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The spectral energetics of a quasilinear (QL) model is studied in uniform shear turbulence.
For the QL approximation, the velocity is decomposed into a mean averaged in the
streamwise direction and the remaining fluctuation. The equations for the mean are
fully considered, while the equations for the fluctuation are linearised around the
mean. The QL model exhibits an energy cascade in the spanwise direction, but this
is mediated by highly anisotropic small-scale motions unlike that in direct numerical
simulation mediated by isotropic motions. In the streamwise direction the energy cascade
is shown to be completely inhibited in the QL model, resulting in highly elevated
spectral energy intensity residing only at the streamwise integral length scales. It is
also found that the streamwise wavenumber spectra of turbulent transport, obtained with
the classical Reynolds decomposition, statistically characterizes the instability of the
linearised fluctuation equations. Further supporting evidence of this claim is presented
by carrying out a numerical experiment, in which the QL model with a single streamwise
Fourier mode is found to generate the strongest turbulence for Lx/Lz = 1 ∼ 3, consistent
with previous findings (Lx and Lz are the streamwise and spanwise computational
domains, respectively). Finally, the QL model is shown to completely ignore the role
of slow pressure in the fluctuations, resulting in a significant damage of pressure-strain
transport at all length scales. This explains the anisotropic turbulence of the QL model
throughout the entire wavenumber space as well as the inhibited nonlinear regeneration of
streamwise vortices in the self-sustaining process.

Key words: turbulence theory

1. Introduction

Finding a reliable and accurate low-dimensional statistical description for a turbulent
flow has been a long-standing challenge for many decades. Despite the highly chaotic and
multiscale nature, one of the increasingly evident features is that at least some features
of energy-containing motions (i.e. coherent structures) in turbulent shear flows appear
to be qualitatively well described by the Navier–Stokes equations linearised around the
mean velocity. One of the best-known approaches of this kind is the ‘rapid distortion
theory’ (Batchelor & Proudman 1954; Hunt & Carruthers 1990), in which the linearised
Navier–Stokes equations are used to predict the evolution of turbulence statistics under a
‘rapidly changing flow environment’ (e.g. flow with high mean shear rate). In principle,
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the rapid distortion theory is supposed to be asymptotically valid only under such a
flow environment. However, many other early studies also showed that linear analyses
provide a qualitatively good description for the dynamics of energy-containing motions
even at moderate mean shear rates. In particular, in free shear flows which often exhibit
an inflectional instability, the classical linear and weakly nonlinear stability theories have
often been adopted as a useful framework for the statistical and dynamical description of
energy-containing motions (see the early review by Ho & Huerre 1984).

In wall-bounded turbulent shear flows, such as Couette, pipe, channel and
boundary-layer flows, linear instability does not arise from the typical mean velocity. This
is true even for laminar base flows at transitional Reynolds numbers, and this was an
important challenge for many early studies on transition to turbulence. In these type of
flows, the evolution of disturbance has therefore been studied by examining the response
of the linearised Navier–Stokes equations to various excitation mechanisms (Schmid &
Henningson 2001; Schmid 2007), such as initial condition (transient growth) (Butler
& Farrell 1993; Trefethen et al. 1993) and deterministic/stochastic forcing (analysis of
resolvent and gramian) (Farrell & Ioannou 1993b; Bamieh & Dahleh 2001; Jovanović &
Bamieh 2005). Over the past two decades there has been growing evidence that suitable
extension of these tools would also provide sound descriptions for the emergence of
energy-containing motions in turbulent flows (e.g. Farrell & Ioannou 1993a; Kim & Lim
2000; del Alamo & Jiménez 2006; Cossu, Pujals & Depardon 2009; Hwang & Cossu
2010a; McKeon & Sharma 2010; Zare, Jovanović & Georgiou 2017).

Despite the progress made by these studies, the linearly stable nature of the mean
velocity in the canonical wall-bounded turbulent flows implies that solely the linearised
Navier–Stokes equations are not able to describe sustaining velocity fluctuations, as the
equations only yield asymptotically trivial solutions in the absence of any external driving
mechanisms. From this perspective, the recent quasilinear-type modelling is an appealing
direction to pursue, as it is designed to incorporate some minimal roles played by the
nonlinearity in the resulting self-sustaining velocity fluctuations. Common to all variations
of this approach is a decomposition of the given flow into two groups: one in which all
nonlinear terms are kept, and the other in which all self-interactions are ignored or suitably
modelled. The resulting equations for the first group are unchanged from the original,
while those for the second become equivalent to a linearisation around the first group with
an additional model (e.g. stochastic forcing).

The earliest work utilising the quasilinear (QL) framework can be found in Malkus
& Chandrasekhar (1954), Malkus (1956) and Herring (1963, 1964, 1966), all of which
ignored the self-interactions in the second group with the ‘marginal stability’ for the
closure of the quasilinear system. The modern approaches share similar ideas with
these early ones, but they take more flexible and delicate approaches for modelling of
the self-interaction term of the second group (e.g. stochastic forcing, eddy viscosity,
etc); for example, stochastic structural stability theory (S3T) (Farrell & Ioannou 2007,
2012), direct statistical simulation (DSS) (Marston, Conover & Tobias 2008; Tobias &
Marston 2013), self-consistent approximations (Mantič-Lugo, Arratia & Gallaire 2014;
Mantič-Lugo & Gallaire 2016), restricted nonlinear model (RNL) (Thomas et al. 2014,
2015; Farrell, Gayme & Ioannou 2017), generalised quasilinear approximations (GQL)
(Marston, Chini & Tobias 2016; Tobias & Marston 2017) and minimal quasilinear
approximation augmented with eddy viscosity (Hwang & Eckhardt 2020).

Of particular interest to the present study is the type of RNL without any
parametric stochastic excitation. This type of quasilinear model was recently applied
to parallel wall-bounded shear flows (Thomas et al. 2014, 2015; Farrell et al. 2016;

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

67
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.678


Spectral energetics of a quasilinear approximation 904 A11-3

Tobias & Marston 2017; Pausch et al. 2019), in which the key dynamics of coherent
structures has been understood in terms of the so-called ‘self-sustaining process’
(Hamilton, Kim & Waleffe 1995; Waleffe 1997). The self-sustaining process is a two-way
interaction between a ‘streamwise elongated’ structure of streamwise velocity (streaks)
and ‘streamwise wavy’ structures of cross-streamwise velocities (waves and rolls). In
the RNL the first group of the flow is a time-dependent mean obtained by streamwise
average and captures the dynamics of the elongated streaks, while the second group is
the remaining fluctuation field depicted by the equations linearised around the first and
provides an approximate description for the waves and rolls. An important feature of
this type of model is that it typically activates only a handful number of streamwise
Fourier modes for self-sustaining velocity fluctuations (Thomas et al. 2015; Farrell et al.
2016; Tobias & Marston 2017), thereby being capable of reducing the computational
cost significantly (Thomas et al. 2015). Furthermore, a judicious choice of the active
streamwise Fourier modes appears to reproduce sound first-order turbulence statistics
(Bretheim, Meneveau & Gayme 2015).

Despite the computationally useful features of this model, it remains elusive what
such a QL description is exactly capable of and to what extent it can be extended to a
turbulent flow especially at high Reynolds numbers, the regime in which highly chaotic
fluid motions nonlinearly and non-locally interact in a very wide range of length and time
scales. For example, at transitional Reynolds numbers, the QL model offers an excellent
description for lower-branch invariant solutions which often sit on the edge of turbulence.
However, it performs rather unsatisfactorily for upper-branch ones and its subsequent
bifurcation cascades (Pausch et al. 2019). At high Reynolds numbers, the growing recent
evidence has consistently supported that wall-bounded shear flows are composed of a
hierarchical organisation of self-similar self-sustaining energy-containing motions, the
size of which varies from viscous inner to outer ones (Townsend 1976; Flores & Jiménez
2010; Hwang & Cossu 2010a,b, 2011; Hwang 2015; Hwang & Bengana 2016; Marusic &
Monty 2019). This feature poses an important challenge especially from the perspective of
QL modelling, because the role of the nonlinearity is expected to be more important at all
the integral length scales in such a high-Reynolds-number regime. Indeed, the streamwise
wavenumber spectra of the QL model reported in Farrell et al. (2016) did not show any
robust linear scaling with the distance from the wall, unlike those in direct numerical
simulations (DNS) (see their figure 1), even if the QL model (RNL940) employs the same
number of the streamwise Fourier modes as DNS.

