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Abstract. This self-contained paper is part of a series (Groups of homeomorphisms of
one-manifolds I: actions of nonlinear groups. Preprint, 2001; Group actions on one-
manifolds II: extensions of Hölder’s Theorem. To appear in Trans. Amer. Math. Soc.)
seeking to understand groups of homeomorphisms of manifolds in analogy with the theory
of Lie groups and their discrete subgroups. Plante and Thurston proved that every nilpotent
subgroup of Diff2(S1) is abelian. One of our main results is a sharp converse: Diff1(S1)

contains every finitely generated, torsion-free nilpotent group.

1. Introduction
A basic aspect of the theory of linear groups is the structure of nilpotent groups. In this
paper we consider nilpotent subgroups of Homeo(M) and Diffr (M), whereM is the line R,
the circle S1 or the interval I = [0, 1]. As we will see, the structure theory depends
dramatically on the degree r of regularity as well as on the topology of M .

Throughout this paper all homeomorphisms will be orientation-preserving and all
groups will consist only of such homeomorphisms. Plante and Thurston [PT] discovered
that C2 regularity imposes a severe restriction on nilpotent groups of diffeomorphisms.

THEOREM 1.1. Any nilpotent subgroup of Diff2(I), Diff2([0, 1)) or Diff2(S1) must be
abelian.

Remark. In the case of subgroups of Diff2(I) and Diff2([0, 1)) this result was first proved
by Plante and Thurston [PT]. They also proved that the group is virtually abelian in the
S1 case. For completeness of exposition (and because it is simple), we present a proof of
the Plante–Thurston result about I . These results are related to a result of Ghys [Gh], who
proved that any solvable subgroup of Diffω(S1) is metabelian. The result of Plante and
Thurston is familiar in the study of codimension-1 foliations and led to the consideration
of the centralizer diffeomorphisms of one-manifolds (see, for example, [MT] and [Wa]).
In §4 we prove the PL version of Theorem 1.1.
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Several authors have considered the dynamics of abelian group actions on S1 and R and
the effect of regularity (see, in particular, Pixton [Pi] and Tsuboi [T]). Our main result is
that lowering the regularity from C2 to C1 produces a sharply contrasting situation, where
every possibility can occur.

THEOREM 1.2. Let M = R, S1 or I . Then every finitely generated, torsion-free nilpotent
group is isomorphic to a subgroup of Diff1(M).

Witte [Wi, Lemma 2.2] observed that the groups of orientation-preserving
homeomorphisms of R are precisely the right-orderable groups. Since torsion-free
nilpotent groups are right-orderable (see, e.g., [MR, p. 37]), it follows that such groups
are subgroups of Homeo(R). The content of Theorem 1.2 is the increase in regularity from
C0 to the sharp regularity C1.

The situation for R is more complicated. On the one hand, there is no limit to the degree
of nilpotence, even when regularity is high.

THEOREM 1.3. Diff∞(R) contains nilpotent subgroups of every degree of nilpotency.

On the other hand, even with just a little regularity, the derived length of nilpotent
groups is greatly restricted.

THEOREM 1.4. Every nilpotent subgroup of Diff2(R) is metabelian, i.e. has an abelian
commutator subgroup.

In particular, Theorem 1.4 shows that the group of n× n upper-triangular matrices with
ones on the diagonal, while admitting an effective action on R by C1 diffeomorphisms,
admits no effective C2 action on R if n > 3.

Closely related to this algebraic restriction on nilpotent groups which act smoothly is a
topological restriction.

THEOREM 1.5. If N is a nilpotent subgroup of Diff2(R) and every element of N has a
fixed point, then N is abelian.

One open problem is to extend this theory to solvable subgroups, as well as to higher-
dimensional manifolds. The paper by Plante [P] contains a number of interesting results
and examples concerning solvable groups acting on R. Another problem is to understand
what happens between the degrees of regularity r = 0 and r ≥ 2, where vastly differing
phenomena occur.

Residually nilpotent groups. A variation of our construction of actions of nilpotent groups
can be used to construct actions of a much wider class of groups, the residually torsion-free
nilpotent groups, i.e. those groups where the intersection of all terms in the lower central
series is trivial. In §2.4 we prove the following result.

THEOREM 1.6. Let M = R, S1 or I . Then Diff1+(M) contains every finitely generated,
residually torsion-free nilpotent group.

The class of finitely generated, residually torsion-free nilpotent groups includes free
groups, surface groups and the Torelli groups, as well as products of these groups.
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2. Constructions
In this section we construct examples of nilpotent groups acting on one-manifolds.

2.1. An elementary observation. There are several obvious relations among actions on
the three spaces R, S1 and I . Restricting an action on I to the interior of I gives an action
on R. One can also start with an action on R and consider the action on the one-point
compactification S1 or the two-point compactification I . But this usually entails loss of
regularity of the action. That is, a smooth or PL action on R will generally give only an
action by homeomorphisms on I or T 1.

2.2. C1 actions on M . Let Nn denote the group of n × n lower-triangular integer
matrices with ones on the diagonal. Our first main goal is to prove that Nn admits C1

actions on the real line.
The proof is somewhat technical and so we will describe the strategy before engaging

in the details. The traditional proof that Nn acts by homeomorphisms on the interval uses
the fact that it is an ordered group. Suppose a group acts effectively on a countable ordered
set in a way that preserves the order (e.g. the set might be the group itself). One can then
produce an action by homeomorphisms on I by embedding the countable set in an order-
preserving way in I and canonically extending the action of each group element on that
set to an order-preserving homeomorphism of I , first by using continuity to extend it to
the closure of the embedded set and then using affine extensions on the complementary
intervals of this closure.

