. From Theorem 3.2, if a model of PA is countable, has no
proper cofinal submodel and is a conservative extension of each of its elementary
cuts, then it is Enayat. Additionally, Lemma 2.1 shows that models with proper
cofinal submodels cannot be Enayat. A negative answer to the following problem
would complete the classification of Enayat models:
Problem 5.1. SupposeM |= PA is countable but is not a conservative extension
of (at least) one of its proper elementary cuts. CanM be Enayat?
Corollary 2.5 characterizes the finite lattices which can appear as a substructure
lattice of an Enayat model. We do not have such a characterization for countable
lattices, though Corollary 3.3 provides a first attempt.
Problem 5.2. Suppose L is a countable lattice such that there isM |= PA with
Lt(M) ∼= L. Under what circumstances is there an Enayat model M such that
Lt(M) ∼= L?
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