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Disruption of turbulence due to particle loading
in a dilute gas–particle suspension
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The modification of fluid turbulence due to suspended particles is analysed using
direct numerical simulations for the fluid turbulence and discrete particle simulations
where the point-particle approximation is used for the particle force on the fluid. Two
values of the Reynolds number based on the channel width h and the average gas
velocity ū, (ρf ūh/ηf ) = 3300 and 5600 are considered, where ρf and ηf are the gas
density and viscosity. The particle Reynolds number based on the root mean square
of the difference in the particle and fluid velocities is in the range 4–15. The particle
volume fraction is small, in the range 0–3.5 × 10−3, the mass loading is varied in
the range 0–13.5 and the particle Stokes number (ratio of particle relaxation time
and fluid integral time) is varied in the range 1–420. Multiple models for the force
on the particles are examined, the Stokes drag law, the Schiller–Naumann correlation,
a correction to determine the ‘undisturbed’ fluid velocity at the particle centre,
the lift force and wall corrections. In all cases, as the particle volume fraction is
systematically increased, there is a discontinuous decrease in the turbulence intensities
at a critical volume fraction. The mean square velocities and the rate of production
of turbulent energy decrease by 1–2 orders of magnitude when the volume fraction is
increased by 10−4 at the critical volume fraction. There is no compensatory increase
in the particle fluctuating velocities or the energy dissipation rate due to the drag force
on the particles, and there is a significant decrease in the total fluid energy dissipation
rate at the critical volume fraction. This shows that the turbulence collapse is due
to a catastrophic reduction in the turbulent energy production rate. This is contrary
to the current understanding that turbulence attenuation is caused by the enhanced
dissipation due to particle drag.

Key words: particle/fluid flow, suspensions

1. Introduction
The modification of fluid turbulence by the particles in a gas–particle suspension is

an active area of research, due to the importance of these suspensions in geophysical
phenomena such as snowstorms and sand avalanches, as well as in industrial
applications involving fluidisation and pneumatic conveying. It is well established,
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since the early work of Gore & Crowe (1989) and Elghobashi & Truesdell (1993), that
there is significant turbulence modification even when the particle volume fraction is
in the range 10−4–10−3. The initial studies were primarily experimental, and relied on
direct measurements of average and local velocity statistics. Advances in high-speed
computation subsequently facilitated direct simulations of turbulent flows with large
numbers of suspended particles. There is now growing evidence that large particles
enhance turbulent fluctuations due to the formation of a wake behind the particles,
whereas small particles attenuate turbulence due to increased dissipation by particle
drag. However, sharp criteria delineating regimes of turbulence intensification or
attenuation, as well as the extent of turbulence modification, are not yet available.
Some of the earlier studies are first summarised, followed by a discussion of the
objective of the present study.

In an early review, Gore & Crowe (1989) analysed the experiments done on
turbulence modification in multi-phase flows, and proposed a classification using a
single critical parameter dp/L where dp is the diameter of the particle and L is the
integral length scale of turbulence. They reported that turbulence is attenuated for
(dp/L) < 0.1, and augmented for (dp/L) > 0.1. Hetsroni (1989) was perhaps the first
to suggest that particles with low Reynolds number suppress the turbulence, while
particle with high Reynolds number increase turbulence due to the wake formation.
In a review of the experimental and numerical results, Tanaka & Eaton (2008) have
introduced the particle momentum number (Pa),

Pa=
1

18
Re2

L

Rep

ρp

ρf

(
dp

L

)3

, (1.1)

to classify and understand different regimes of turbulence modification in the particle
laden flows. Here, ρp and ρf are the mass densities of the particle and fluid, L is the
characteristic flow scale, dp is the particle diameter, ReL is the flow Reynolds number
and Rep is the particle Reynolds number. They proposed that the particle momentum
number, and not the Reynolds number, determines the turbulence modification.
For particles with extremely small Pa, there is no turbulence modification. Fluid
turbulence is augmented at small Pa, attenuated at moderate Pa and again augmented
at high Pa.