The approach we take is somewhat similar. We consider the group Z
n of n-tuples

of integers and provide it with a linear order � which is the lexicographic ordering,
i.e. (x1, . . . , xn) ≺ (y1, . . . , yn) if and only if xi = yi for 1 ≤ i < k and xk < yk for
some 0 ≤ k ≤ n. It is well known and easy to show that the standard linear action of Nn

on Z
n preserves this ordering.

Instead of embedding Z
n as a countable set of points, however, for each (q1, . . . , qn) ∈

Z
n we will embed a closed interval I (q1, . . . , qn) in I . We do this in such a way that the

intervals are disjoint except that each one intersects its successor in a common endpoint
and so that the order of the intervals in I agrees with the lexicographic ordering on Z

n.
We also arrange that the complement of the union of these intervals is a countable set.
If, for each α ∈ Nn, we define gα on I (q1, . . . , qn) to be the canonical affine map to
I (α(q1, . . . , qn)) this would define gα on a dense subset of I and it would extend uniquely
to a homeomorphism, giving an action of Nn by homeomorphisms.

In order to improve this to a C1 action, we must replace the affine maps
from I (q1, . . . , qn) to I (α(q1, . . . , qn)) with elements of another canonical family of
diffeomorphisms which has two key properties. The first is that these subinterval
diffeomorphisms must have derivative 1 at both endpoints in order to fit together in a
C1 map. The second is that if Ik is a strictly monotonic sequence of these subintervals,
then the restriction of gα to Ik must have a derivative which converges uniformly to 1 as k
tends to infinity. In particular, by the mean value theorem the ratio of the lengths of α(Ik)
and Ik must tend to 1 for any element α ∈ Nn. This makes the choice of the lengths of
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these intervals one of the key ingredients of the proof. We choose these lengths with a
positive parameterK . We are then able to show that as this parameter increases to infinity,
the C1 size of any gα goes to zero. This allows us to prove the existence of an effective
C1 action of Nn on I with generators chosen from an arbitrary C1 neighborhood of the
identity.

We proceed to the details beginning with some calculus lemmas. The first of them
develops a family of interval diffeomorphisms which we will use as a replacement for
affine interval maps as we discussed earlier. We are indebted to Jean-Christophe Yoccoz
for the proof of the following lemma which substantially simplifies our earlier approach.

LEMMA 2.1. For each a and b ∈ (0,∞), there exists a C1 orientation-preserving
diffeomorphism φa,b : [0, a] → [0, b] with the following properties.
(1) For any a, b, c ∈ (0,∞) and for any x ∈ [0, a], φb,c(φa,b(x)) = φa,c(x).
(2) For all a, b, φ′

a,b(0) = φ′
a,b(1) = 1.

(3) Given ε > 0 there exists δ > 0 such that, for all x ∈ [0, a],

|φ′
a,b(x)− 1| < ε, whenever

∣∣∣∣ba − 1

∣∣∣∣ < δ.

Proof. For u0 ∈ (0,∞), we define

L(u0) =
∫ ∞

−∞
du

u2 + u2
0

.

A change of variables u = u0x allows one to conclude that

L(v) = 1

u0

∫ ∞

−∞
dx

x2 + 1
= π

u0
.

For each u0 ∈ (0,∞), we define ψu0 : R → (0, L(u0)) by

ψu0(t) =
∫ t

−∞
du

u2 + u2
0

.

Clearly ψu0 is a real analytic diffeomorphism from R onto the open interval (0, L(u0)).
Now define φa,b : [0, a] → [0, b] by setting φa,b(0) = 0, φa,b(a) = b and for

x ∈ (a, b) letting φa,b(x) = ψu1(ψ
−1
u0
(x)) where a = L(u0) and b = L(u1). This is

clearly a homeomorphism of [0, a] to [0, b] which is real analytic on (0, a). We observe
that the derivative of φa,b(x) at the point x = ψu0(t) is given by

φ′
a,b(x) = ψ ′

u1
(t)

ψ ′
u0
(t)

= t2 + u2
0

t2 + u2
1

.

From this it is clear that φ′
a,b(x) can be continuously extended to the endpoints of the

interval [0, a] by assigning it the value 1 there. Hence, φa,b(x) is C1 on the closed interval
[0, a] and satisfies property (2). Property (1) is clear from the definition.

To check property (3), we observe that if, as before, x = ψu0(t), then

|φ′
a,b(x)− 1| =

∣∣∣∣∣
t2 + u2

0

t2 + u2
1

− 1

∣∣∣∣∣
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which is easily seen to assume its maximum when t = 0. But

|φ′
a,b(x)− 1| ≤

∣∣∣∣∣
u2

0

u2
1

− 1

∣∣∣∣∣ =
∣∣∣∣∣
b2

a2
− 1

∣∣∣∣∣
since u0 = π/a and u1 = π/b. From this it is clear that property (3) holds. �

We will also need the following technical lemma.

LEMMA 2.2. Suppose n is a positive even integer and K > 0. Then, for (x, y) ∈ R
2,

lim‖(x,y)‖→∞
|(x + y)n − yn|
xn+2 + yn +K

= 0.

Moreover, given ε > 0, for K sufficiently large

|(x + y)n − yn|
xn+2 + yn +K

< ε

for all (x, y) ∈ R
2.

Proof. The numerator (x + y)n − yn is a sum of monomials of the form Cxkyn−k where
0 < k ≤ n. Hence, it suffices to prove that

lim‖(x,y)‖→∞
|x|k|y|n−k

xn+2 + yn +K
= 0

for 0 < k ≤ n.
If, for some ε > 0,

|x|k|y|n−k
xn+2 + yn +K

≥ ε

we want to show that there is an upper bound for |x| and |y|.
We first observe that

|x|k
|y|k = |x|k|y|n−k

|y|n >
|x|k|y|n−k

xn+2 + yn +K
≥ ε

or
|x| > ε1/k|y|. (1)

Similarly,
|y|n−k

|x|n−k+2
= |x|k|y|n−k

|x|n+2
>

|x|k|y|n−k
xn+2 + yn +K

≥ ε.