Given the rather severe nature of the approximations made in the QL models, such
as S3T and RNL, it is somehow natural to expect that their capability would be limited
in certain aspects of the dynamics. However, it is important to point out that, despite the
severeness of the approximation, the QL models very well capture the key dynamics of the
coherent structures (i.e. self-sustaining process) with a degree of freedom much smaller
than that of DNS. This suggests that a considerable amount of the turbulence spectrum
may well be epiphenomena inessential to the underlying dynamics, thereby offering a new
opportunity towards the development of a quantitatively more reliable low-dimensional
description of turbulent flows. In this respect, gaining the fundamental understanding of
such QL models should be the ideal starting point to achieve such a goal. For example, the
QL models can well be improved by incorporating more nonlinearity in a minimal manner
(e.g. a smart utilisation of GQL; Marston et al. 2016; Tobias & Marston 2017). Or it can be
combined with an ad-hoc model to deal with the ignored nonlinear energy transport (e.g.
eddy viscosity model in Hwang & Eckhardt 2020) to keep the small degree of freedom of
the QL models.
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simulation of uniform shear turbulence.

As the first step to achieve this goal, the present study aims to explore spectral energy
transfer of the aformentioned QL model in order to gain the fundamental understanding
of its precise modelling capability. For the purpose of bypassing the difficulty arising
from the existence of multiple integral length scales in typical high-Reynolds-number
wall-bounded turbulent flows, here we consider uniform shear turbulence where only
single integral length scale is retained by prescribing the size of the computational domain.
Furthermore, uniform shear turbulence has been understood to have a self-sustaining
process fairly similar to the one in wall-bounded turbulence (Sekimoto, Dong & Jiménez
2016; Yang, Willis & Hwang 2018). This feature will therefore enable us to fully examine
the capability of the QL model for the description of the flow with a self-sustaining process
at a single integral length scale and the resulting energy cascade, before studying the flows
with multiple integral length scales.

The paper is organized as follows. The QL model is introduced in § 2, where its spectral
energy budget is formulated. In § 3 the statistics and spectra of the QL model for uniform
shear turbulence are compared to DNS. The energy-budget and pressure-strain spectra are
also presented here with a further analysis to explain the statistical features of the QL
model. The paper concludes in § 4 with some remarks towards the improvement of the QL
model analysed in the present study.

2. Problem formulation

2.1. Quasilinear approximation
We consider a turbulent flow under a uniform mean shear where the density and kinematic
viscosity of the fluid are given by ρ and ν, respectively. The time is denoted by t and the
space is denoted by x = (x, y, z), with x , y and z being the streamwise, transverse and
spanwise directions, respectively. The QL approximation in the present study is identical
to the RNL (Thomas et al. 2014, 2015; Farrell et al. 2017; Pausch et al. 2019): the flow field
is decomposed into a streamwise mean and the remaining fluctuation, the former of which
is solved by considering the full nonlinear equations whereas the latter is obtained from
the linearised equations around the former. The velocity is decomposed into a streamwise
averaged and the remaining component, i.e.

u = Um + ur (2.1)
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with Um = 〈u〉x , where 〈·〉x indicates the streamwise average. Following Pausch et al.
(2019) we now introduce two projection operators which can decompose any flow variables
into the streamwise-averaged part and the remaining one. The projection operators are
defined as

Pm[u] ≡ 〈u〉x = Um, Pr[u] ≡ u − 〈u〉x = ur. (2.2a,b)

By the definition, the two projection operators satisfy the following properties:

Pm[·] + Pr[·] = I[·], (2.3a)

Pm[Pm[·]] = Pm[·], Pr[Pr[·]] = Pr[·], (2.3b)

Pm[Pr[·]] = Pr[Pm[·]] = 0. (2.3c)

Here I[·] is the identity operator. Also, for the particular projections defined in (2.2a,b),
they satisfy another useful property:

Pi[Pm[·] Pj[·]] = Pm[·] Pi[Pj[·]] (2.3d)

for i, j = m, r. Finally, we note that the projection operators are linear, implying that their
application to linear terms does not yield any change in their original form.

Using the definition and the properties listed in (2.2a,b) and (2.3), the Navier–Stokes
equations are first projected onto the Pm and Pr subspaces. The subsequent linearisation
of the equations for ur about Um leads to the QL system of interest in the present study,
i.e.

∂Um

∂t
+ (Um · ∇yz)Um = − 1

ρ
∇yzPm + ν∇2

yzUm − Pm [(ur · ∇) ur] (2.4a)

with ∇yz ≡ (0, ∂y, ∂z), and

∂ur

∂t
+ (Um · ∇) ur + (ur · ∇) Um = − 1

ρ
∇pr + ν∇2ur, (2.4b)

where Pm and pr are defined to enforce ∇yz · Um = 0 and ∇ · ur = 0, respectively, with
p = Pm + pr. We note that, as discussed in Pausch et al. (2019), the QL approximation
made here does not damage the energy-conservative nature of the nonlinear terms in the
Navier–Stokes equations (see also § 2.3).

The QL approximation introduced here is evidently one of the many possible. However,
this particular QL approximation offers a minimal way to generate self-sustaining
turbulence in parallel shear flow without an instability of mean flow, because (2.4a) cannot
generate a turbulent solution without its last term on the right-hand side. Furthermore,
(2.4) also provides a sound physical description for the so-called ‘self-sustaining process’
(e.g. Waleffe 1997), the two-way interaction between ‘streamwise elongated’ velocity
structures (streaks/rolls) and ‘streamwise wavy’ structures (waves). Indeed, (2.4a) is
designed to describe the dynamics of streaks and rolls, while (2.4b) depicts that of waves
originating from an instability of (2.4a). This particular QL approximation has therefore
been of primary interest in many previous studies (e.g. Farrell & Ioannou 2012; Thomas
et al. 2014; Farrell et al. 2016; Pausch et al. 2019). In the present study we shall also focus
on this particular QL approximation, and we will leave the study of more generalised
variants (e.g. Marston et al. 2016) for future work.

Lastly, it should be pointed out that the QL approximation needs to be distinguished
from ‘truncation’ for the resolution of a given simulation. The truncation does not
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simply provide enough degrees of freedom for the given system, while keeping
the nonlinear self-interaction term, such as the one with Pr in (2.8b). For this reason,
the resulting low-dimensional system obtained by the truncation is contaminated by the
related numerical error. In contrast, the QL approximation linearises the equations for
the motions of less interest. By doing so, a degree of freedom smaller than that of
DNS is spontaneously obtained, resulting in a resolution-independent low-dimensional
description of the given flow (see also § 3 for this feature). In this respect, it is finally worth
mentioning some previous studies which utilised a ‘minimal streamwise unit’ (e.g. Toh &
Itano 2005; Abe, Antonia & Toh 2018). The minimal streamwise unit approach is neither
a truncation nor a QL approximation. It utilises the full resolution with a unrealistically
short streamwise domain for its own purpose, while keeping the nonlinearity.

2.2. Reynolds decomposition
To analyse the turbulence statistics of the given QL system and the original system, here
we start by considering the Reynolds decomposition of the velocity u = (u, v, w) with the
full Navier–Stokes equations

u = U + u′, (2.5)

in which U (≡ 〈u〉x,z,t) = (U( y), 0, 0) is the mean velocity with 〈·〉x,z,t being an average
in t-, x- and z-directions. The equation for the mean streamwise velocity is then given by

ν
dU
dy

− 〈u′v′〉x,z,t = τ0

ρ
, (2.6a)

where τ0 is the applied total shear stress and 〈u′v′〉x,z,t the Reynolds shear stress per unit
density. The equations for turbulent fluctuations are obtained by taking the remaining part
of the momentum equations:

∂u′

∂t
+ (U · ∇) u′ + (u′ · ∇) U = − 1

ρ
∇p′ + ν∇2u′ − (u′ · ∇) u′. (2.6b)

Here, we note that the Reynolds shear-stress term in (2.6a) does not appear in (2.6b)
because it is spatially uniform in uniform shear turbulence.

