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With most tele-operated robots the operator’s only feedback is the view from an onboard
camera. Live video lets the operator observe the robot’s immediate surroundings but does not
establish the orientation or whereabouts of the robot in its environment. An additional plot
of the robot’s trajectory would be helpful for the operator and is sometimes provided, based
on GPS. However, indoors where GPS is unavailable, tracking has to rely on dead-reckoning,
which is too inaccurate to be useful. Our proposed TelOpTrak method corrects dead-
reckoning errors even when only odometry and a low-cost (and thus, high-drift) MEMS-class
gyro are available on the robot. TelOpTrak corrects gyro drift by exploiting the structured
nature of most buildings, but without having to directly sense building features. This paper
explains the TelOpTrak method and provides comprehensive experimental results.

Earlier versions of this paper (Borenstein et al., 2010a), (Borenstein et al., 2010b) were
presented at two conferences. The main difference between the earlier conference papers and
the present manuscript is that the latter is more comprehensive, more up-to-date, and it
presents an entirely new set of experimental results, including results of a live demonstration
at the 2010 Robotics Rodeo event at Ft. Benning, USA.
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1. INTRODUCTION. Most tele-operated robots offer the remote operator
just one kind of visual feedback: the view from an onboard camera. These video
pictures do not allow the operator to establish the orientation or whereabouts of
the robot in its environment. Some Operator Control Units (OCUs) offer a second
window, in which the trajectory of the robot is plotted. However, this window is
typically shown only if Global Positioning System (GPS) is available. Indoors, where
GPS is not available, it is necessary to employ other vehicle tracking methods to
supply the tele-operator with a view of the robot’s trajectory.

THE JOURNAL OF NAVIGATION (2012), 65, 265–279. © The Royal Institute of Navigation
doi:10.1017/S0373463311000725

https://doi.org/10.1017/S0373463311000725 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463311000725


The most widely used method for tracking the position of Unmanned Ground
Vehicles (UGV) in GPS-denied environments is odometry, that is, the counting of
fractional revolutions of wheels on the left and right side of the UGV (Borenstein and
Feng, 1996). Odometry only works well if there is no wheel slippage. If there is much
slippage, such as when skid-steer or tracked vehicles turn, then odometry alone is not
useful. A common approach for tracked vehicles is to combine odometry with at least
one gyroscope or with a complete Inertial Measurement Unit (IMU) (Borenstein,
2001). The accuracy of these methods depends to a large degree on the quality of the
gyro. Inexpensive (e.g., MEMS-based) gyros tend to produce heading errors at a rate
of up to tens of degrees per minute (De Agostino et al., 2010). Fibre optic gyros
produce errors at much lower rates, in the order of a few degrees per hour, but these
gyros cost thousands of dollars.
Other position tracking methods exist that use pre-existing recognizable features

in the environment as absolute references. One such method, which uses directional
range-finding sensors or cameras is Simultaneous Localization And Mapping, or
SLAM (Tardós et al., 2002; Levinson and Thrun, 2010). In SLAM, prominent
features, such as planes and corners, are extracted from sensor data and used as
landmarks to build a map of the vehicles environment. Changes in the range and
bearing of the landmarks as measured by the vehicle over time are used to estimate the
vehicle’s trajectory. One major challenge with SLAM is the problem of landmark
association, as individual sensor readings must be correctly associated with new
landmarks, or re-associated with their corresponding, previously observed landmarks.
Only landmarks that are static with respect to the environment can be used to infer the
motion of the vehicle, so SLAM systems must also be able to identify and ignore other
moving objects.
A purely vision-based method similar to SLAM is visual odometry (Nistér et al.,

2006; Johnson et al., 2008) where cameras are used to perform dead reckoning more
directly. Features such as corners are tracked in successive video frames and used to
estimate the motion of the camera and vehicle in the period between the frames.
Feature association is less of a problem for visual odometry, as the changes from
image to image tend to be minor, and there is no need to associate a re-observed
feature with its previous encounters. Visual odometry also allows for the simultaneous
correlation of multiple attributes of features, such as shape, colour, and brightness.
However, visual odometry is computationally intensive, as video must be processed
in real-time to extract and track many features. Environmental conditions such as
darkness or smoke may also interfere with video quality.
In this paper we propose a substantially different approach, called TelOpTrak.