This implies that
|y|n−k > ε|x|n−k+2 (2)

and we note that n − k + 2 > 0. In the case that k = n we note that equation (2) implies
that |x| is bounded and then equation (1) implies that |y| is bounded.

However, when k < n, we have

|y| > E|x|d (3)
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where

E = ε1/(n−k) and d = n− k + 2

n− k
= 1 + 2

n− k
.

Combining equations (1) and (3), we see that

|x| > ε1/k|y| > ε1/kE|x|d .
Since d > 1 this clearly implies that |x| is bounded by a constant depending only on

n and ε. Then equation (1) implies that |y| is also bounded. The contrapositive of these
assertions is that for ‖(x, y)‖ sufficiently large, we have

|x|k|y|n−k
xn+2 + yn +K

< ε

which implies the desired limit.
To prove the second assertion of the lemma, we observe that we have shown that there

is a constant M > 0 such that

(x + y)n − yn

xn+2 + yn +K
< ε

whenever ‖(x, y)‖ > M . Moreover, the constant M is independent of K . Hence, clearly
if K is sufficiently large, this inequality will hold for all (x, y). �

Consider the group Z
n of n-tuples of integers and provide it with a linear order � which

is the lexicographic ordering, i.e. (x1, . . . , xn) ≺ (y1, . . . , yn) if and only if xi = yi for
1 ≤ i < k and xk < yk for some 0 ≤ k ≤ n. We are now prepared to define a set of closed
intervals in one-to-one correspondence with elements of Z

n. As previously mentioned, we
will make this definition with a positive parameter K which will be used subsequently to
get generators of our action in an arbitrary C1 neighborhood of the identity.

Definition 2.3. ForK > 0 let BK : Z
n → R be defined by

BK(q1, q2, . . . , qn) = K +
n∑
j=1

q
2n−2j+2
j

= q2n
1 + q2n−2

2 + · · · + q4
n−1 + q2

n +K

and let the constant SK be defined by

SK =
∑

(q1,q2,...,qn)∈Zn
1

BK(q1, q2, . . . , qn)
.

For (r1, r2, . . . , rn), we define SK(r1, r2, . . . , rn) by

SK(r1, r2, . . . , rn) =
∑

(q1,q2,...,qn)≺(r1,r2,...,rn)

1

BK(q1, q2, . . . , qn)
.

Finally we define the closed interval

IK(r1, r2, . . . , rn) = [SK(r1, r2, . . . , rn), SK(r1, r2, . . . , rn + 1)].
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Note that the sum defining SK converges, for example by the integral and comparison
tests, so that SK is well defined. We will denote the interval [0, SK ] by IK and we note that
it is nearly the union of the intervals IK(r1, r2, . . . , rn).

LEMMA 2.4. There is a countable closed set JK in the interval IK = [0, SK ], such that

IK = JK ∪
( ⋃
(q1,q2,...,qn)∈Zn

IK(q1, q2, . . . , qn)

)
.

Proof. Define JK by the equality in the statement of the lemma. From the
definitions it follows that every point Jk is the limit of one of the Cauchy sequences
{SK(r1, . . . , ri , . . . , rn)} as ri ranges from 1 to either ∞ or −∞ and the other rj , j �= i are
fixed. It follows that JK is countable. The set JK is closed since its complement is clearly
open. �

We note that the intervals {IK(q1, q2, . . . , qn)} occur in the interval IK in exactly the
order given by ≺. They have disjoint interiors but each such interval intersects its successor
in a common endpoint.

Definition 2.5. Let ν : IK \ JK → Z
n be defined by setting ν(x) = (q1, q2, . . . , qn) if

x ∈ IK(q1, q2, . . . , qn) and x /∈ IK(q1, q2, . . . , qn+1).

LEMMA 2.6. If K is sufficiently large, then for every α ∈ Nn there exists a
homeomorphism gα : IK → IK such that for each (q1, . . . , qn) ∈ Z

n,

(1) gα(IK(q1, . . . , qn)) = IK(α(q1, . . . , qn)); and
(2) gαβ(x) = gα(gβ(x)) for all α, β ∈ Nn and all x ∈ IK ; and
(3) for x ∈ IK(q1, . . . , qn), gα(x) = φb1,b2(x − c1)+ c2, where

b1 = |IK(q1, . . . , qn)| = BK(q1, . . . , qn)
−1,

b2 = |IK(α(q1, . . . , qn)| = BK(α(q1, . . . , qn))
−1,

c1 = SK(q1, . . . , qn), c2 = SK(α(q1, . . . , qn))

and φb1,b2 : [0, b1] → [0, b2] is the diffeomorphism guaranteed by Lemma 2.1.

Proof. For x ∈ IK(q1, . . . , qn), we define gα(x) to be φb2(φ
−1
b1
(x − c1))+ c2. The values

of the constants bj , cj , for j = 1, 2 were chosen so that (1) holds. This gives a
homeomorphism gα from IK \ JK to itself which preserves the order on the interval IK .
Since JK is a closed countable subset of IK we may extend gα to all of IK in the
unique way which makes it an order-preserving function on IK . Clearly this makes gα
a homeomorphism of IK to itself.

In order to show property (2), we let b3 = BK(βα(q1, . . . , qn))
−1 and c3 =

SK(βα(q1, . . . , qn)). Then if x ∈ IK(q1, . . . , qn),

gβ(gα(x)) = φb2,b3(gα(x)− c2)+ c3

= φb2,b3(φb1,b2((x − c1)+ c2 − c2))+ c3, by Lemma 2.1

= φb1,b3(x − c1)+ c3

= gβα(x).