For the QL approximation to (2.6b), the turbulent velocity fluctuation is further
decomposed into a streamwise averaged and the remaining component (2.1):

u′ = um + ur (2.7)

with um = 〈u′〉x . Using the definition and the properties listed in (2.2a,b) and (2.3), the
projection of the equations for turbulent fluctuation onto the Pm and Pr subspaces leads to
the momentum equations

∂um

∂t
+ (um · ∇yz) U = − 1

ρ
∇yzpm + ν∇2

yzum − (um · ∇yz) um − Pm [(ur · ∇) ur] (2.8a)

with ∇yz ≡ (0, ∂y, ∂z), and

∂ur

∂t
+ (Um · ∇) ur + (ur · ∇) Um = − 1

ρ
∇pr + ν∇2ur − Pr [(ur · ∇) ur], (2.8b)

where Um = U + um, and pm and pr are defined to enforce ∇yz · um = 0 and ∇ · ur = 0,
respectively, with p′ = pm + pr. For the QL approximation to be examined in the present
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study, the self-interaction term Pr [(ur · ∇) ur] in (2.8b) will be ignored. We also note that
the sum of the equation obtained by differentiating (2.6a) in the y-direction, (2.8a) and
(2.8b) without its last self-interaction term yields (2.4).

2.3. Spectral energetics
To study the effect of the QL approximation on the energetics of the given flow, let us first
consider the mean equation in (2.6a). We note that every term in this equation is constant
in uniform shear flow, enabling us to take a further average in the transverse direction.
Multiplication of (2.6a) by dU/dy and its rearrangement then lead to the following
equation for the mean energetics:

I − ν

(
dU
dy

)2

+ 〈u′v′〉x,y,z,t
dU
dy

= 0, where I ≡ τ0

ρ

dU
dy

. (2.9)

Equation (2.9) suggests that the energy input to the flow originates from the applied
shear stress τ0, and it is balanced with mean dissipation (the second term) and turbulent
kinetic-energy (TKE) production (the third term). Hence, the latter TKE production term
becomes the source term in the TKE equation (Tennekes & Lumley 1967).

In the present study the TKE equation is considered in the streamwise/spanwise
Fourier space, so that the inter-scale energy transfer can be studied. For this purpose,
one-dimensional Fourier-mode decomposition for the turbulent velocity fluctuations is
introduced, i.e.

u′
j(t, r) =

∫ ∞

−∞
û′

j(t, k)eikr dk (2.10)

for j = 1, 2, 3, where ·̂ denotes the Fourier-transformed coefficient,
(
u′

1, u′
2, u′

3

) =
(u′, v′, w′), r (= x or z) is the streamwise or spanwise coordinate, and k (= kx or kz)
the corresponding wavenumber. We then take the Fourier transformation (2.10) to (2.6b),
and multiply it by the complex conjugate of û′

i(k). Since the statistics of uniform shear
turbulence should be invariant under the translation in the transverse direction, taking
an average in time, transverse direction and the planar direction along which the Fourier
transform is not taken (denoted by r⊥) yields〈

Re
{
−û′(k)v̂′(k)

dU
dy

}〉
r⊥,y,t︸ ︷︷ ︸

P̂(k)

+
〈
−ν

∂ û′
i(k)

∂xj

∂ û′
i(k)

∂xj

〉
r⊥,y,t︸ ︷︷ ︸

ε̂(k)

+
〈
Re

{
−û′

i(k)
(

∂

∂xj

(
û′

iu
′
j(k) − Pr

[
̂u′

r,iu
′
r,j(k)

]))}〉
r⊥,y,t︸ ︷︷ ︸

T̂(k)

= 0, (2.11)

where (x1, x2, x3) = (x, y, z), the overbar indicates the complex conjugate and Re{ · }
the real part. The terms on the right-hand side are the rate of turbulence production,
P̂(k), viscous dissipation, ε̂(k), and (nonlinear) turbulent energy transport, T̂(k), at a
given wavenumber, respectively. Here, we note that the term with Pr in T̂(k) appears
when the last term on the right-hand side of (2.8b) is ignored, indicating that the
given QL approximation directly damages turbulent energy transport. Furthermore, since
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904 A11-8 C. G. Hernández and Y. Hwang∫ ∞
0 T̂(k)dk = 0, the exact statistical balance between the production and dissipation of

TKE is obtained for both of the full and QL systems through (2.11), i.e.

P + ε = 0, (2.12a)

where

P = 2
∫ ∞

0
P̂ (k) dk and ε = 2

∫ ∞

0
ε̂ (k) dk. (2.12b)

Finally, P = −〈u′v′〉x,y,z,t dU/ dy is retrieved from (2.12b), forming a complete energy
balance through the mean and fluctuation equations through (2.9) and (2.12).

Equation (2.11) can be further split into each component for the componentwise TKE
budget,

0 = P̂(k) +
〈

Re

{
p̂′(k)
ρ

∂ û′(k)
∂x

}〉
r⊥,y,t︸ ︷︷ ︸

Π̂x (k)

+
〈
−ν

∂ û′(k)
∂xj

∂ û′(k)
∂xj

〉
r⊥,y,t︸ ︷︷ ︸

ε̂x (k)〈
Re

{
−û′(k)

(
∂

∂xj

(
û′u′

j(k) − Pr

[
̂u′

ru
′
r,j(k)

])) }〉
r⊥,y,t︸ ︷︷ ︸

T̂x (k)

, (2.13a)

0 =
〈

Re

{
p̂′(k)
ρ

∂v̂′(k)
∂y

}〉
r⊥,y,t︸ ︷︷ ︸

Π̂y(k)

+
〈
−ν

∂v̂′(k)
∂xj

∂v̂′(k)
∂xj

〉
r⊥,y,t︸ ︷︷ ︸

ε̂y(k)

+
〈
Re

{
−v̂′(k)

(
∂

∂xj

(
v̂′u′

j(k) − Pr

[
̂v′

ru
′
r,j(k)

]))}〉
r⊥,y,t︸ ︷︷ ︸

T̂y(k)

, (2.13b)

0 =
〈

Re

{
p̂′(k)
ρ

∂ŵ′(k)
∂z

}〉
r⊥,y,t︸ ︷︷ ︸

Π̂z(k)

+
〈
−ν

∂ŵ′(k)
∂xj

∂ŵ′(k)
∂xj

〉
r⊥,y,t︸ ︷︷ ︸

ε̂z(k)

+
〈
Re

{
−ŵ′(k)

(
∂

∂xj

(
ŵ′u′

j(k) − Pr

[
̂w′

ru
′
r,j(k)

])) }〉
r⊥,y,t︸ ︷︷ ︸

T̂z(k)

, (2.13c)

where Π̂x , Π̂y and Π̂z are one-dimensional spectra of the streamwise, wall-normal and
spanwise components of pressure strain, respectively. We note that the pressure-strain
terms do not appear in (2.11) because the continuity equation gives

Π̂x(k) + Π̂y(k) + Π̂z(k) = 0. (2.14)

The relation above is of crucial importance, as it indicates that the pressure-strain terms
would play an important role in the TKE distribution to the individual velocity components
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through continuity. It is evident that the turbulent production only takes place in (2.13a),
but not in (2.13b) nor in (2.13c). In wall-bounded turbulent flows the pressure-strain terms
have indeed been found to play the primary role in the distribution of the TKE produced at
the streamwise component to the others (Cho, Hwang & Choi 2018; Lee & Moser 2019).
In particular, if the isotropy of fluid motions at dissipation scale is assumed (Kolmogorov
1941), the pressure-strain terms must mediate the conversion of highly anisotropic large
scale into isotropic small scale during energy cascade.