In numerical simulations, Li & McLaughlin (2001) studied the effect of particle
feedback on fluid turbulence and found that at small mass loading, the particles
tend to increase the turbulent intensities, while they suppress the turbulence at high
mass loadings. They also found that particle–particle collisions tend to reduce the
accumulation of the particles at the wall, even for inelastic collisions. Vreman et al.
(2009) performed large eddy simulations (LES) of the particle-laden turbulent flow in
a vertical riser with a volume fraction of 1.5 %. The presence of a large number of
interacting particles through collisions led to a strong modulation of the turbulence in
the channel. Capecelatro, Desjardins & Fox (2015, 2018) studied the effect of particle
clustering on the turbulence modification in a channel, and suggested a transition from
a dilute limit where mean-shear production is the dominant mechanism of turbulence
generation, to a dense limit where particle-induced fluctuations are the dominant
mechanism. Vreman (2015) studied the effect of wall roughness on turbulence
modification, and concluded that turbulence attenuation is enhanced due to wall
roughness. The turbulence attenuation due to an increase in particle loading has also
been reported in more recent simulations (Vreman 2015; Capecelatro et al. 2018).
A gradual decrease in the turbulence intensities with increasing particle loading is
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considered to be caused by the increasing dissipation of energy due to the particles
compensating for the transfer of energy to turbulent fluctuations. Reynolds-averaged
equations have been developed by Capecelatro, Desjardins & Fox (2016) for
particle–gas suspension flows in a vertical channel at high mass loading which include
the particle-phase turbulent kinetic energy. Richter (2015) found that the presence
of particles reduces the production of kinetic energy at all wavenumbers, and that
the turbulence production is much larger than the exchange of energy between the
fluid and the particles. Wang & Richter (2019) reported that the high inertia particles
dampen the large scale vortices, whereas low inertia particles amplify the large scale
vortices and reduce the transition Reynolds number.

The broad consensus is that small particles moving through the fluid at low particle
Reynolds number tend to attenuate turbulence due to the drag force, whereas large
particles moving at high Reynolds number increase turbulence due to the wake effect.
The turbulence attenuation is considered to be a gradual process as the particle
loading increases, due to the increase in the dissipation of energy due to the particle
drag. Here, we attempt to examine the turbulence attenuation as a function of particle
loading in a vertical channel. The force exerted by a particle on the fluid is modelled
as a point force, and the particle Reynolds number is sufficiently small that there
could a steady separation bubble but no vortex shedding at the rear.

In order to detect precisely the changes in the turbulence attenuation due to the
particles, a large number of simulations are carried out for small increments in the
particle loading at different particle Stokes numbers and for two different forms
of the drag law. The channel Reynolds number based on the gas density, average
flow velocity and the channel width is maintained at a two relatively low values of
approximately 3300 and 5600 to enable the necessary number of computations in
reasonable time. The particle Reynolds number based on the particle mean velocity
and diameter has values of 60 and 103. Taneda (1956) has shown that, at these
Reynolds numbers, there is a steady separation bubble at the rear (which appears at a
Reynolds number of 24), but no unsteady vortex shedding (which starts at a Reynolds
number of 130). The particle Reynolds number based on the channel-averaged
root mean square particle–fluid velocity difference is in the range 4–15 for all the
Reynolds and Stokes numbers reported here. The particle Stokes number based on
the particle relaxation time, the bulk velocity and channel width is varied in the
range 1–420. The particle size is comparable to the Kolmogorov scale, so that the
point-particle approximation is used for the particle force on the fluid. The particle
volume fraction is varied in the range 0–3.5 × 10−3, and the mass loading is in
the range 0–13.6. The parameters used here are compared with those in earlier
studies in table 1. The channel Reynolds number and the friction Reynolds number
studied here are comparable to or lower than those in earlier studies, and the particle
volume fraction is comparable to those used in earlier studies. However, the range
of particle Stokes numbers and mass loading is significantly higher than those in
previous studies.