Since this holds for any (q1, . . . , qn) ∈ Z
n we have shown gβ(gα(x)) = gβα(x) for a

dense set of x ∈ IK . Continuity then implies this holds for all x ∈ IK . �

https://doi.org/10.1017/S0143385702001712 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385702001712


1474 B. Farb and J. Franks

Definition 2.7. For 1 ≤ i < n let σi ∈ Nn denote the matrix with all entries on the diagonal
equal to 1, with entry (i + 1, i) equal to 1, and with all other entries 0. We will denote the
homeomorphism gσi : IK → IK by gi .

The elements {σi} form a set of generators for the group Nn. Our next objective is to
show that, in fact, gi = gσi is a C1 diffeomorphism. For this we will need a sequence of
technical lemmas.

LEMMA 2.8. Suppose xk is a monotonic sequence in IK \JK converging to a point of JK .
Then, for each 1 ≤ i < n,

lim
k→∞

BK(σi(ν(xk)))

BK(ν(xk))
= 1.

Proof. We may assume without loss of generality that the sequence {xk} is monotonic
increasing. For 1 ≤ j ≤ n, k > 0, we define qj (k) by ν(xk) = (q1(k), q2(k), . . . , qn(k)).
Then each sequence {qj (k)}∞k=1 is monotonic increasing. At least one of these sequences is
unbounded, since any bounded ones are eventually constant and if {qj (k)} were eventually
constant for all j ≤ n then the sequence of intervals IK(ν(xk)) would eventually be
constant and the limit of the sequence {xk} would be in the final interval and, hence, not
in JK . Let r be the smallest j such that {qj (k)} is unbounded. Then since {xk} is monotonic
increasing we have limk→∞ qr(k) = ∞ and for j < r the sequence {qj (k)} is eventually
constant.

We note that

BK(σi(ν(xk))) = BK(q1(k), . . . , qi(k), qi+1(k)+ qi(k), qi+2(k), . . . , qn(k))

and, hence, that

BK(ν(xk))− BK(σi(ν(xk)))

BK(ν(xk))
= (qi+1(k)+ qi(k))

2n−2i − qi+1(k)
2n−2i

BK(q1(k), . . . , qn(k))

= P(qi(k), qi+1(k))

BK(q1(k), . . . , qn(k))

where P(x, y) = (x + y)2n−2i − y2n−2i .
We first consider the case that r > i + 1. Then, for large k, we have that

P(qi(k), qi+1(k)) is bounded (in fact eventually constant) so

lim
k→∞

BK(ν(xk))− BK(σi(ν(xk)))

BK(ν(xk))
= lim
k→∞

P(qi(k), qi+1(k))

BK(q1(k), . . . , qn(k))
= 0

and we have the desired result.
In the case r = i + 1 or r = i, we observe

P(qi(k), qi+1(k))

q1(k)2n + · · · + qn(k)2 +K
≤ P(qi(k), qi+1(k))

qi(k)2n−2i+2 + qi+1(k)2n−2i +K

and at least one of qi(k)2n−2i+2 and qi+1(k)
2n−2i tends to infinity so, by Lemma 2.2, we

again have

lim
k→∞

BK(ν(xk))− BK(σi(ν(xk)))

BK(ν(xk))
= lim
k→∞

P(qi(k), qi+1(k))

BK(q1(k), . . . , qn(k))
= 0.
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Finally, in the case r < i,

|P(qi(k), qi+1(k))|
BK(q1(k), . . . , qn(k))

≤ |P(qi(k), qi+1(k))|
qr(k)2n−2r+2 + qi(k)2n−2i+2 + qi+1(k)2n−2i +K

and |qr(k)| tends to infinity. But given ε > 0, by Lemma 2.2 there is an M > 0 such that
whenever ‖(qi(k), qi+1(k))‖ > M we have

|P(qi(k), qi+1(k))|
qr(k)2n−2r+2 + qi(k)2n−2i+2 + qi+1(k)2n−2i +K

≤ |P(qi(k), qi+1(k))|
qi(k)2n−2i+2 + qi+1(k)2n−2i +K

< ε.

However, if ‖(qi(k), qi+1(k))‖ ≤ M and |qr(k)| is sufficiently large,

|P(qi(k), qi+1(k))|
qr(k)2n−2r+2 + qi(k)2n−2i+2 + qi+1(k)2n−2i +K

< ε.

So in all cases we have the desired limit

lim
k→∞

|BK(ν(xk))− BK(σi(ν(xk)))|
BK(ν(xk))

= 0 (4)

which implies

lim
k→∞

∣∣∣∣1 − BK(σi(ν(xk)))

BK(ν(xk))

∣∣∣∣ = 0

and, hence, that

lim
k→∞

BK(σi(ν(xk)))

BK(ν(xk))
= 1. �

LEMMA 2.9. Suppose xk is a monotonic sequence in IK \JK converging to a point of JK .
Then for each 1 ≤ i < n,

lim
k→∞ g

′
i (xk) = 1.

Proof. For x ∈ IK(q1, . . . , qn), gi is defined by gi(x) = φb1,b2(x − c2) + c1, for some
constants c1 and c2, where

b1 = b1(k) = 1

BK(ν(xk))
and b2 = b2(k) = 1

BK(σi(ν(xk)))

so g′
i (xk) = φ′

b1,b2
(xk).