2.4. Numerical simulations
The equations in the present study are made dimensionless with the shear stress imposed
τ0 and the kinematic viscosity ν. Using the resulting velocity and length scales respectively
given by uτ = √

τ0/ρ and η = ν/uτ , the mean-momentum equation is obtained as

dU∗

dy∗ − 〈u′∗v′∗〉x,z,t = 1, (2.15a)

and the fluctuations equations are

∂u′∗

∂t∗
+ (U∗ · ∇∗) u′∗ + (u′∗ · ∇∗) U∗ = −∇∗p′∗ + ∇∗2u′∗ − (u′∗ · ∇∗) u′∗, (2.15b)

where the superscript ∗ denotes the resulting dimensionless variables. We note that the
viscous terms in (2.15a) and (2.15b) turn out to be order of unity, implying that uτ and
η correspond to the Kolmogorov velocity and length scales, respectively (for a detailed
discussion, see also Yang et al. 2018). The velocity and the length scales of the largest
eddies admitted are given by 
U∗ = L∗

z and L∗
z in the Kolmogorov units, where 
U would

indicate the difference in the mean velocity over the characteristic large-eddy size Lz in the
transverse direction. From this, it is not difficult to realize that L∗

z is a Reynolds number
Reτ,Lz(= L∗

z ) ≡ uτ Lz/ν which characterizes the separation between the largest and smallest
length scales in the flow.

Direct numerical simulations and simulations of the QL model for uniform shear
turbulence are carried out following the recent approach of Yang et al. (2018). Figure 1
shows a schematic diagram explaining how uniform shear flow is simulated in the present
study. A simulation is first set up for plane Couette flow where the two parallel sliding walls
with the velocity ±U0 are located at y = ±Ly/2, respectively. The spanwise domain of the
simulation is then designed to be highly restricted, such that the size of the largest eddies in
the bulk region is determined by the spanwise domain size Lz. This approach is similar to
the minimal-flow-unit approach used to isolate the near-wall dynamics in pressure-driven
channel flow (Jiménez & Moin 1991; Hwang 2013). However, in this case where the
laminar base flow is uniform shear, the equations of motion are exactly identical to (2.6).
As such, the bulk region of the flow in effect simulates a uniform shear flow (Yang et al.
2018) – note that the influence of the near-wall structures should remain to be confined
only in the near-wall region, the relevant thickness of which would be at best O(Lz). With
this simulation set-up, the statistics of uniform shear turbulence can now be sampled from
the bulk region of the flow where the effect of the two solid walls becomes negligible (i.e.
y ∈ [−Ly/2 + δy, Ly/2 − δy] in figure 1; see also figure 2 where the bulk region indeed
exhibits uniform shear and velocity fluctuations). Finally, the simulations with a highly
restricted spanwise domain can contain a non-physical box-size-related two-dimensional
motion resolved by zero spanwise wavenumber, especially if the streamwise domain size is
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FIGURE 2. First- and second-order turbulence statistics (L-DNS) for y∗ ∈ [0, L∗
y/2]. Here, the

sampling domain is delimited by the solid vertical line separating the bulk from the near-wall
region. (a) U∗( y∗). (b) u∗

rms, v∗
rms and w∗

rms.

Case Re Reτ,Lz Reλ L∗
x L∗

y 
∗
x 
∗

z Nx,F Ny × Nz δ∗
y

L-DNS 33 333 136 29 407 1360 11.3 5.7 18 497 × 36 76
L-QL-FULL 33 333 178 48 534 1780 14.8 7.4 18 497 × 36 101
L-QL-NX4 33 333 185 49 554 1850 277 7.7 1 497 × 36 78
L-QL-NX16 33 333 177 48 532 1770 53.2 7.4 5 497 × 36 74
L-QL-NX32 33 333 178 48 534 1780 25.4 7.4 10 497 × 36 75
L-QL-NX48 33 333 178 48 533 1780 16.6 7.4 16 497 × 36 77

H-DNS 25 000 514 63 1542 1714 14.3 5.7 54 497 × 108 257
H-QL-FULL 25 000 617 108 1852 2056 17.1 8.6 54 497 × 108 308
H-QL-NX4 25 000 580 103 1739 1932 869 8.1 1 497 × 108 289
H-QL-NX16 25 000 628 108 1883 2094 188 8.7 5 497 × 108 313
H-QL-NX32 25 000 626 112 1877 2086 89 8.7 10 497 × 108 312
H-QL-NX48 25 000 629 111 1888 2096 59 8.7 16 497 × 108 314

TABLE 1. Simulation parameters in the present study. We denote by L∗
x , L∗

y and L∗
z the domain

size in the x-, y- and z directions in the Kolmogorov unit, respectively. Here, Re = U0Ly/(2ν),
Reτ,Lz = L∗

z and Reλ is the Reynolds number based on the Taylor microscale. The grid spacings
in the x- and z-directions are 
∗

x and 
∗
z (after aliasing). The number of the positive-wavenumber

streamwise Fourier modes is denoted by Nx,F , and the number of streamwise grid points is given
by Nx = 2Nx,F + 1. The number of grid points in the y- and z-directions are denoted by Ny and
Nz, respectively.

very long (Hwang 2013). This motion is eliminated using the filtering approach proposed
by Hwang (2013).

The numerical solver used in this investigation is Diablo (Bewley 2014), the use
of which has been verified by a number of previous studies (e.g. Yang et al. 2018;
Doohan, Willis & Hwang 2019). In this solver the streamwise and spanwise directions are
discretized using Fourier series with 2/3 rule for dealiasing, and the wall-normal direction
is discretized using the second-order central difference. The time integration is conducted
semi-implicitly based on the fractional-step method (Kim & Moin 1985). All the viscous
terms are implicitly advanced with a second-order Crank–Nicolson method, while the rest
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of the nonlinear advection terms are explicitly integrated with a low-storage third-order
Runge–Kutta method.

Table 1 summarizes the parameters for the simulations performed in this study. Two sets
of Reynolds numbers are considered: Reτ,Lz 
 136 and 514 based on the direct numerical
simulation results (see the cases of L-DNS and H-DNS in table 1). The domains size
of the low-Reynolds-number case (L) is similar to that of the typical minimal unit for
near-wall turbulence (Jiménez & Moin 1991), where the dynamics of the large eddies
is well described by the so-called self-sustaining process (Hamilton et al. 1995; Yang
et al. 2018). In this case, due to the low Reynolds number considered, the simulation
exhibits very little energy cascade for dissipation. On the other hand, the high-Reynolds
number case (H) is set to contain a non-negligible extent of energy cascade for turbulent
dissipation, so that the effect of QL approximation on the cascade can be examined. For
each Reynolds-number case, the number of streamwise Fourier modes used in the QL
approximation is also varied from the minimal (Nx,F = 1, where Nx,F is the number of
positive-wavenumber streamwise Fourier modes) to the maximal number, the latter of
which corresponds to that of DNS. Finally, the aspect ratio of the streamwise domain to
the spanwise one is chosen to be Lx/Lz = 3, in line with the previous investigation of
Sekimoto et al. (2016).

3. Results and discussion

3.1. Turbulence statistics and spectra
We first consider the set of DNS and the corresponding QL counterparts for the two
Reynolds numbers, while maintaining the same Re (see table 1). For both of the
Reynolds numbers, the QL model exhibits elevation of Reτ,Lz irrespective of the number
of streamwise Fourier modes Nx,F, indicating that τ0 applied through the Couette flow is
increased by applying the QL approximation. From (2.9), this implies that the energy input
given to the flow is increased by the QL approximation, also explaining the increased Reλ
for all the simulations of the QL model. If the flow in the QL model is more turbulent,
the contribution of the Reynolds shear-stress term in (2.15a) should also increase. This
is indeed seen in the Reynolds shear stress of the QL model, as shown in table 2.
Consequently, dU∗/dy∗ is decreased from the mean equation (2.15a).

The QL model is also found to generate more anisotropic velocity fluctuations. In
particular, u∗

rms and v∗
rms are increased in the QL model regardless of the Nx,F considered,

whereas w∗
rms is decreased (see table 2). This behaviour is a little different from that

observed in wall-bounded shear flows (e.g. Thomas et al. 2014; Farrell et al. 2016), where
only u∗

rms is increased by the QL approximation while the others are decreased. While
this points to some non-negligible differences between uniform shear and wall-bounded
shear flows, the present QL model also generates a turbulent fluctuation more skewed to
the streamwise component (see also § 3.3 for a further discussion). Finally, the QL model
exhibits one-point turbulence statistics well converged for Nx,F ≥ 5 (see table 2). This
implies that only a reasonably small number of the streamwise Fourier modes are active in
the QL model, consistent with the previous observations made in wall-bounded flows (e.g.
Thomas et al. 2014, 2015; Farrell et al. 2016; Tobias & Marston 2017) (see also figure 5).