TelOpTrak uses odometry and a low-cost MEMS-based gyro for indoor tracking. Our
method corrects heading errors incurred by the high drift rate of the gyro by exploiting
the structured nature of most indoor environments, but without having to directly
sense features of the environment. In earlier work we developed a much less powerful
but more widely applicable heuristic-enhanced dead-reckoning method for vehicles,
called Heuristic Drift Reduction (HDR) (Borenstein and Ojeda, 2009), with which
TelOpTrak shares some elements of approach.
In other earlier work we developed the so-called Heuristic Drift Elimination (HDE)

method for tracking the position of persons walking inside buildings (Borenstein and
Ojeda, 2010). HDE is a significant improvement over HDR because it actually
reduces heading errors to near-zero at steady state. This is accomplished while walking
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along straight corridors, even if heading errors were incurred previously, during
transients or arbitrary motion. The core component of the HDE method is what we
call the ‘heuristics engine’, which is identical in both applications of the HDE method:
the human walker application (Borenstein and Ojeda, 2010) and the tele-operated
robot TelOpTrak application of this present paper. The fact that the exact same
heuristics engine is applicable with only minor differences to two fundamentally
different applications is a testimony to the robustness of the underlying approach.
For completeness, we repeat a description of the heuristics engine in Section 2 of
this paper.
The remainder of this paper is structured as follows. In Section 2 we describe

the relevant background and explain the heuristic approach. Section 3 describes
our hardware system designed for a generic skid-steer robot, while Section 4 provides
extensive experimental results.

2. HEURISTIC DRIFT ELIMINATION. This section presents our
earlier-developed HDE method applied to tele-operated robots. This discussion was
presented originally in our two earlier conference papers and is duplicated here for
completeness (Borenstein et al., 2010a), (Borenstein et al., 2010b). New in this present
paper is the additional discussion of optional refinements, so-called attenuators, in
Section 0. Also new in this paper is a comprehensive set of new experimental results
obtained from implementation of the system on a ‘Superdroid’ All-Wheel Drive
(AWD) robot.
The TelOpTrak method almost completely eliminates heading errors due to

gyro drift and other slow-changing gyro errors. In suitable indoor environments,
TelOpTrak maintains zero heading errors in drives of unlimited duration, at steady
state. However, these desirable performance characteristics are achieved only in
environments that match certain heuristic assumptions, discussed next.

2.1. The Heuristic Assumptions. TelOpTrak works in environments in which the
number of possible heading angles is limited. For example, in man-made structures
most corridors are straight and either parallel or orthogonal to each other and to the
peripheral walls. We call the typical directions of walls and corridors the dominant
directions of the building. In the huge majority of buildings there are only four
dominant directions. We call environments that conform to these architectural
properties conforming environments.
We call driving that complies with the heuristic assumptions (i.e., driving along

a dominant direction) compliant driving. The strength of TelOpTrak lies in the fact
that it applies corrections only gradually, when it judges driving to be compliant, and
it reduces or suspends its corrections when it judges driving as not compliant. While
prolonged non-compliant motion may render TelOpTrak ineffective, the method is
nonetheless very robust in the face of short non-compliance. For example, TelOpTrak
will easily tolerate the crossing of a large hall (e.g., in a mall or warehouse) at an angle
other that 90°.
In compliant environments, TelOpTrak detects when motion matches one of

the four dominant directions and gradually corrects gyro output. During turns,
TelOpTrak suspends its corrective action. While TelOpTrak is suspended, drift causes
new heading errors, but once TelOpTrak resumes, it effectively eliminates accumu-
lated heading errors because it gradually nudges headings toward alignment with the
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closest dominant direction. When motion is mostly compliant, TelOpTrak assures
zero heading errors in drives of unlimited duration at steady state. Steady state is
usually reached within a few seconds of compliant motion after turning. With heading
errors eliminated, position errors remain orders of magnitude smaller than with con-
ventional dead-reckoning. The resulting small position errors make it possible to track
the position of tele-operated vehicles accurately and reliably over extended periods
of time.

2.2. General Heading Estimation. Tele-operated vehicles are often equipped with
single z-axis gyros or even Inertial Measurement Units (IMUs) for dead-reckoning.
When driving straight forward, the output of the z-axes gyro should be exactly zero.
However, due to drift the actual output is off by some small value εd. Relative heading
can be computed from:

ψi = ψi−1 + ωmeas,iT (1)

where:

ψi is the computed heading after interval i, in [°].
ωmeas,i is the true rate of turn plus the unknown drift error εd,i, in [°/s].
T is the sampling time in [s].