We wish to show that, given ε > 0 for k sufficiently large, |1 − g′
i (xk)| < ε. To do this,

by Lemma 2.1 we need only show that, for any δ > 0,∣∣∣∣b2(k)

b1(k)
− 1

∣∣∣∣ < δ

for sufficiently large k.
But ∣∣∣∣b2(k)

b1(k)
− 1

∣∣∣∣ =
∣∣∣∣ BK(ν(xk))

BK(σi(ν(xk)))
− 1

∣∣∣∣
which, by Lemma 2.8, tends to zero as k tends to infinity. Hence,∣∣∣∣b2(k)

b1(k)
− 1

∣∣∣∣ < δ

for k sufficiently large. �
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The proofs of Lemmas 2.10 and 2.11 are parallel to those of Lemmas 2.8 and 2.9.
The difference is that before we were interested in the limiting values of some quantities
as a sequence {xk} of values of x in IK \ JK converged, while now we are interested in
estimating the same quantities but, uniformly in x, as the parameterK tends to infinity.

LEMMA 2.10. Suppose 1 ≤ i < n. Given ε > 0 there is a K0 > 0 such that, whenever
K > K0, ∣∣∣∣BK(σi(ν(x)))BK(ν(x))

− 1

∣∣∣∣ < ε

for all x ∈ IK \ JK .

Proof. For 1 ≤ j ≤ n, we define qj (x) by ν(x) = (q1(x), q2(x), . . . , qn(x)).
We note that

BK(σi(ν(x))) = BK(q1(x), . . . , qi(x), qi+1(x)+ qi(x), qi+2(x), . . . , qn(x))

and, hence, if P(u, v) = (u+ v)2n−2i − v2n−2i , we have

∣∣∣∣BK(ν(x))− BK(σi(ν(x)))

BK(ν(x))

∣∣∣∣ =
∣∣∣∣∣
(qi+1(x)+ qi(x))

2n−2i − qi+1(x)
2n−2i

BK(q1(x), . . . , qn(x))

∣∣∣∣∣
= |P(qi(x), qi+1(x)|
BK(q1(x), . . . , qn(x))

≤ |P(qi(x), qi+1(x))|
qi(x)2n−2i+2 + qi+1(x)2n−2i +K

.

So by the second part of Lemma 2.2, we conclude that if K is sufficiently large,
∣∣∣∣BK(ν(x))− BK(σi(ν(x)))

BK(ν(x))

∣∣∣∣ < ε. (5)

From this we see that ∣∣∣∣1 − BK(σi(ν(x)))

BK(ν(x))

∣∣∣∣ < ε

as desired. �

LEMMA 2.11. Given ε > 0, ifK is chosen sufficiently large then, for all x ∈ IK \JK and
all 1 ≤ i < n,

|g′
i (x)− 1| < ε.

Proof. For x ∈ IK(q1, . . . , qn), gi is defined by gi(x) = φb1,b2(x − c2) + c1, for some
constants c1 and c2, where

b1 = b1(x) = 1

BK(ν(x))
and b2 = b2(x) = 1

BK(σi(ν(x)))
.

So g′
i (x) = φ′

b1,b2
(x).
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We wish to show that given ε > 0, ifK is sufficiently large then |1 − g′
i (x)| < ε. To do

this, by Lemma 2.1, we need only show that given any δ > 0 there is a K0 > 0 such that
K > K0 implies ∣∣∣∣b2(x)

b1(x)
− 1

∣∣∣∣ < δ
for all x ∈ IK \ JK .

But ∣∣∣∣b2(x)

b1(x)
− 1

∣∣∣∣ =
∣∣∣∣BK(σi(ν(x)))BK(ν(x))

− 1

∣∣∣∣
and the result follows from Lemma 2.10. �

PROPOSITION 2.12. For K sufficiently large, the homeomorphism gi : IK → IK is a C1

diffeomorphism with derivative 1 at both endpoints. Given ε > 0, there existsK0 such that
wheneverK > K0, we have

|g′
i (x)− 1| < ε

for all x ∈ IK .

Proof. We know that the function f (x) = g′
i (x) exists and is continuous on IK \ JK .

By Lemma 2.9, we can extend it continuously to all of IK by setting f (x) = 1 for x ∈ JK .
We define a C1 function F by

F(x) =
∫ x

0
f (t) dt

and will show that F(x) = gi(x). To see this, let φ(x) = gi(x)−F(x). Then φ(0) = 0 and
φ(x) is a continuous function whose derivative exists and is zero on IK \ JK . Since JK is
countable, φ(JK) has measure zero. But IK \JK has countably many components on each
of which φ is constant. It follows that φ(IK) has measure zero and, hence, φ(IK) = {0}.
Therefore, gi(x) = F(x) is C1.

Lemma 2.11 and the fact that g′
i (x) = 1 for x ∈ JK imply that, forK sufficiently large,

|g′
i (x)− 1| < ε

for all x ∈ IK . The inverse function theorem then implies that gi is aC1 diffeomorphism.�

Recall that we have given the group Z
n the lexicographic ordering, � i.e.

(x1, . . . , xn) � (y1, . . . , yn) if and only if xi = yi for 1 ≤ i < k and xk > yk for
some 0 ≤ k ≤ n. We note that this order is translation invariant; indeed, (x1, . . . , xn) �
(y1, . . . , yn) if and only if (x1 − y1, . . . , xn − yn) � (0, . . . , 0).

It is well known and easy to check that the nilpotent group Nn of n×n lower-triangular
integer matrices with ones on the diagonal acts on Z

n preserving the order �.

THEOREM 2.13. The group Nn is isomorphic to a subgroup of Diff1(M) for M = R, S1

or I . ForM = S1 or I the elements of this subgroup corresponding to the generators {σi}
of Nn may be chosen to be in an arbitrary neighborhood of the identity in Diff1(M).

Proof. We first consider the case that M = I . Given ε > 0, we choose K sufficiently
large that the conclusion of Proposition 2.12 holds. We define � : Nn → Homeo(IK) by
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�(α) = gα . Lemma 2.6 asserts that � is an injective homomorphism. Proposition 2.12
asserts that gi = �(σ1) is a C1 diffeomorphism so, in fact, �(Nn) lies in Diff1(IK).