Figure 3 compares premultiplied spanwise wavenumber spectra of Reynolds
stress of DNS (H-DNS) with those of the QL simulation with full streamwise
resolution (H-QL-FULL) in the high-Reynolds-number case. The spectra of the
low-Reynolds-number case are found to show qualitative similitude to the high-Reynolds-
number ones. Therefore, they will not be presented hereafter to avoid any
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Simulation dU∗/dy∗ −〈u′∗v′∗〉x,y,z,t u∗
rms v∗

rms w∗
rms S∗

L-DNS 0.055 0.95 1.6 0.97 1.3 5.5
L-QL-FULL 0.027 0.98 1.75 1.35 1.1 6.2
L-QL-NX4 0.025 0.97 1.75 1.37 0.99 6.1
L-QL-NX16 0.028 0.95 1.75 1.36 1.1 5.3
L-QL-NX32 0.028 0.97 1.75 1.36 1.1 5.2
L-QL-NX48 0.029 0.96 1.75 1.39 1.1 6.5

H-DNS 0.017 0.99 1.72 1.15 1.42 6.4
H-QL-FULL 0.007 0.99 1.80 1.35 1.30 6.8
H-QL-NX4 0.007 0.99 1.9 1.35 1.1 6.7
H-QL-NX16 0.006 0.99 1.75 1.35 1.25 6.5
H-QL-NX32 0.006 0.99 1.81 1.35 1.25 6.7
H-QL-NX48 0.006 0.99 1.80 1.35 1.25 6.6

TABLE 2. One-point turbulence statistics. Here, S∗(≡ dU/dyq2/|ε|) is the Corrsin shear
parameter (Corrsin 1958), where S = dU/dy, q2 = u2

rms + v2
rms + w2

rms and ε is given in (2.12a).

unnecessary repetitions. We note that the area below in each premultiplied spectrum
approximately represents the energy contained by each component of the Reynolds stress,
showing consistency with the one-point statistics reported in table 2 (note that the discrete
spectra shown in figure 3 do not include the energy contained by kz = 0 mode). It
appears that the QL model shows an increased spectral energy of all the Reynolds stress
components at large scale (kzLz > 10). However, at high spanwise wavenumbers, the
spectra of the QL model fall off more rapidly than those of DNS.

Figure 4 shows the same spanwise wavenumber spectra of DNS and the QL model in
logarithmic units. All the Reynolds normal-stress spectra of DNS (figure 4a–c) exhibit
a relatively short range of the typical inertial subrange spectra, featured with the −5/3
law, up to kzLz ≈ 50 (Kolmogorov 1941). The Reynolds shear-stress spectra also follows
the −7/3 law (solid lines in figure 4d) (Lumley 1967; Saddoughi & Veeravalli 1994).
For kzLz > 50, the spectra of DNS show that small-scale turbulence is close to isotropic
(Kolmogorov 1941); for example, at kzLz = 102, Φ∗

uu 
 10−2, Φ∗
vv 
 10−2, Φ∗

ww 
 10−3

and −Φ∗
uv 
 10−4. This is in sharp contrast to the spectra of the QL model. First of

all, regardless of the number of streamwise Fourier modes (Nx,F) considered, all the
Reynolds normal-stress spectra of the QL model decay faster than those of DNS with
kz (figure 4a–c). In particular, the decay of the transverse and spanwise components of
the spectra (figure 4b,c) appears to be much more drastic than that of the streamwise
counterpart (figure 4a). While it is unclear whether the spectra of the Reynolds normal
stresses from the QL model would still obey the −5/3 law due to the relatively low
Reynolds numbers considered in the present study, the turbulence at small scale is
evidently no more isotropic. Indeed, for the QL model with sufficiently large streamwise
resolution (Nx,F > 16), Φ∗

uu 
 10−3, Φ∗
vv 
 10−4, Φ∗

ww 
 10−5 and −Φ∗
uv 
 10−4. This

suggests that the QL approximation destroys the main statistical features of energy cascade
and dissipation in a turbulent flow, although it still allows for nonlinear energy transport in
the spanwise wavenumber space via the self-interacting nonlinear term in (2.8a) (i.e. the
third term on the right-hand side).

The premultiplied streamwise wavenumber spectra of Reynolds stresses are
shown in figure 5 for DNS (H-DNS) and the QL model with full streamwise
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FIGURE 3. Premultiplied spanwise wavenumber spectra of Reynolds stresses of DNS (H-DNS)
and the QL model (H-QL-FULL). (a) kzLzΦ
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∗
vv(kzLz). (c) kzLzΦ

∗
ww(kzLz).

(d) −kzLzΦ
∗
uv(kzLz).

resolution (H-QL-FULL). As reported in previous studies (Thomas et al. 2014, 2015;
Farrell et al. 2016; Tobias & Marston 2017), the energy in the spectra is retained within a
highly limited range of streamwise wavenumbers (kx Lz � 11 in figure 5). We note that the
primary role of the self-interacting nonlinear term in the present QL approximation (i.e.
the last term in (2.8b)) lies in the coupling between streamwise Fourier modes of (2.8b).
Therefore, this is a direct consequence of the removal of the related turbulent energy
transport (i.e. energy cascade) in the streamwise wavenumber space, as will be directly
shown in § 3.2. Lastly, the spectral intensity of the QL model is found to be much higher
than that of DNS. This feature also appears in previous studies (e.g. Thomas et al. 2014;
Farrell et al. 2016; Marston et al. 2016; Tobias & Marston 2017). In particular, in Zonal
jets, Marston et al. (2016) pointed out that this is due to the absence of ‘eddy scattering’.
Indeed, a reason for the elevation of spectral energy intensity would be the absence of the
streamwise energy cascade in the QL model: the TKE in the QL model must be retained
only within a small range of streamwise wavenumbers, as it maintains roughly the same
level of TKE as DNS (see table 2). However, it should also be pointed out that the mean
and the fluctuations are mutually connected in a way that when the dynamics is perturbed
by the removal of some nonlinearity, the turbulence adjusts to a new statistical equilibrium.
Therefore, care also needs to be taken for interpretation of this feature.

Finally, the premultiplied streamwise and spanwise wavenumber spectra of the pressure
are shown in figure 6 for the DNS and QL model with full streamwise resolution. The
streamwise spectra show the disruption of the nonlinear transport in that direction when

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

67
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.678


904 A11-14 C. G. Hernández and Y. Hwang

100

10–5 H-DNS
H-QL-FULL
H-QL-NX4

H-QL-NX16

H-QL-NX32

H-QL-NX48

–5/3 –5/3

–5/3 –7/3

10–10

100

10–5

10–10

100

101 102 101 102

101 102 101 102

10–5

10–10

100

10–5

10–10

kz Lz kz Lz

Φ
∗ uu

Φ
∗ w

w

Φ
∗ v
v

–Φ
∗ uv

(a) (b)

(c) (d )

FIGURE 4. Spanwise wavenumber spectra of Reynolds stresses of DNS (H-DNS) and the QL
model for several different streamwise resolutions (see table 1). (a) Φ∗

uu(kzLz). (b) Φ∗
vv(kzLz).

(c) Φ∗
ww(kzLz). (d) −Φ∗

uv(kzLz).

the QL model is applied. In this case, the spanwise spectra of the QL model are below
those of the DNS for the whole spanwise domain, featuring a quick decay as previously
found for the spectra of the Reynolds stresses.

3.2. Spectral energy transfer
Now we study the spectral energy transfer in both DNS and the QL model. Given the
perfect balance between production and dissipation in both DNS and QL simulations
shown in (2.12), the spectral energy density of each term in (2.11) is expected to be
dependent of the rate of production of each simulation, yielding a difficulty to make a
fair comparison of one case to another in regards to how the TKE produced by mean
shear is distributed. For this reason, here we consider the spectral energy budget per
unit mean shear instead, i.e. P̂(k)/(dU/dy), T̂(k)/(dU/dy) and ε̂(k)/(dU/dy). By doing
so, the inner-scaled turbulence production per unit mean shear is now controlled to be
P∗/(dU∗/dy∗) = 0.99 for all the simulations carried out at high Reynolds number (see
table 2).