In contrast to earlier studies, the focus of the present study is to re-examine the
conventional wisdom of a continuous decrease in the turbulence intensities with the
particle volume fraction, and whether the decrease in the turbulence intensities is a
result of an increase in the dissipation due to the drag force on the particles. Direct
numerical simulation (DNS) of the Navier–Stokes equations is used for the fluid
turbulence, and discrete particles are simulated using Newton’s laws of motion. The
fluid–particle interaction is modelled using drag and lift forces based on the difference
between the particle and fluid velocities at the particle location.
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The particle size is comparable to the Kolmogorov scale for the fluid turbulence,
and the point-particle approximation is used for the force exerted by the particles on
the fluid. Instead of the ratio of the particle diameter and Kolmogorov scale, recent
studies (Balachandar 2009; Balachandar & Eaton 2010) suggest that the point-particle
approximation can be used when the ratio of the Kolmogorov time and the particle
relaxation is small. The ratio of the particle relaxation time and the Kolmogorov time,
which is a Stokes number based on the Kolmogorov time, is (ρp/18ρf )(dp/η)

2 when
the mass density of the fluid is much larger than that of the particle, where (dp/η) is
the ratio of the particle diameter and the Kolmogorov scale η. Mehrabadi et al. (2018)
compared fully resolved particle simulations with point-particle simulations, and found
that, even for (d/η) = 1, the results for the energy dissipation rate and the kinetic
energy are accurately predicted by the point-particle simulation provided the Stokes
number based on the Kolmogorov time is O(100). They also found that it is essential
to correct for the undisturbed velocity at the particle position while calculating the
particle drag. The turbulent Stokes number based on the Kolmogorov scale in our
study is O(100); therefore, we have used the point-particle approximation along with
the algorithm of Esmaily & Horwitz (2018) for the undisturbed fluid velocity at the
particle position while calculating the drag.

While it is desirable to use the most accurate force model for the particle force,
it should be noted that particle force models are still evolving. The force models
have become relatively advanced in incorporating the correction for the inertial
effects at high Reynolds number (Naumann & Schiller 1935), the correction for the
‘undisturbed’ velocity at the particle centre (Esmaily & Horwitz 2018; Mehrabadi et al.
2018), lift due to the fluid strain rate and the relative velocity between particle and
fluid (Saffman 1965; Wang et al. 1997; Zhang & Ahmadi 2000) and the correction
to the drag and lift forces due to the presence of a nearby wall (Zeng et al. 2009).
The exact regularised point particle (ERPP), a rigorous method for the regularisation
of the singularities in a point-particle description, has been developed (Gualtieri,
Battista & Casciola 2017; Battista et al. 2018) and extended to incorporate the
effect of a nearby wall (Battista et al. 2019). A comparison of simulations using the
point-particle approximation and experimental results by Wang et al. (2019) showed
that the results are in good agreement when the volume loading is 3× 10−6, but the
particle clustering is under-predicted at a higher volume loading of 5 × 10−5. More
recently, Costa, Brandt & Picano (2020) carried out a comparison of point-particle
simulations with fully resolved particle simulations for inertial particles in a turbulent
channel flow. They found that the turbulence statistics are well captured by the
point-particle simulations in the bulk, but it is necessary to include the effects of
the Saffman lift force in order to capture the near-wall dynamics. Moreover, the
Saffman expression for the lift force provides a better prediction in comparison to
more sophisticated lift models.

Despite the large amount of work done, further advances are expected in the
force model, which currently do not incorporate the corrections to the torque on
a particle due to inertia, the undisturbed vorticity at the particle centre or due to
a nearby wall. Advances in computation will result in further refinement of the
models that are currently available. The objective is to uncover phenomena that are
independent of the force model used, rather than do a computation with a force
model which is currently the most sophisticated but which may be further refined in
the future. The approach here is to study turbulence modification at the large scale
using different models for the particle force, and examine whether the collective effect
of particles on turbulence modification is qualitatively the same and independent of
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the force model. Therefore, multiple proposed models for the drag and lift force on
the particles have been used in the computations; these are described in § 2.2. The
qualitative and quantitative natures of the turbulence attenuation due to these models
are examined. The simulation procedures for the fluid and particles are discussed
in the next section, followed by a discussion of the results in § 3. The important
conclusions are summarised in § 4.