Define the injective homomorphism � : Nn → Diff1(I) by �(α)(x) =
SK�(α)(x/SK) = SKgα(x/SK). Restricting this action to the interior of I gives an action
on R.

Note that every element of �(Nn) has derivative 1 at both endpoints of I . Gluing
endpoints together gives an action on S1.

In the case M = S1 or I , we clearly have |�(σi)′(x)− 1| < ε by Proposition 2.12 �

Now every finitely-generated, torsion-free nilpotent group N is isomorphic to a
subgroup of Nn for some n (see Theorem 4.12 of [Ra] and its proof). This together with
Theorem 2.13 immediately implies Theorem 1.2.

2.3. C∞ actions on R. For certain nilpotent groups we can give a C∞ action on R.
However, we will see in the next section that for n > 2 there is no C2 action of Nn on R.

Proof of Theorem 1.3. Choose a non-trivial C∞ diffeomorphism α of [0, 1] to itself such
that for j = 0, 1 we have α(j) = j, α′(j) = 1, and α[k](j) = 0, for all k > 1.

Define three C∞ diffeomorphisms f, h0, h1 : R → R by

f (x) = x − 1,

h0(x) = α(x −m)+m for x ∈ [m,m+ 1],
h1(x) = αm(x −m)+m for x ∈ [m,m+ 1].

Then it is easy to check that h0 and h1 commute, f and h0 commute and [f, h1] =
f−1h−1

1 f h1 = h0. Hence, the group generated by f and h1 is nilpotent with degree
of nilpotency 2.

Given any n > 0, we will inductively define hk for 0 ≤ k ≤ n in such a way that
hk(m) = m for m ∈ Z, [f, hk] = hk−1 for k > 1 and hihj = hjhi . We do this by letting
hk(x) = x for x ∈ [0, 1] and recursively defining h−1

k . We first define it for x > 1 by

h−1
k (x) = h−1

k−1f
−1h−1

k f (x) for x > 1.

Note this is well defined recursively because if x ∈ [n, n+ 1] the right-hand side requires
only that we know the value of h−1

k (f (x)) and f (x) ∈ [n − 1, n]. We also note that
h−1
k = h−1

k−1f
−1h−1

k f implies hk−1h
−1
k = f−1h−1

k f , so hk−1(x) = f−1h−1
k f hk(x) for

all x > 1.
Negative values of x are handled similarly. We define

h−1
k (x) = fhk−1h

−1
k f−1(x) for x < 0.

This is well defined recursively for x < 0 because if x ∈ [−n,−n+ 1] the right-hand side
only requires that we know the value of h−1

k (f−1(x)) and f−1(x) ∈ [−n + 1,−n + 2].
Again h−1

k = f hk−1h
−1
k f−1 implies f−1h−1

k f = hk−1h
−1
k so hk−1(x) = f−1h−1

k f hk(x)

for all x < 0.
We further note that, from this definition, one easily sees inductively that hk(x) = x for

x ∈ [−1, 0] for all k ≥ 2. Finally we observe that this implies for x ∈ [0, 1] that we have
f−1h−1

k f hk(x) = x so f−1h−1
k f hk(x) = hk−1(x).
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It is clear from the relations [f, hk] = hk−1 for k > 1, [f, h0] = id and hihj = hjhi

that the group generated by f and the hk is nilpotent of degree at most n. The degree of
nilpotency is at least n since h0 is a non-trivial n-fold commutator. �

If n = 2, the group G previously constructed is isomorphic to the group N3 of 3 × 3
lower triangular matrices. In general, G is isomorphic to a semi-direct product of Zn and
Z, where the Z action on Zn is given by the n×n lower triangular matrix with ones on the
diagonal and subdiagonal and zeroes elsewhere. It is metabelian, i.e. solvable with derived
length two. We will see later that this is a necessary condition for a smooth action on R.

2.4. Residually torsion-free nilpotent groups. In this section we give a construction of
actions on R of a fairly large class of groups. These actions will typically not be irreducible.

Definition 2.14. A group G is called residually torsion-free nilpotent if, for every non-
trivial element g ∈ G, there is a torsion-free nilpotent group N and a homomorphism
φ : G → N such that φ(g) is non-trivial. Equivalently, the intersection of every term in
the lower central series for G is trivial.

Proof of Theorem 1.6. Since G is finitely generated, it contains countably many elements.
Let {gm | m ∈ Z

+} be an enumeration of the non-trivial elements ofG. Let φm : G → Nm

be the homomorphism to a torsion-free nilpotent group guaranteed by residual nilpotence,
so φm(gm) is non-trivial. Replacing Nm by φm(G) if necessary we may assume Nm is
finitely generated.

Let Im = [1/(m+ 1), 1/m]. Using Theorem 1.2, choose an effective action of Nm by
C1 diffeomorphisms on the interval Im. Recall that this action has the property that the
derivative of every element is 1 at the endpoints of Im. In addition, by Theorem 1.2, we
may choose this action so that the derivative of φm(gi) satisfies

|φm(gi)′(x)− 1| < 1

2m

for all x ∈ Im and all 1 ≤ i ≤ m.
We then define the action of G by g(x) = φm(g)(x) for x ∈ Im and g(0) = 0 for all

g ∈ G. Clearly each gm is a C1 diffeomorphism with g′
m(0) = 1. The action is effective

because φm(g) acts non-trivially on Im.
Since every element of G has derivative 1 at both endpoints of I , we may glue the

endpoints together to give a C1 action on S1. �

It is an old result of Magnus that free groups and surface groups are residually torsion-
free nilpotent. In particular, Theorem 1.6 gives a C1 action of surface groups on R, I and
S1: we do not know another proof that such actions exist.