In the following sections we explain how the TelOpTrak algorithm:

. Reduces driving in any of the nominally four dominant directions to the
functional equivalent of driving in a direction of zero degrees.

. Models drift, εd, as a disturbance in a feedback control system.

. Estimates the magnitude of this disturbance by examining the content of the
accumulator in the I-Controller of that feedback control circuit.

. Remains largely insensitive to additional, large-amplitude disturbances of short
duration.

As explained, the TelOpTrak algorithm assumes that a building has four dominant
directions, Ψ. Dominant directions are spaced at 90-degree intervals called the
dominant direction interval, Δ. A further assumption is that most corridors and inside
walls in a building run parallel to its dominant directions. If this assumption is
true, then one can further assume that most driving in such buildings is also done
along dominant directions. For the TelOpTrak algorithm to work well, this latter
assumption does not have to hold true all of the time.

2.3. The Heuristics Engine. The core component of the TelOpTrak algorithm
is the heuristics engine, which functions essentially like a feedback control system, as
illustrated by Figure 1.
We start the explanation of this feedback control system with the signal from the

gyro, ωmeas, which is modelled as a disturbance in the block diagram of Figure 1. For
the purpose of explaining the feedback control system, let us assume that the vehicle is
driving straight ahead and in a dominant direction. When driving straight, ωmeas= εd,
so the only output from the gyro is drift, εd.
Initially, the output of the I-Controller is zero, so εd is passed through to a

numeric integrator, which computes the relative change of heading, ψi. After the first
iteration, when i>1, the control loop can be closed by submitting the previous value
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of ψ, ψi−1, to the MOD function. The label ‘z−1’ in the feedback loop is the common
notation for a pure delay of one sampling interval.
The block labelled “MOD(θ,Δ)” applies the MOD function, which is defined as:

MOD n, d( ) = n− dINT n/d
( ) (2)

MOD(ψ,Δ) maps ψ onto a direction that lies between 0 and Δ. With the help of
the MOD function the heuristics engine performs a simple test to see if a momentary
heading angle is immediately to the right or left of any dominant direction:

ψ∗
i = MOD ψi−1,Δ

( ) (3)
where:

ψ*i is the mapped heading that lies between 0 and Δ, in degrees.
ψ*i is then compared to the fixed set point, ψset=Δ/2, resulting in an error signal:

Ei = Δ/2− ψ∗
i (4)

This brings us to the binary I-Controller. Unlike conventional Integral (I)
or Proportional-Integral (PI) controllers, the binary I-Controller is designed not
to respond at all to the magnitude of E. Rather, it only responds to the sign of E.
If E is positive (i.e., heading points to the left of a dominant direction), then a counter
(called Integrator or ‘I’) is incremented by a small, fixed increment, ic. If E is negative
(i.e., the heading points to the right of the dominant direction), then I is decremented
by ic. In this fashion, and although the controller does not respond to the magnitude
of E immediately, repeated instances of E having the same sign will result in repeated
increments or decrements of I by ic.
The reason for using the binary I-Controller is that the ideal condition Ψ*=0°

(i.e., Ψ* being perfectly aligned with one of the dominant directions) is rarely met.
Indeed, Ψ* can differ from zero by tens of degrees, for example, when the robot is
turning. In that case a conventional I-Controller would not work well, since it would
respond strongly to the large value of E, even though large E are not necessarily an
indication for a large amount of drift. The proposed binary I-Controller, on the other
hand, is insensitive to the magnitude of E. Rather, the controller reacts, slowly, to E
having the same sign persistently.
As established by Equation (4), if ψ*>ψset then ψ* is immediately to the right

of Ψ, and if ψ*<ψset then ψ* is immediately to the left of Ψ. During straight-line
driving along a dominant direction Ψ, a heading to the right of Ψ suggests that the

Figure 1. The core component of the TelOpTrak algorithm, called “heuristics engine,” is modelled
as a feedback control system. The block labelled “Binary I controller” is explained in the narrative.
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only possible source for this error, εd, had a negative value. To counteract this error,
the binary I-Controller adds the small increment, ic to the Integrator. Conversely, if
ψ*<ψset, then the Integrator is decremented by ic.
We can now formulate the binary I-Controller:

Ii =
Ii−1 − ic for E , 0
Ii−1 for E = 0
Ii−1 + ic for E . 0


 (5a)

where:
ic is a fixed increment, also considered the gain of the binary I-Controller in units of

degrees.
An alternative way of writing Eq. (5a) is:

Ii = Ii−1 − SIGN ψ∗
i−1 −

Δ

2

( )
ic (5b)

where SIGN() is a programming function that determines the sign of a number.
SIGN(x) returns ‘1’ if x is positive, ‘0’ if x=0, and ‘−1’ if x is negative.
The next element in the control loop adds the controller output to the raw

measurement:

ωi = ωmeas,i + Ii (6)
where:
ωi is the corrected rate of rotation [°/s].
Substituting Equation (3) and Equation (5b) in Equation (6) yields:

ωi = ωmeas,i + Ii−1 − icSIGN MOD(ψi−1,Δ) −
Δ

2

( )
(7)

While Equation (7) represents the complete TelOpTrak algorithm in principle, in
practice an additional software component is required, as explained next.

2.4. Low-Pass Filter and De-Lagging. In practice, noise in the gyro signal
substantially reduces the effectiveness of the TelOpTrak algorithm. To alleviate this
problem, it is necessary to apply a low-pass filter to the raw gyro data. This can be
done easily in software:

ω′
i =

ωmeas,iTi + τω′
i−1

Ti + τ
(8)

where:

Ti is the sampling time. T=0·1 s in the TelOpTrak system.
ω′ is the low-pass filtered rate of turn.
τ is the low-pass filter time constant.

We determined experimentally that a low-pass filter with a time constant of τ=200 s
(i.e., a cut-off frequency of fc°=1/τ=0·005 Hz) is effective in our system. However,
such a low cut-off frequency introduces substantial lag. If the low-pass filtered ω was
used to compute heading and subsequently the x-y position, the trajectory would look
overly smooth, and sharp turns would be misrepresented by moderately curving ones.
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To overcome this problem, we make use of the fact that the effect of a digitally
implemented low-pass filter is fully reversible, simply by inverting Equation (8):

ωd,i = ωi + τ
Ti

(ωi − ωi−1) (9)

where ωd,i is the de-lagged rate of turn [°/s].
Figure 2 illustrates the four processing steps in the TelOpTrak algorithm:

1. Apply Eq. (8) to low-pass filter the raw gyro data.
2. Apply the core TelOpTrak algorithm Equation (7), but using the low-pass

filtered ω′ of Equation (8) instead of ωmeas,i.
3. De-lag the computed ωi of Equation (7) by applying Equation (9). After this

step, the resulting ω has no lag and is essentially drift-free at steady state.
4. Additionally, compute the corrected heading, ψi, by rewriting Equation (1):

ψi = ψ0 + ψi−1 + ωd,iTi (10)

where ψ0 – initial heading at the beginning of the drive [°].
Step 4 is needed since ψi−1 is required in Equation (7).
Figure 2 shows a block diagram of the TelOpTrak system. TelOpTrak does not

require mathematical models of the robot, the gyro, or the environment, and it
requires the tuning of only two parameters: τ and ic.
The caveats are:

. The method works only with tele-operated robots driving through mostly
conforming buildings. Conceivably, the method will also work with autonomous
robots that have obstacle avoidance and wall following capabilities, but we did
not test such a configuration.

. Much of the driving must be compliant (i.e., along dominant directions).

When these conditions are not met, then the algorithm with eventually fail by
‘snapping’ to a wrong dominant direction.
TelOpTrak can be used with gyros of different quality levels. The results will differ

only insofar as that with a high-quality gyro, the gain ic can be set to a small value. The
effect is greater robustness in the face of non-compliant driving. In practice, we have
driven our robots non-compliantly for ten minutes and more with a $300 gyro. Indeed,
in one particular implementation of TelOpTrak on a differential-drive robot, we used
no gyro at all. Instead, rate of turn was estimated from the output of the wheel
encoders.