2. Formulation
2.1. Fluid equations

The fluid is an incompressible Newtonian fluid described using the Navier–Stokes
mass and momentum equations,

∇ · u= 0, (2.1)
∂u
∂t
+ u · ∇u=−

1
ρf
∇p+ ν∇2u+

1
ρf

f (x, t), (2.2)

where u(x, t) is the velocity, ρf is the fluid density, p(x, t) is the pressure field, ν is
the kinematic viscosity and f (x, t) is the reverse force on the fluid exerted by the
particles, which is discussed in § 2.2. In all equations, bold type is used to represent
vectors. The volume fraction of particles is of O(10−4), so the volume occupied
by the particle is neglected in the fluid mass conservation equation. Hydrodynamic
interactions between particles are not explicitly included in the formulation. However,
the point force due to a particle in the fluid momentum equations will result in an
effect on neighbouring particles, mediated by the fluid flow, which is turbulent. The
force density due to the particles, f (x, t), is the negative of the sum of the drag and
lift forces on the particles,

f (x, t)=−
∑

I

(FD
I +FL

I )δ(x− xI), (2.3)

where xI is the position of particle I, FD
I and FL

I are the drag and lift forces on the
particle I, specified later in § 2.2, mp is the particle mass and δ(x− xI) is the Dirac
delta function in three dimensions.

Brief details of the simulation procedure are provided in appendix A, the
interpolation procedure for calculating the fluid velocity at the particle location
is discussed in § A.1 and the projection procedure for the particle force on to the
fluid grid points is explained in § A.2. The standard methods for the interpolation of
the particle force on the fluid grid points are the particle-in-cell method, where the
force due to all the particles in a (usually cubic) control volume around a grid point
is imposed at the grid point (Crowe 1982; Boivin, Simonin & Squires 1998) and the
projection on nearest neighbours (PNN) method, where the particle force is projected
onto the nearest neighbouring grid points (Squires & Eaton 1990; Elghobashi &
Truesdell 1993). Here, a variant of the PNN method is used, where three coordinate
planes with origin at the particle location are used to divide the control volume into
eight cuboids, and the fraction of the force projected onto a grid point is the ratio
of the volume of the cuboid opposite to the grid point and the total volume. This
has the advantage that the force on a fluid grid point varies continuously as the
particle crosses the surface of a control volume. The details of the implementation
are provided in § A.2, and the results of the projection procedure are validated against
the results obtained using a delta function at the particle location.
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2.2. Particle equations
Discrete spherical particles are simulated using Newton’s law for the evolution of the
particle velocity,

mp
dvI

dt
=FD

I +FL
I +
∑
I 6=J

FIJ +FIw +mpg, (2.4)

where vI is the particle velocity, mp is the particle mass, FIJ is the interaction force
exerted on particle I by particle J, FIw is the force exerted on the particle I due to
the wall in a particle–wall interaction, g is the gravitational acceleration and FD

I and
FL

I are the drag and lift forces on the particle. The drag force is given by the Stokes
drag law at small Reynolds number,

FD
I = 3πηf dp(u(xI, t)− vI). (2.5)

Several nonlinear equations proposed earlier have been used to study the drag and lift
forces on a particle.

(i) The most commonly used drag law that incorporates the correction due to inertia
at relatively low Reynolds number, called the Schiller–Naumann correlation (Naumann
& Schiller 1935), is of the form

FD
I = 3πηf dp(uf (xI, t)− vI)(1+ 0.15Re0.687

p ), (2.6)

where dp is the particle diameter and the particle Reynolds number Rep = (ρf |uf −

vI|dp/ηf ).
(ii) In earlier studies, the velocity uf (xI, t) in (2.6) was considered to be the

fluid velocity at the particle location. It has now been realised that the appropriate
velocity is the ‘undisturbed’ fluid velocity at the particle position (Esmaily & Horwitz
2018; Mehrabadi et al. 2018), which is the far-field velocity extrapolated to the
particle centre in the absence of the particle. The undisturbed fluid velocity at the
particle location is determined here using the scheme of Esmaily & Horwitz (2018).
The undisturbed fluid velocity uf is defined as the difference between the actual
interpolated fluid velocity u(xI, t) and a ‘cell’ velocity u(i)c , which is the velocity of
a volume of fluid of size comparable to the computational cell i subjected to a point
force. The cell velocity u(i)c is determined using the evolution equation