The premultiplied one-dimensional spanwise wavenumber spectra of the production,
turbulent transport and dissipation per unit mean shear from DNS and the QL model are
plotted in figure 7. At first glance, all the plots appear to show a qualitatively similar
behaviour: production takes place at large scales (kzLz � 20) and this energy appears to
be transferred almost equally to turbulent transport and viscous dissipation, the latter

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

67
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.678


Spectral energetics of a quasilinear approximation 904 A11-15

2.0 1.0

0.8

0.6

0.4

0.2

0

1.5

1.0

0.5

0

1.2 0.5

0.4

0.3

0.2

0.1

0

1.0

0.8

0.6

0.4

0.2

0

k xL
zΦ

∗ uu

k xL
zΦ

∗ v
v

k xL
zΦ

∗ w
w

–
k xL

zΦ
∗ uv

H-DNS
H-QL-FULL

101 102

kx Lz

101 102

101 102 101 102

kx Lz

(a) (b)

(c) (d)

FIGURE 5. Premultiplied streamwise wavenumber spectra of Reynolds stresses.
(a) kx LzΦ

∗
uu(kx Lz). (b) kx LzΦ

∗
vv(kx Lz). (c) kx LzΦ

∗
ww(kx Lz). (d) −kx LzΦ

∗
uv(kx Lz).

2.0

(a) (b)

2.5

2.0

1.5

1.0

0.5

1.5

1.0

0.5

101 102

kz Lz

101 102

kx Lz

k zL
zΦ

∗ pp

k xL
zΦ

∗ pp

H-DNS
H-QL-FULL
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phenomenon of which is presumably due to the still relatively low Reynolds number
considered in the present study. At small scales (kzLz � 50), the production becomes
negligible and the other two terms balance each other with the turbulent transport term
being positive. The spectra of the H-QL-NX4 case (Nx,F = 1) also appear to agree
reasonably well with those of the H-QL-FULL case (Nx,F = 54) – in fact, the spanwise
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FIGURE 7. Premultiplied streamwise wavenumber spectra of energy budget per unit mean
shear: (a) H-DNS; (b) H-QL-FULL; (c) H-QL-NX4; (d) H-QL-NX16.

energy-budget spectra of the QL model remain almost identical as long as Nx,F ≥ 5 (see
figure 7b,c), consistent with the turbulence statistics reported in table 2.

Closer scrutiny of the data, however, reveals that there are also subtle but important
differences between the spectra of DNS and the QL model. In particular, the turbulent
transport spectra of DNS span a wider range of spanwise wavenumber than those of the
QL model. Indeed, the turbulent transport spectra of H-DNS reach zero at kzLz 
 200
(figure 7a), whereas those of H-QL-FULL do the same only at kzLz 
 100 (figure 7b). This
is consistent with the Reynolds stress spectra in figure 4, where the spectral intensities at
high spanwise wavenumber of the QL model are shown to be considerably smaller than
those of DNS. For the same reason, the dissipation spectra of DNS also span a wider range
of spanwise wavenumber than those of the QL model. Here, it should be stressed that all
these observations on turbulent transport and dissipation spectra are not due to different
production of the QL model. In fact, the QL model yields production larger than DNS
as the application of the QL approximation has been found to elevate τ0 for a fixed Re
(see (2.9) and table 2). In DNS this would rather have increased the wavenumber range of
turbulent transport spectra.

The premultiplied streamwise wavenumber spectra of the energy budget per unit mean
shear are shown in figure 8. While the spectra of DNS show the typical features of energy
cascade and turbulent dissipation observed in figure 7 (figure 8a), the QL model does not
develop such features even with the streamwise resolution used in DNS (figure 8b). In
particular, both turbulent transport and dissipation spectra are highly localised within the
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wavenumber space where turbulence production is active kx Lz � 1 (figure 8b), explaining
why the localisation of the streamwise wavenumber spectra of Reynolds stresses for
kx Lz � 1 in figure 5. Given the linear nature of (2.8b), it is not surprising to see the
significantly damaged energy cascade in the streamwise wavenumber space. However, it
should also be pointed out that there is still a non-negligible number of wavenumbers
actively involved in the spectral TKE balance; for example, in the case of H-QL-FULL,
there are still approximately five streamwise Fourier modes highly active, and they form
the spectral TKE balance in the streamwise wavenumber space. Furthermore, the nonlinear
turbulent transport is not completely inactive in the streamwise wavenumber space.

To understand these features, we examine the spectral energy budget of (2.8b). We take
the streamwise Fourier transform to (2.8b) and subsequently multiply it by the complex
conjugate of ûr,i. Taking average in time and the transverse and spanwise directions gives

〈
Re

{
−¯̂ur,i(kx)ûr,j(kx)

∂Um,i

∂xj

}〉
y,z,t︸ ︷︷ ︸

P̂r(kx )

+
〈
−ν

∂ ¯̂ur,i(kx)

∂xj

∂ ûr,i(kx)

∂xj

〉
y,z,t︸ ︷︷ ︸

ε̂r(kx )

+
〈
Re

{
−¯̂ur,i(kx)

(
∂

∂xj

(Pr
[
ûr,iur,j(kx)

]))}〉
y,z,t︸ ︷︷ ︸

T̂r(kx )

= 0, (3.1)
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with ∂/∂x1 = ikx . Here, P̂r(kx) is now the production by the interaction of ûr,i with
transverse and spanwise mean shear Um,i (= Ui + um,i), ε̂r(kx) the dissipation and T̂r(kx)
the nonlinear transport through the self-interaction of ûr,i. We note that, given the velocity
decomposition defined in (2.5) and (2.7), û′

i(kx) = ûr,i(kx) when kx /= 0. Furthermore,
the QL approximation ignores the nonlinear transport term in (3.1). This implies that the
energy of ûr,i(kx) in the QL model is determined, such that

P̂r(kx) + ε̂r(kx) = 0. (3.2)

When kx /= 0, ε̂r(kx) = ε̂(kx). Also, P̂r(kx) can further be decomposed as

P̂r(kx) = P̂(kx) +
〈
Re

{
−¯̂ur,i(kx)ûr,j(kx)

∂um,i

∂xj

}〉
y,z,t

, (3.3a)

indicating that the turbulent transport defined in (2.11) should take the following form:

T̂(kx) =
〈
Re

{
−¯̂ur,i(kx)ûr,j(kx)

∂um,i

∂xj

}〉
y,z,t

. (3.3b)

The analysis made through (3.1)–(3.3) now provides a better physical explanation for
figure 8 for the QL model. First, in the streamwise wavenumber space, the production by
the transverse and spanwise mean shear is directly balanced with dissipation, consistent
with the form of (2.8b) under the QL approximation – the linearised form of (2.8b) does
not allow for any energy cascade in the streamwise wavenumber space. Second, (3.3b)
suggests that the non-zero T̂(kx) in figure 8 actually indicates TKE transport by the
streamwise uniform component of velocity fluctuation um. For the QL model (figure 8b–d),
T̂(kx) is positive at kx Lz 
 3 ∼ 15 (λx/Lz 
 0.4 ∼ 1.5). In the low-Reynolds-number case,
T̂(kx) is found to be positive at kx Lz 
 3 ∼ 5 (λx/Lz 
 1.2 ∼ 1.5) for the QL model at low
Reynolds number (not shown). Since the streamwise domain size of the QL model is fixed
as Lx = 3Lz for both low and high Reynolds numbers, this indicates that the range of
the streamwise wavenumbers with positive T̂(kx) is widened by the increase of Reynolds
number.

This observation is further supported by a numerical experiment, in which (2.8b) is
controlled to be monochromatic in the streamwise direction (i.e. Nx,F = 1) and the effect
of the streamwise computational domain is studied. Table 3 summarizes Reτ,Lz and the
production per unit mean shear from the monochromatic QL model for both low and
high Reynolds numbers. Taking Axz = 3 as the initial condition, Lx is varied leading
to relaminarization (P∗(dU∗/dy∗)−1 = 0) or sustained turbulence (P∗(d∗/dy∗)−1 /= 0).
In the case of low Reynolds number (L-QL-NX4), the monochromatic QL model
generates sustaining turbulence for Lx/Lz = 2 ∼ 3, while the QL model at high Reynolds
number (H-QL-NX4) show sustaining turbulence with a wider range of the streamwise
computation domain (Lx/Lz = 1 ∼ 15), consistent with the aforementioned behaviour of
the streamwise wavenumber range of the positive T̂(kx) in the QL model. This numerical
experiment also suggests that the positive T̂(kx) observed in the QL model is directly
related to the self-sustaining process of its turbulence.