2.5. Additional Refinements – Attenuators. The TelOpTrak method as described
up to this point is fully functional and the experimental results presented in Section 4

Figure 2. Block diagram of the complete TelOpTrak system.
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are based on the implementation as discussed so far. However, depending on the
specifics of the application, it may be desirable to introduce additional refinements. In
this section we discuss some possible refinements and a common mechanism for
implementing them.
Our general approach for refinements makes use of adaptive gain functions. With

these functions, the nominal gain ic is reduced when the system detects certain adverse
conditions. This is accomplished by multiplying ic with so-called attenuators in every
iteration. The attenuators can change between zero and one. If no adverse conditions
exist, then the attenuators are all set to ‘1’, thereby leaving the gain unchanged. If one
of the attenuators is set to ‘0’, then TelOpTrak corrections are effectively suspended
during that interval. For the TelOpTrak system we identified three candidate atten-
uators: (1) the sharp turn attenuator, (2) the speed attenuator, and (3) the absolute
heading difference attenuator.
As an example, we discuss the function of the sharp-turn attenuator. We know for

sure that whenever the robot is turning, TelOpTrak cannot correct heading errors. To
prevent TelOpTrak from ‘correcting’ heading incorrectly while turning, the rate of
turn (ωi) is monitored and attenuated as shown in Figure 3 according to this function:

A1,i = 1
1+ c1|ωi| (11)

where:

c1 is the sharp-turn attenuation constant
A1 is the sharp turn attenuator

It is apparent from Equation (11) that 0°<A141 for all possible rates of turn.
Other functions are possible, as long as they keep A1 between 0 and 1, in some inverse
(but not necessarily linear proportion) to ωi.
Another attenuator that produced some improvements when we tested it is the

speed attenuator, A2. It is proportional (but not necessarily linearly) to the robot’s
speed. The assumption is that the robot is moving relatively fast when driving down a
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Figure 3. One possible profile for the sharp turn attenuator.
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corridor, and relatively slowly when performing an object handling or inspection task.
The speed attenuator can also be implemented as a simple threshold, th2, where A2=0
for speeds below th2 and A2=1 for speeds above th2.
The third candidate attenuator is probably only useful when working with a higher-

end gyro. This so-called ‘heading-difference attenuator’ examines the difference
between the current heading and the nearest dominant direction. The rationale is that
whenever that difference is large (e.g., greater than, say, 20°), it must be because the
robot is indeed not driving along a dominant direction and therefore TelOpTrak
corrections should be reduced or suspended. This is a reasonable approach for high-
end gyros, because true errors with those gyros (provided TelOpTrak is running) will
always remain small. However, with low-quality gyros, drift-induced errors can
indeed be very large, for example, due to extended non-compliant driving. It is
therefore not a good idea to suspend TelOpTrak when the heading difference is large;
that difference may indeed be the result of an error that should be corrected.
Any number of attenuators can be applied by modifying Equation (7):

ωi = ωmeas,i + Ii−1 − A1A2icSIGN MOD(ψi−1,Δ) −
Δ

2

( )
(12)

The ‘cost’ of implementing one or more attenuators is the additional number of
parameters that can be tuned. We found that the benefits provided by the attenuators
was marginal, and therefore we did not use any of them in the final system that
produced the experimental results reported in Section 4.

3. THE EXPERIMENTAL SYSTEM. The TelOpTrak algorithm was
tested on a skid-steer ‘Superdroid’ All Terrain Robot (ATR), instrumented with our
custom-designed control electronics (see Figure 4). The ATR chassis features a welded
aluminium structure with four Direct Current (DC) gear motors, which drive encoder-
equipped wheel axles via roller chains.

Figure 4. Our Superdroid ATR skid-steer robot instrumented for tele-operation.
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The TelOpTrak algorithm runs on an 8-bit microcontroller that is mounted on a
custom Printed Circuit Board (PCB). The PCB accepts encoder feedback from the
front left and right wheel encoders, samples the output of a low-cost MEMS gyro-
scope (Cruizcore XG1010 made by Microinfinity), and interfaces with a 900-MHz
mesh network digi-Xtend serial radio. The microcontroller applies the TelOpTrak
algorithm to the gyro data, and uses encoder data and vehicle-specific parameters
(encoder resolution, effective wheel diameter, etc.) to calculate the TelOpTrak-
corrected position and heading of the robot in real time. This information is trans-
mitted over the serial radio to a laptop where plotting software shows a live trajectory
plot to the operator.
In order to provide tele-operation capability similar to that of small tactical robots

in military and law enforcement use, a forward looking, wide angle, VGA-resolution
Internet Protocol (IP) camera was mounted near the rear of the robot. The mounting
height and angle of the camera give a good view of a vertical arc between the horizon
and the ground approximately 25 cm ahead of the front wheels, which are also in the
field of view to aid the operator in avoiding obstacles. Although they provide relatively
long range, the bandwidth of the serial radios is limited to less than 20 kbps in our
usage, which is inadequate to provide video frame rates for tele-operation. For that
reason we added a high-power 802·11 g WiFi access point to the robot, to transmit the
video from the onboard camera.