3mc

2
du(i)c

dt
=−3πηf dcK(i)

t u(i)c −F(i), (2.7)

where mc is the mass of fluid in the cell, dc is the effective cell diameter, F(i) is
the sum of the fluid drag and lift forces in cell i due to the particle and K(i)

t is a
correction factor for the drag force, which is expressed as K(i)

t = (K
(i)
p Cr/K(i)

p C(i)
t ). Here,

the correction factor K(i)
c accounts for the non-spherical shape of the computational

cell, Cr incorporates the correction to the Stokes drag law for the cell due to finite
Reynolds number, K(i)

p accounts for the distribution of the drag force among different
computational cells and C(i)

t is a correction for the finite residence time of the particle
in the cell. The algorithm provided in Esmaily & Horwitz (2018) is used here for
determining the undisturbed fluid velocity.

(iii) When the particles are close to solid walls, there is a correction to the drag
force on the particle due to the presence of the wall. Two kinds of corrections were
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developed for the drag force calculated in Zeng et al. (2009), that due to a stationary
particle in a shear flow, and due to a particle moving parallel to a wall in a stationary
fluid. The two expressions are nearly identical when the distance between the particle
surface and the wall is greater than approximately 0.6dp, but the latter is much larger
than the former when the distance from the wall is small. In order to use the larger
estimate for the effect of a solid wall on the drag force, the following expression for
the force due to a particle moving parallel to a stationary wall from Zeng et al. (2009)
is used:

FD
I = 3πηf dp(uf (xI, t)− vI)(1+ αReβp )

×

(
1.028−

0.07
1+ 4(δ/dp)2

−
8

15
ln
(

270(δ/dp)

135+ 256(δ/dp)

))
, (2.8)

where δ is the distance between the wall and the location on the particle surface
closest to the wall, and α and β are parameters which depend on δ and reduce to
0.15 and 0.687 for δ� 1,

α = 0.15(1− exp(−
√
δ/dp)),

β = 0.687+ 0.313 exp(−2
√
δ/dp).

}
(2.9)

(iv) The Saffman lift force (Saffman 1965; Wang et al. 1997; Zhang & Ahmadi
2000) is

FL
I =

1.61ηf d2
p(dux/dy)|vI − uf |

|dux/dy|1/2ν1/2
, (2.10)

where ux is the streamwise velocity, y is the cross-stream direction and ν is the
fluid kinematic viscosity. There are two important correction factors that have been
proposed for the Saffman lift force. The first correction factor is due to the Reynolds
number ReG based on the strain rate and particle diameter, in contrast to the particle
Reynolds number Rep which is proportional to the relative velocity between the
particle and fluid (Wang et al. 1997). The lift force depends on the parameter
(Re1/2

G /Rep); it decreases to zero for (Re1/2
G /Rep) � 1 and has the maximum value

expressed in (2.10) for (Re1/2
G /Rep)� 1. In the present analysis, the Reynolds number

ReG based on the maximum strain rate at the wall is approximately 17, and so the
ratio (Re1/2

G /Rep) is less than 0.1. In this case, the correction factor is proportional
to −32π2(Re1/2

G /Rep)
5 log (Re2

p/ReG) (McLaughlin 1993; Cherukat, McLaughlin &
Graham 1994), which is approximately 1.5 % of the Saffman lift. Therefore, the lift
force is primarily due to the translation of the particle relative to the fluid.