Another interesting example is the Torelli group Tg, which is defined to be the kernel
of the natural action of the mapping class group of a genus g surface 
g on H1(
g,Z).
For g ≥ 3, Johnson proved that Tg is finitely generated and Bass and Lubotzky proved
that Tg is residually torsion-free nilpotent. Similarly, the kernel of the action of the
outer automorphism group of a free group is finitely generated and residually torsion-free
nilpotent. Hence, by Theorem 1.6, both of these groups are subgroups of Diff1(M) for

https://doi.org/10.1017/S0143385702001712 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385702001712


1480 B. Farb and J. Franks

M = R, I, S1. In particular, the Torelli group is left-orderable. It is not known whether
or not mapping class groups are left-orderable, although Thurston has proven that braid
groups are left-orderable.

3. Restrictions on C2 actions
In the previous sections we showed that actions by nilpotent subgroups of
homeomorphisms are abundant. By way of contrast in the next two sections, we show
that nilpotent groups of C2 diffeomorphisms or PL homeomorphisms are very restricted.
In this section we focus on C2 actions.

3.1. Kopell’s Lemma. Our primary tool is the following remarkable result of Nancy
Kopell, which is Lemma 1 of [K].

THEOREM 3.1. (Kopell’s Lemma) Suppose f and g are C2 orientation-preserving
diffeomorphisms of an interval [a, b) or (a, b] and fg = gf . If f has no fixed point
in (a, b) and g has a fixed point in (a, b), then g = id.

We will primarily use a consequence of this result which we now present.

Definition 3.2. We will denote the frontier of Fix(f ) by ∂ Fix(f ), i.e. the set ∂ Fix(f ) =
Fix(f ) \ Int(Fix(f )).

LEMMA 3.3. Suppose f and g are commuting orientation-preserving C2 diffeo-
morphisms of R, each of which has a fixed point. Then f preserves each component of
Fix(g) and vice versa. Moreover, ∂ Fix(g) ⊂ Fix(f ) and vice versa. The same result is true
for C2 diffeomorphisms of a closed or half-open interval, in which case the requirement
that f and g have fixed points is automatically satisfied by an endpoint.

Proof. The proof is by contradiction. AssumeX is a component of Fix(g) and f (X) �= X.
Since f and g commute, f (Fix(g)) = Fix(g) so f (X) is some component of Fix(g).
Hence, f (X) �= X implies f (X) ∩X = ∅. Let x be an element of X and, without loss of
generality, assume f (x) < x. Define

a = lim
n→∞ f n(x) and b = lim

n→−∞ f n(x).

Then at least one of the points a and b is finite since f has a fixed point. Also a and b
(if finite) are fixed under both f and g, and f has no fixed points in (a, b). Thus Kopell’s
Lemma (Theorem 3.1) implies that g(y) = y for all y ∈ (a, b) contradicting the hypothesis
that X is a component of Fix(g). The observation that ∂ Fix(f ) ⊂ Fix(g) follows from
the fact that components of Fix(f ) are either points or closed intervals so x ∈ ∂ Fix(f )
implies that either {x} is a component of Fix(f ) or x is the endpoint of an interval which is
a component of Fix(f ) so, in either case, the fact that g preserves this component implies
x ∈ Fix(g).

The proof in the cases that f and g are diffeomorphisms of a closed or half-open interval
is the same. �

Another useful tool is the following folklore theorem (see, e.g., [FS] for a proof).
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THEOREM 3.4. (Hölder’s Theorem) Let G be a group acting freely and effectively by
homeomorphisms on any closed subset of R. ThenG is abelian.

3.2. Measure and the translation number. A basic property of finitely generated
nilpotent groups of homeomorphisms of a one-manifold M is that they have invariant
Borel measures. Of course in the case M = I or T 1, this follows from the fact that
nilpotent groups are amenable and any amenable group acting on a compact Hausdorff
space has an invariant Borel probability measure. In the case M = R, this is a special case
of a result due to Plante [P] who showed that any finitely generated subgroup of Homeo(R)
with polynomial growth has an invariant measure which is finite on compact sets.

We summarize these facts in the following theorem.

THEOREM 3.5. Let M = R, S1 or I . Then any finitely generated nilpotent subgroup of
Homeo(M) has an invariant Borel measure µ which is finite on compact sets.

If one has an invariant measure for a subgroup of Homeo(R), it is useful to consider the
translation number which was discussed by Plante in [P]. It is an analogue of the rotation
number for circle homeomorphisms.

SupposeG is a subgroup of Homeo(R) which preserves a Borel measure µ that is finite
on compact sets. Fix a point x ∈ R and for each f ∈ G define

τ (f ) =



µ([x, f (x)) if x < f (x)

0 if x = f (x)

−µ([f (x), x)) if x > f (x).

The function τ : G → R is called the translation number. The following properties
observed by Plante in [P] are easy to verify.

PROPOSITION 3.6. The translation number τ : G → R is independent of the choice of
x ∈ R used in its definition. It is a homomorphism from G to the additive group R. For
any f ∈ G the set Fix(f ) �= ∅ if and only if τ (f ) = 0.

3.3. Proof of Theorem 1.1.

THEOREM 1.1. Any nilpotent subgroup of Diff2(I), Diff2([0, 1)) or Diff2(S1) must be
abelian.

Proof. Since it suffices to show the action is abelian when restricted to any invariant
interval, we may assume our action is irreducible.

The case M = I or M = [0, 1). The argument we present here is essentially the same as
that given by Plante and Thurston in (4.5) of [PT]. We give it here for completeness and
because it is quite simple.