4. EXPERIMENTAL RESULTS. We implemented the TelOpTrak algor-
ithm as explained in Section 2 on the Superdroid ATR of Section 3 and performed
six runs under controlled conditions. In the first five runs the robot was driven mostly
in a compliant manner (i.e., driving mostly straight along corridors that intersected
at 90°). However, from run to run we increased the challenges for the TelOpTrak
algorithm by performing more and more intentionally non-compliant manoeuvres.
These manoeuvres included zig-zagging, driving around in tight circles, and avoiding
imaginary or real obstacles. In the sixth run the operator drove entirely non-
compliantly, that is, in completely arbitrary patterns and while avoiding arbitrarily
placed obstructions. In that run the heuristic assumptions were almost never true.
Results of all six runs are shown in Figure 5. In each run the robot started at a

position labelled (0, 0) and at the end of the run stopped at that exact same position.
At the stopping position we compared the computed final position based on
conventional dead-reckoning and based on TelOpTrak with the actual final position
(0, 0). The difference between the two is called the Return Position Error (RPE) and
the RPEs for all six runs are listed in Table 1. The RPE is not a great indicator for
the accuracy of a tracking system since it is quite possible to have large heading
errors but very small RPEs. Therefore, for the more structured Runs #1 through #5
we also constructed ground truth for heading from the known direction of the
corridors. This allows a quantitatively more meaningful comparison of the heading
errors as shown in Table 1. Heading errors were not computed for the non-compliant
Run 6 since no ground truth was available or could be constructed for this
intentionally erratic run.
In all runs the tele-operator controlled the robot remotely and without line of sight,

using only video from the onboard camera for feedback. We emphasize this fact
because under these conditions, tele-operated driving is much more erratic than
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Figure 5. Six runs with TelOpTrak on the Superdroid under controlled conditions. Thin red curves
show the result of conventional dead-reckoning, while thick green lines show the result with
TelOpTrak. Runs varied in duration between 10–14 minutes. Run 6 was performed inside one very
large room and driving was intentionally erratic and arbitrary. Quantitative results for these six
runs are provided in Table 1.
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Table 1. Specifications and results for the six Superdroid runs.

Specifications

Return Position Error (RPE) Average Heading Error

Without TelOpTrak With TelOpTrak

Without
TelOpTrak [°]

With
TelOpTrak [°]

Relative reduction
of heading errors
with TelOpTrakRun #

Total
duration
[min]

Total travel
distance [m]

Absolute
[m]

Relative to
distance

travelled [%]
Absolute

[m]

Relative to
distance

travelled [%]

1 11·9 477 12·3 2·6 2·88 0·60 5·60 1·44 3·9-fold
2 11·4 433 10·4 2·4 4·49 1·04 10·7 1·48 5·9-fold
3 13·4 629 27·5 4·4 3·93 0·62 35·4 2·21 16-fold
4 11·2 497 27·4 5·5 1·58 0·32 28·4 1·81 16-fold
5 10·3 468 12·8 2·7 3·44 0·74 21·0 1·59 13-fold
6 12·0 263 16·2 6·1 16·4 0·60 N/A N/A
Average* 11·6 501 18·1 3·5 3·26 0·64 20·2 1·71 13-fold

* Note: Run 6 is not included in the averages since it was intentionally performed with unrealistic, extremely irregular motion. The intent was to show that even in such
extreme cases, TelOpTrak performance is not worse than performance without TelOpTrak.
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driving with a direct line of sight. Also, the tele-operator had to cope with real
reductions in frame rate that are typical in tele-operated robots once the robot gets
further away from the operator or when the video feedback signal is degraded due to
obstructions. With frame rates as low as one frame per second, turning often resulted
in significant overshoot. Under these conditions, the TelOpTrak system is fully
challenged since some of the driving is zigzagging and otherwise not very straight,
even in straight corridors and when we attempted to drive compliantly.
A more realistic experiment was performed at the 2010 Robotics Rodeo at Fort