In table 3 the largest production per unit mean shear of the monochromatic QL
model consistently appears when Lx/Lz = 1 ∼ 3 for both low- and high-Reynolds-number
cases. This streamwise wavelength is reminiscent of the typical streamwise length scale
of the most unstable mode of typical streak instability in a wall-bounded shear flow,
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Case L-QL-NX4

Axz 0.25 0.5 1.0 2.0 3.0 5.0 10.0 20.0
Reτ,Lz 36.4 36.4 36.4 152 185 36.4 36.4 36.4
P∗(dU∗/dy∗)−1 0 0 0 0.95 0.97 0 0 0

H-QL-NX4

Axz 0.3 1.0 1.6 2.3 3.0 5.0 10.0 15.0
Reτ,Lz 94.8 570 603 585 580 458 388 326
P∗(dU∗/dy∗)−1 0 0.99 0.99 0.99 0.99 0.98 0.96 0.93

TABLE 3. Effect of the streamwise domain Lx for the QL simulations (Nx,F = 1). Here,
Axz = Lx/Lz.

i.e. λx/λz = 1 ∼ 3, where λz is the spanwise length of the streaks observed in a
wall-bounded shear flow (Schoppa & Hussain 2002; Park, Hwang & Cossu 2011;
Cassinelli, de Giovanetti & Hwang 2017; de Giovanetti, Sung & Hwang 2017). This is
also consistent with the work by Sekimoto & Jiménez (2017), where a set of invariant
solutions of homogeneous shear turbulence were shown to emerge for Axz = 1.6 − 3.3.
Now, let us assume that the temporal evolution of um from (2.8a) is much slower than
that of ur from (2.8b), i.e. T = εt with ε � 1, um(T, t) = um,0(T) + εum,1(T, t) and
ur(T, t) = ur,0(T, t) + εur,1(T, t). Then, at the leading order, (2.8b) with the given QL
approximation is written as

∂ur,0

∂t
+ (Um,0(T) · ∇) ur,0 + (ur,0 · ∇) Um,0(T) = − 1

ρ
∇pr,0 + ν∇2ur,0, (3.4)

where Um,0 = U + um,0. In wall-bounded shear flows such as Couette and channel flows,
Um,0(T) is very often dominated by its very large streamwise component, and this has
been associated with the large amplification of streamwise elongated streaks via the lift-up
effect (e.g. Hamilton et al. 1995; Hwang & Bengana 2016). In such a case, (3.4) indeed
becomes identical to the equations analysed for the instability and the related transient
growth of the amplified streaks in both transitional and turbulent wall-bounded shear flows
(Reddy et al. 1998; Andersson et al. 2001; Schoppa & Hussain 2002; Park et al. 2011), i.e.
linearised equations around the temporally frozen streaky base flow Um,0(T). This suggests
that the streamwise wavenumbers with positive T̂(kx) in figure 8(b,c,f ) is presumably a
consequence of instabilities or the related growth mechanisms of (2.8b). Indeed, the third
term of (3.4) directly forms the production P̂r(kx) in (3.1).

Finally, it should be mentioned that the assumption of ε � 1 used to derive (3.4) from
(2.8b) may not necessarily be true. In particular, in uniform shear flow, the time scale
of um has been found to be comparable with that of ur (see figure 11 in Yang et al.
2018). This implies that the instability of (2.8b) in the QL model would be a parametric
type, as was proposed by Farrell & Ioannou (2012) and Farrell et al. (2016). However,
the spectral energy-budget analysis in figure 8 also suggests that both the streak and
parametric instability mechanisms share exactly the same form of energy production,
i.e. the transverse and spanwise shear of Um (see P̂r(kx) in (3.1)). Indeed, the typical
instability-mode structure observed from both stationary and time-evolving streaks has
been found not to be very different from each other. They both exhibit the typical sinuous
mode streak-instability structure (i.e. streak meandering motion with quasi-streamwise
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FIGURE 9. Premultiplied spanwise wavenumber spectra of the pressure strain: (a) H-DNS;
(b) H-QL-FULL; (c) H-QL-NX4; (d) H-QL-NX16.

vortices flanked; see also Andersson et al. 2001; Schoppa & Hussain 2002); for example,
compare figure 11 of de Giovanetti et al. (2017) with figure 3 or 4 in Hwang & Bengana
(2016).

3.3. Componentwise energy transport and pressure strain
The pressure-strain spectra are finally explored to understanding the mechanism of
the componentwise TKE distribution in the QL model. Figure 9 shows the spanwise
wavenumber spectra of the pressure-strain terms for DNS and the QL model. It is seen
that a negative Π̂x and a positive Π̂y for both DNS and the QL model throughout the
spanwise scales. The Π̂z takes a positive value at small wavenumbers (kzLz � 20 in DNS
and kzLz � 10 in the QL model) and a negative value at large wavenumbers. The QL model
appears to reproduce the pressure-strain spectra similar to those DNS, but it largely fails to
do so quantitatively. In particular, the absolute values of the pressure-strain spectra of the
QL model (figure 9b,c,d) are considerably smaller than those of DNS (figure 9a) in the
entire range of the spanwise wavenumbers. The values are especially low when the number
of the streamwise Fourier modes used for the QL model is small (figure 9c). Given the
form of the streamwise pressure strain Π̂x in (2.13a), this is somehow expected: the small
number of the streamwise Fourier modes would not offer a good resolution for ∂ û′/∂x
in Φ̂x . Indeed, the increase of the streamwise Fourier modes elevates the overall absolute
values of the pressure-strain spectra of the QL model. However, such elevation stops when
Nx,F ≥ 5 (figure 9d), and the QL model even with the full streamwise resolution does not
generate the values of the pressure-strain spectra comparable to those of DNS (figure 9b).
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Similar behaviours are also observed in the streamwise wavenumber spectra of pressure
strain, as shown in figure 10. Here, the only notable qualitative difference from the
spanwise wavenumber spectra is that the pressure-strain spectra of the QL model is also
highly localised for kx Lz � 1, as is expected from the other spectra shown previously. This
is evidently due to the lack of nonlinear energy transport (energy cascade) of the QL model
in the streamwise wavenumber space. For this reason, the spectra of the QL model are also
found to be almost unchanged for Nx,F ≥ 5 like the other turbulence statistics and spectra.

The damaged pressure-strain transport now explains why the small-scale turbulence of
the QL model is highly anisotropic (figure 4) – due to the relatively inactive pressure-strain
transport of the QL model, the anisotropic large scale does not have enough chances
to become isotopic through the energy cascade, thereby still remaining anisotropic at
small scale where dissipation takes pace. Nevertheless, it still does not explain why the
pressure-strain transport of the QL model is damaged over the entire wavenumber space
(see figures 9 and 10) instead of being restricted over the range of streamwise wavenumbers
where the energy cascade is inhibited by the QL approximation (i.e. kx Lz > 1 in figure 10).
To understand this, let us introduce the following equations for pressure fluctuation
(Townsend 1976; Kim 1989):

1
ρ

∇2pR = −2
dU
dy

∂v′

∂x
, (3.5a)

1
ρ

∇2pS = −∂u′
j

∂xi

∂u′
i

∂xj
. (3.5b)
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Here p′ = pR + pS, and pR and pS are rapid and slow pressures, respectively. The terms
‘rapid’ and ‘slow’ originate from the fact that only the rapid part responds immediately to
a change imposed on the mean, and the slow part feels the change through the subsequent
nonlinear interactions (Kim 1989).

Using the field decomposition in (2.7) and the projections defined in (2.3), (3.5) is
written as

1
ρ

∇2
y,zp

R
m = 0, (3.6a)

1
ρ

∇2
y,zp

S
m = −∂um,j

∂xi

∂um,i

∂xj
− Pm

[
∂ur,j

∂xi

∂ur,i

∂xj

]
, (3.6b)

for the streamwise-averaged part and

1
ρ

∇2pR
r = −2

dU
dy

∂vr

∂x
, (3.7a)

1
ρ

∇2pS
r = −2

∂um,j

∂xi

∂ur,i

∂xj
− Pr

[
∂ur,j

∂xi

∂ur,i

∂xj

]
, (3.7b)

for the remaining part. Given that the last term on the right-hand side of (3.7b) is absent in
the QL model, it is evident that the QL model completely ignores the role of slow pressure
for the streamwise varying part of velocity fluctuations.