Consider the restriction of N to (0, 1). If no element of N has a fixed point then
N is abelian by Hölder’s Theorem. Hence we may assume that there is a non-trivial
element f with a fixed point. Thus, if h is in the center of N , Lemma 3.3 implies that
Fix(h) ⊃ ∂ Fix(f ) which is non-empty. Another application of Lemma 3.3, states that the
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non-empty set ∂ Fix(h) ⊂ Fix(g) for any g ∈ N . We have found a global fixed point and
contradicted the assumption that N acted irreducibly. We conclude that N is abelian. �

The case M = S1. Let N < Diff2(S1) be nilpotent. As we observed in Theorem 3.5 there
is an invariant measure µ0 for the action. If any one element has no periodic points then
since it is C2 it is topologically conjugate to an irrational rotation by Denjoy’s Theorem
(see, e.g., [dM]). Irrational rotations are uniquely ergodic so the invariant measure must
be conjugate to Lebesgue measure. It follows that every element is conjugate to a rotation
so N is abelian. Hence, we may assume that every element of N has periodic points.

For a homeomorphism of the circle with periodic points, every point which is not
periodic is wandering and, hence, not in the support of any invariant measure. We conclude
that the periodic points of any element contain the support P of the measure µ0. It follows
that P is a subset of the periodic points of every element of N .

SinceN preservesµ0, the group N̂ of all lifts to R of elements ofN preserves a measure
µ which is the lift of the measure µ0 on S1. We can use µ to define the translation number
homomorphism τµN̂ → R as previously described.

We observe that commutators of elements in N̂ must have translation number 0.
The covering translations in N̂ are in its center so if f̂ and ĝ are lifts of f and g,
respectively, then [f̂ , ĝ] is a lift of [f, g]. Since τµ([f̂ , ĝ]) = 0 implies [f̂ , ĝ] has a fixed
point, we may conclude that every element of the commutator subgroup N1 = [N,N]
must have a fixed point. Hence, any commutator fixes every element of P because it fixes
one point and, hence, all its periodic points are fixed.

If N is not abelian, there are f and g in N such that h = [f, g] is a non-trivial element
of the center of N . Conjugating the equation f−1g−1fg = h by f gives g−1fgf−1 = h,
so fgf−1 = hg. Repeatedly conjugating by f gives f ngf−n = hng. From this we get
g−1f ng = hnf n and by repeatedly conjugating with g we obtain g−mf ngm = hmnf n.
We conclude g−mf ngmf−n = [gm, f−n] = hmn. Now let x ∈ P and let m and n
be its period under the maps f and g, respectively. Then h, f n and gm all fix the
point x. If we split the circle at x, we get an interval and a C2 nilpotent group of
diffeomorphisms generated by h, f n and gm. By Theorem 1.1, this group is abelian.
Hence, [gm, f−n] = hmn is the identity. But the only finite-order orientation-preserving
homeomorphism of an interval is the identity. We have contradicted the assumption that N
is not abelian. �

3.4. The proof of Theorem 1.5.

THEOREM 1.5. If N is a nilpotent subgroup of Diff2(R) and every element of N has a
fixed point, then N is abelian.

Proof. We first show that there is a global fixed point for N . Consider Fix(h) the fixed
point set of some non-trivial element h of the center of N . We can apply Lemma 3.3 and
observe that for any f ∈ N , ∂ Fix(h) ⊂ Fix(f ). Thus the non-empty set ∂ Fix(h) is fixed
pointwise by every element of N .
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If a ∈ Fix(h) then both [a,∞) and (−∞, a] are invariant by N and each is
diffeomorphic to [0, 1). We can thus apply Theorem 1.1 and conclude that the restriction
of N to each of them is abelian. �

3.5. The proof of Theorem 1.4.

THEOREM 1.4. Every nilpotent subgroup of Diff2(R) is metabelian, i.e. has an abelian
commutator subgroup.

Proof. Let N < Diff2(R) be nilpotent. By Theorem 3.5 there is an invariant Borel
measure µ on R which is finite on compact sets and from it we can define a translation
number homomorphism τµ : N → R. According to Proposition 3.6, if N0 is the
kernel of τµ then every element of N0 has a fixed point. Hence, the result follows from
Theorem 1.5. �

4. PL actions
Recall that a piecewise linear homeomorphism of a one-manifoldM is a homeomorphism
f for which there exist finitely many subintervals of M on which f is linear. Let PL(M)
denote the group of piecewise-linear homeomorphisms ofM . This group has been studied
by several authors (see, for example, [BS] and [T2]).

THEOREM 4.1. Any nilpotent subgroup of PL(I) or PL(S1) is abelian.

Proof. Suppose first that N < PL(I). Note that there is a natural homomorphism
ψ : PL(I) → R

∗ × R
∗ given by

ψ(f ) = (f ′(0), f ′(1)).
As R × R is abelian, ψ(f ) = (1, 1) for any non-trivial commutator in PL(I).

If N is not abelian, then there is a non-trivial commutator f lying in the center of N .
Hence, f ′(0) = 1, so that f is the identity on some interval [0, a] which we take to be
maximal. Since every element ofN commutes with f , we must have that g([0, a]) = [0, a]
for every g ∈ N . But then a is also a fixed point of every element of N , so that f is a
non-trivial commutator of elements which fixes a. We conclude that f ′(a) = 1 also.
Hence, f is the identity on [a, b] for some b > a and we contradict the maximality of a.
We conclude that the center of N has no non-trivial commutator, so N is abelian.

Now if N < PL(S1) then the proof is nearly word for word identical to the proof
of Theorem 1.1. We note that Denjoy’s Theorem (see [dM]) is also valid for PL
homeomorphisms of the circle, i.e. any PL homeomorphism of S1 without periodic points
is topologically conjugate to an irrational rotation. With that observation the proof that
a PL action of N on S1 is abelian is identical to the proof of Theorem 1.1 except that
the appeal to Theorem 1.1 in the case of the interval is replaced by an appeal to the
first part of this theorem, namely the fact that a PL action of a nilpotent group on I is
abelian. �
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