Benning, in September 2010. In this run our Superdroid robot was driven inside one
building of a Military Operations on Urban Terrain (MOUT) site. The tele-operator
and the audience were located in a nearby building. The tele-operator simulated a
reconnaissance mission by driving the robot through the corridors and some of the
rooms of the building. Only video from the onboard camera and the TelOpTrak-
generated trajectory plots were available to the operator as feedback.
We note the presence of an audience because the tele-operator was simultaneously

operating the robot and narrating the experiment for the audience, a condition that
resulted in stress and distractions and led to several consequential operator errors. In
the remainder of this section we describe this experiment and the unintended operator
errors in some detail because operator errors are an integral part of tele-operated
systems and they highlight the utility of the TelOpTrak system.
Figure 6 shows four key instances during the demonstration. The developing

trajectory was plotted over a detailed floor plan in Figure 6 to illustrate the accuracy
of the trajectory plot. However, during the actual demonstration, while the trajectory
developed on a large screen in front of the audience and the operator, only the con-
tour of the building (but not the detailed floor plan) was shown as the fixed
background.
After starting, the operator drove the robot to the right, into the first visible

corridor, with the intention of performing a Counter-ClockWise (CCW) surveillance
run on the first floor. Due to the one-second latency of the video feedback, the
operator missed the left turn into the corridor leading CCW and drove instead into the
room in the lower right corner (see Figure 6a). He noticed and turned around, but
when he thought the robot was in the CCW-leading corridor, he was actually driving
back toward the entry door.
The operator noticed his mistake only when he looked at the trajectory plot on the

screen, as shown in Figure 6a. He then turned back and eventually followed the
corridors. When the robot reached the upper left corner of the corridors (Figure 6b),
the operator decided to investigate that area further and steered the robot into a room.
However, seconds after driving into that room the wireless video feedback signal
deteriorated, producing even larger latencies and repeated freezing, until it eventually
blanked out entirely. In order to recover from that complete loss of video feedback
(a condition from which conventional tele-operated robots cannot recover), the
operator decided to backtrack using the TelOpTrak trajectory plot alone for guidance.
Figure 6c shows the robot during the backtrack manoeuver, which eventually led the
robot out of the room.
Once the robot was out of that room and back in the corridors, the video signal was

re-acquired and allowed the operator to drive the robot back to the original starting
point to complete the trip. Figure 6d shows the final state of the trajectory, reflecting
an estimated return position error of about 1·5 metres.
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A video clip, recorded during the demo by a videographer walking behind the robot,
shows the robot during the demo. An animated and synchronized trajectory plot
is shown as well, picture-in-picture style. This and other TelOpTrak video clips are
available at http://mrl.engin.umich.edu/video/RTOD2_2xspeed.wmv.

5. CONCLUSIONS. This paper introduced the TelOpTrak algorithm with
heuristics-enhanced dead-reckoning for precision indoor tracking of tele-operated
robots. TelOpTrak does not rely on GPS or external references; it uses odometry, a
low-cost MEMS-based gyroscope, and heuristic assumptions about the structured
nature of most indoor environments. Features of the environment are not directly
measured by the system; instead they are inferred from the motion of the robot under
the direction of the tele-operator viewing live video from an onboard camera or
cameras.
TelOpTrak is applicable in structured indoor environments, in which much (but not

necessarily all) of the travel occurs along what we call dominant directions. Most
buildings have rectangular footprints, with four dominant directions that are typically
parallel to the outside walls and offset by 90° from each other.

Figure 6. Trajectory plots during different stages of the RTOD2 demo. In order to highlight the
accuracy of the plot, we overlaid the trajectory over the actual floor plan of the building in these
plots. However, during the actual demonstration and to match realistic conditions, the operator’s
screen only showed the contour of the building, but no floor plan details.
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The TelOpTrak algorithm itself is relatively simple. It can be implemented in just a
few lines of program code running either on a mobile robot’s onboard computer or on
a separate low-cost microcontroller.
In buildings or other environments that meet the dominant direction criteria,

TelOpTrak eliminates heading errors caused by gyro drift and other slow-changing
sources of errors, effectively maintaining zero heading errors in drives of unlimited
duration at steady state. As a direct result, TelOpTrak significantly reduces position
errors, as accumulated heading errors are almost always the primary source of
position errors in a dead-reckoning system.
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