(v) There is a second correction to the lift force due to the presence of a nearby
wall. As discussed above, for (Re1/2

G /Rep)� 1, the lift due to particle translation is
dominant. Therefore, the expression for the lift force for a particle translating parallel
to the wall (Zeng et al. 2009) has been used,

FL
I =

πρ|vp|
2d2

p

8
( f (y/dp, Rep)

+ (0.313+ 0.812 exp (−0.125Re0.77
p )− f (0.5, Rep))e(−11(δ/δc)

1.2)), (2.11)
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where

f (y/dp, Rep)= (1+ 0.329Rep + 0.00485Re2
p)C0(RepL/dp)(L/dp)

[−0.9 tanh (0.0022Rep)],

δc = 3 exp (−0.17Re0.7
p ),

C0(RepL/dp) = (9/8+ 5.79× 10−6(RepL/dp)
4.58)

× exp (−0.292RepL/dp) for 0 6 RepL/dp 6 10,
= 8.94(RepL/dp)

−2.09 for RePL/dp > 10.


(2.12)

The particles are considered as smooth rigid hard spheres, and the particle
interactions are modelled as instantaneous elastic collisions. In inter-particle collisions,
the velocity of the centre of mass is unaltered. The component of the relative velocity
(difference in the velocities of the two colliding particles) in the direction of the
line joining the centres of the particles at impact is reversed, and the component
of the relative velocity perpendicular to the line joining centres is unchanged. It
can be shown that these relations between the pre- and post-collisional velocities
conserve momentum and energy. Inelastic collision models, where the magnitude
of the post-collisional velocity is less than that of the pre-collisional velocity, have
also been widely used. Here, the focus is on the turbulence modification due to the
particle drag, and so the simplest elastic collision model has been used. The specular
reflection model is used for particle–wall collisions, where the component of the
velocity perpendicular to the wall is reversed in a collision, while the component of
the velocity parallel to the wall is unchanged.

The particle equations are solved using an explicit time-stepping method with the
same time increment as that for the fluid velocity field. An event-driven molecular
dynamics algorithm (Allen & Tildesley 2017) is used for the particle collisions, where
the location of an impending collision is predicted based on the current positions and
velocities of all the particles, and the simulation is advanced in time to execute the
impending collision. The total number of particles in the simulation is proportional to
the volume fraction of particles, and 8000 particles are used when the volume fraction
is 10−3.

2.3. Flow configuration
The configuration used for the simulations, shown in figure 1, consists of a rectangular
box of length 4πh in the flow (x) direction, h in the cross-stream (y) direction and
(2πh/3) in the spanwise (z) direction. Periodic boundary conditions are used in the
flow and the spanwise direction, and there are solid walls in the y direction. The gas
flow is driven by a pressure gradient in the x direction, and the pressure gradient is
adjusted so that the average gas flow velocity ū is the same in all the simulations.
The Reynolds number Reb for the unladen flow is defined as (ρf ūh/ηf ), where ρf

and ηf are the fluid density and viscosity. The Reynolds number for the unladen
flow is maintained at a fixed value of Reb = 3300 and Reb = 5600 for the two sets
of simulations. When there is a change in the wall shear stress due to the addition
of particles, the pressure gradient is adjusted so that the channel Reynolds number
unchanged.

In order to resolve the smallest scales at Reb = 3300, 128 Fourier modes are used
in the flow direction, 64 Fourier modes in the spanwise direction and 65 Chebyshev
modes in the cross-stream (y) direction. For Reb = 5600, 192 Fourier modes are
used in the flow direction, 160 Fourier modes in the spanwise direction and 129
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x

z

y

h

4πh

2πh/3

FIGURE 1. Configuration and coordinate system used for the simulations.

Chebyshev modes in the cross-stream (y) direction have been used. The time step
in the simulations is (0.0033h/ū), where h is the channel width and ū the average
velocity. An explicit scheme (for nonlinear term) is used for the simulations; the time
step has been decided on the basis of the Courant–Friedrichs–Lewy condition for
convergence. The simulation procedure is briefly explained in appendix A, and further
details of the numerical scheme are provided in Goswami & Kumaran (2011a). The
results for the unladen flow are validated against the results of Goswami & Kumaran
(2011a) for a Reynolds number of 3300, and against the results of Kim, Moin &
Moser (1987) for the Reynolds number 5600.