The absence of the last term of (3.7b) in the QL model has some importance
consequences for the structure of pS

r . First, given that um,j in (3.7b) does not vary in the
streamwise direction, each streamwise Fourier mode of pS

r is coupled only with that of ur,j
at the same wavenumber. This implies that pS

r does not play any role in the energy transport
between the streamwise Fourier modes, as expected from the linear nature of (2.8b) for
the QL model. Second, although the last term of (3.7b) would evidently be crucial for
the energy cascade in the streamwise wavenumber space, the significant reduction of
the pressure-strain transport even at the integral length scale (i.e. kx Lz ≤ 1 in figure 10)
suggests that the nonlinear term plays an important interactive role in the process of
turbulence production. Finally, since the pressure-strain transport is reduced at the integral
length scale which carries most of the TKE, the QL model would exhibit a turbulent
fluctuation more anisotropic than DNS, consistent with (1) where u∗

rms of the QL model is
stronger than that of DNS.

The more anisotopic turbulent fluctuation biased to the streamwise component and the
absence of the last term of (3.7b) in the QL model should then be directly related to the
‘self-sustaining process’ (e.g. Hamilton et al. 1995; Schoppa & Hussain 2002; Hwang
& Bengana 2016), the predominant dynamics at the integral length scale. It has been
understood that the self-sustaining process is composed of three substeps: (i) amplification
of streamwise elongated streaks by streamwise vortices (Farrell & Ioannou 1993a; Kim
& Lim 2000; del Alamo & Jiménez 2006; Cossu et al. 2009; Hwang & Cossu 2010a);
(ii) instability or transient growth of the amplified streaks (Hamilton et al. 1995; Schoppa
& Hussain 2002; Cassinelli et al. 2017; de Giovanetti et al. 2017); and (iii) nonlinear
regeneration of streamwise vortices (Hamilton et al. 1995; Schoppa & Hussain 2002;
Hwang & Bengana 2016). In the QL model the first and second substeps would well be
described by (2.8a) and (2.8b), respectively, but the absence of the last term in (2.8b)
(or, equivalently, in (3.7b)) would damage the third substep. Indeed, an important process
in the third substep is nonlinear stretching of streamwise vortices via streamwise wavy
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streaks (Schoppa & Hussain 2002), and this was associated with the generation of slow
pressure (Cho, Choi & Hwang 2016). Finally, this interpretation suggests that the nonlinear
regeneration of streamwise vortices should be associated with the ‘phase interactions’
between streamwise Fourier modes of (2.8b) or ‘collective dynamics’ of the streamwise
Fourier modes. We note that, in the QL model, there is no way for the phase information of
the streamwise Fourier modes of ur,i to affect the equations of motion (2.8) (for a further
discussion, see Pausch et al. 2019). This is because the only nonlinear term of the QL
model (i.e. the last term of (2.8a)) does not account for the phase information of the
streamwise Fourier modes due to the streamwise averaging in it. In the case of equilibrium
and relative equilibrium invariant solutions to (2.8), this feature leads to a degeneracy in
the QL-based description of such solutions for Nx,F > 1 with a significant error in their
upper-branch states which typically underpin a chaotic turbulent state (Pausch et al. 2019).

4. Concluding remarks

Thus far, we have investigated the spectral energetics of a QL model in comparison to
that of DNS. For the QL approximation, the velocity is decomposed into a streamwise
mean and the remaining fluctuation. The equations for the streamwise mean are fully
considered, the equations for the fluctuation are linearised around the mean. The
assessment of the QL model has been performed with uniform shear turbulence, in which
the integral-scale dynamics is well described by the so-called ‘self-sustaining process’
(Hamilton et al. 1995; Waleffe 1997). Unlike wall-bounded turbulence studied previously
(Thomas et al. 2014, 2015; Farrell et al. 2016; Tobias & Marston 2017), the uniform
shear turbulence contains the single integral length scale controlled by the (spanwise)
computational domain. This feature has enabled us to understand the precise role of the
QL approximation in the self-sustaining process given at the single integral length scale
as well as in the subsequent energy cascade and turbulence dissipation.

The QL model shows a healthy energy cascade in the spanwise wavenumber space.
However, it completely inhibits energy cascade in the streamwise wavenumber space due
to the proposed linearisation, as one might have expected. The latter feature also results
in a highly elevated spectral energy intensity residing only at the integral streamwise
length scale. The velocity field of the QL model has also been found to be anisotropic
throughout the entire wavenumber space of the spectra. This feature fundamentally differs
from the turbulence in DNS, where the spectra in the inertial and dissipation ranges
are highly isotropic. It has also been found that the streamwise wavenumber spectra of
turbulent transport obtained with the classical Reynolds decomposition statistically well
characterizes the instability of the linearised fluctuation equations, as they exhibit the
largest intensity at Lx/Lz = 1 ∼ 3 for the two Reynolds numbers considered. Finally, the
QL approximation has been found to completely ignore the role of slow pressure. As
a consequence, a dramatic reduction in the intensity of pressure-strain spectra has been
observed even at integral length scales. This causes the highly anisotropic turbulence of
the QL model throughout the entire wavenumber space, while significantly inhibiting the
nonlinear regeneration of streamwise vortices in the self-sustaining process.

The overall turbulence statistics and the spectral energetics of the QL model found in the
present study are reminiscent of those of under-resolved direct numerical simulations: in
fact, the monochromatic QL model (i.e. the QL model with Nx,F = 1) is mathematically
identical to direct numerical simulation with a single streamwise Fourier mode. Having
pointed this out, the observations made in the present study suggest that the QL model
considered in the present study may be improved, if the mechanisms of nonlinear turbulent
transport in the streamwise wavenumber space is further incorporated. One such way
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might be realised by adding an eddy-viscosity-based diffusion model to (2.8b), as the
enhanced diffusion at the integral length scale would replace the role of nonlinear
turbulent transport without creating energy cascade. Given the translational invariance
of the statistical features of uniform shear turbulence in all the spatial directions, a
realistic and simplest form of the eddy viscosity would be an isotropic constant diffusion
tensor. However, it is important to realise that such an eddy-viscosity model still does
not offer a mechanism to retrieve the lost slow pressure in the QL model, because the
eddy-viscosity-based diffusion term is not supposed to appear in (3.7b). In this respect,
the GQL (Marston et al. 2016; Tobias & Marston 2017) would be an interesting direction
to pursue, as it would incorporate some minimal role of the slow pressure at least by
having some portion of the last term in (3.7b). Ultimately, combination of an additional
turbulence model (e.g. based on an eddy viscosity) with the GQL might be a direction
towards a reliable low-dimensional description of turbulent flows.
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JOVANOVIĆ, M. R. & BAMIEH, B. 2005 Componentwise energy amplification in channel flow. J. Fluid

Mech. 543, 145–83.
KIM, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech.

205, 421–451.
KIM, J. & LIM, J. 2000 A linear process in wall-bounded turbulent shear flows. Phys. Fluids 12 (8),

1885–1888.
KIM, J. & MOIN, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes

equations. J. Comput. Phys. 59 (2), 308–323.
KOLMOGOROV, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large

Reynolds number. Proc. USSR Acad. Sci. 30, 299–303.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

67
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.678


904 A11-26 C. G. Hernández and Y. Hwang

LEE, M. K. & MOSER, R. D. 2019 Spectral analysis of the budget equation in turbulent channel flows at
high Reynolds number. J. Fluid Mech. 860, 886–938.

LUMLEY, J. L. 1967 Similarity and the turbulent energy spectrum. Phys. Fluids 10 (4), 855–858.
MALKUS, W. V. R. 1956 Outline of a theory of turbulent shear flow. J. Fluid Mech. 1 (5), 521–539.
MALKUS, W. V. R. & CHANDRASEKHAR, S. 1954 The heat transport and spectrum of thermal turbulence.

Phil. Trans. R. Soc. A 225 (1161), 196–212.
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