Although the maximum particle volume fraction considered in the simulations is
3.5 × 10−3, there is a significant increase in the mass density because the material
density of the particles is three orders of magnitude greater than that of the fluid.
For the particle-laden flow, it is necessary to define the Reynolds number based on
the suspension density and viscosity. Based on the Einstein correction, the difference
between the suspension and fluid viscosity is less than 0.5 % of the fluid viscosity
for the range of volume fractions considered here, and so the fluid viscosity is used
in the definition of the Reynolds number. However, the suspension mass density does
increase significantly, and it is necessary to incorporate this correction in the definition
of the Reynolds number. The corrected Reynolds number is then (1+ (φav%p/ρf ))Reb,
where %p is the material density of the material comprising the particles, and the
notation φav is used for the average volume fraction, to distinguish it from the local
volume fraction denoted by φ.

The ratio of the particle diameter and the channel width is set equal to 1.845× 10−2

in all the simulations. The particle terminal velocity depends on the particle material
density and the drag law. For the Stokes drag law, the ratio of the particle terminal
velocity and the bulk gas velocity is 2.06 × 10−4 for the lowest particle material
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density %p = 100 kg m−3, and 1.65 × 10−2 for the highest particle material density
of 8000 kg m−3. Thus, the particle terminal velocity is always much smaller than
the bulk gas velocity. The particle Reynolds number based on the particle diameter,
terminal velocity and gas kinematic viscosity varies between 1.3 × 10−2 for particle
material density 100 kg m−3 and 1.01 for particle material density 8000 kg m−3.
Thus, the particle Reynolds number based on the terminal velocity of the particles
is small. The results of the simulation show that the particle mean velocity is very
nearly a constant across the channel, whereas the unladen fluid mean velocity for
the turbulent flow is plug like at the centre, with sharp gradients at the walls. The
particle Reynolds number (ρf ūdp/ηf ) is approximately 60 when the channel Reynolds
number is 3300, and approximately 103 when the channel Reynolds number is 5600.
However, the particle Reynolds number based on the channel-averaged root mean
square velocity difference between the particles and fluid is in the range 4–15. The
Stokes drag law (2.5) is in error by approximately 50 % at this Rep = 60, but the
Schiller–Naumann correlation (2.6) is in error by approximately 1.2 % at Rep= 60 and
approximately 2 % at Rep = 103. The fluid time scale is estimated as (h/ū), the ratio
of the channel width and the average flow velocity. The particle viscous relaxation
time is

tv = (%pd2
p/18ηf ), (2.13)

for the Stokes drag law and

tv = (%pd2
p/18ηf (1+ 0.15Rep)

0.687), (2.14)

for the Schiller–Naumann correlation (2.6). The viscous relaxation time is provided
as a function of the particle material density in table 2. The particle Stokes
number, (tv/tf ) varies over nearly two orders of magnitude, from approximately
5 to approximately 420 for the Stokes drag law, and from approximately 1.5 to
approximately 150 for the Schiller–Naumann correlation (2.6). The other time scales
of importance are the average time between particle–particle collisions, tpp, and the
average time between particle–wall collisions, tpw. These depend on the particle
loading, and the times determined from the simulations are shown in figure 21 in § 3.
Here, it suffices to note that we have covered all parameter regimes, where the
viscous relaxation time is smaller and larger than the collision time, and where the
particle–particle collision time is smaller and larger than the particle–wall collision
time.

The Kolmogorov scale for the unladen flow is estimated as (ν3/(ε/ρ))1/4, where
ν= (ηf /ρf ) is the kinematic velocity, and ε is the rate of dissipation of energy per unit
volume due to the turbulent velocity fluctuations. For the unladen flow, the average
value of ε, determined by averaging across the channel width, is approximately
4 × 10−3(ρf ū3/h). Therefore, the Kolmogorov scale is (4 × 10−3Re3

b)
1/4, which is

approximately 1.6× 10−2 times the channel width. This is comparable to the particle
diameter, and so the point-force approximation is used for the force on the fluid due
to the particles.

It is important to note that, in order to generate a turbulent flow in DNS simulations
for the fluid, it is necessary to impose a relatively large perturbation on the fluid
velocity profile, otherwise the fluctuations decay and the velocity profile reverts to a
laminar profile. In the present simulations, perturbations are introduced in the Fourier–
Chebyshev coefficients of the velocities following the standard procedure of Gibson,
Halcrow & Cvitanovi (2008). For each point in Fourier–Chebyshev space, in the two
Fourier directions, the perturbation is introduced in the form of a random number
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Stokes drag (2.5) Schiller–Naumann
correlation (2.6)

Reb = 3300

5.27 1.62
10.55 3.24
21.09 6.49
52.73 16.22

105.47 32.45
210.93 64.89
316.40 97.34
421.87 129.78

Reb = 5600

53.94 12.55
105.47 25.11
210.93 50.22
316.40 75.33

TABLE 2. The different values of the Stokes number calculated for the Stokes drag
law (2.5) with the viscous relaxation time given by (2.13), and the Schiller–Naumann
correlation (2.6) using the viscous relaxation time in (2.14). The particle Reynolds number
Rep is set equal to 60 for channel Reynolds number 3300, and 103 for channel Reynolds
number 5600 in the calculation of the nonlinear drag coefficient in (2.14).

in the interval −0.1 to 0.1 at the starting time. The perturbation to the Chebyshev
coefficient is determined from the incompressibility condition. This amplitude of the
perturbation repeatably generates a turbulent steady state after a development time of
approximately 50(h/ū), where h is the channel width and ū is the average velocity.

For the simulation of a particle-laden flow, the instantaneous velocity for a steady
unladen flow is taken as the initial condition, and the particles are added at random
locations with the same velocity as the interpolated fluid velocity at that location. The
flow is evolved for approximately 1000(h/ū) for the particle statistics to reach steady
state for a particle-laden flow. Averages are then calculated for a further 300(h/ū).
If necessary, small adjustments are made to the pressure gradient so that the average
gas flow velocity is equal to that for the unladen flow. In the primary results in
figures 2, 3 and 20, the mean values and the standard deviations in the profiles
of the mean and root mean square fluctuating velocities are shown. The standard
deviations are estimated by carrying out three independent simulation runs for the
same particle volume fraction but with different random initial particle locations and
fluid perturbations. The error bars show one standard deviation below and above the
mean value.

3. Results
3.1. Turbulence attenuation

The mean velocity scaled by the average flow velocity is shown as a function of the
cross-stream distance for different particle loadings in figure 2(a). The Stokes law
(2.5) is used for the particle drag and the particle Stokes number is 105.5 in all cases.
The velocity profiles are shown for the left half of the channel, because the profiles
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FIGURE 2. The mean velocity scaled by the average velocity (ūx/ū) (a), the mean square
of the fluid fluctuating velocities in the streamwise (b) and cross-stream (c) directions and
the correlation u′xu′y (d), all non-dimensionalised ū2, as a function of the scaled coordinate
(y/h), for average particle volume fractions φav= 0 (E), 5× 10−4 (A), 10−3 (C), 1.3× 10−3

(B), 1.4× 10−3 (D), 1.6× 10−3 (6) and 2× 10−3 (@). The channel Reynolds number is
3300, Stokes law (2.5) is used for the drag force on the particles, and the Stokes number
is 105.47.

are symmetric about the centre line. Two distinct velocity profiles are observed for
φav 6 1.3× 10−3 and φav > 1.4× 10−3, with a discontinuous transition between these
two profiles. For φav61.3×10−3, the fluid mean velocity profile is close to that for an
unladen flow. When the average volume fraction is 1.4× 10−3 or higher, the velocity
profile is noticeably different from that for an unladen flow, with a smaller slope at the
wall and a larger curvature at the centre. The mean square of the velocity fluctuations
in the streamwise direction, u′2x , is shown in figure 2(b). The characteristic near-wall
maximum in the streamwise mean square velocity is observed for the unladen flow,
and for the particle laden flow for φav 6 1.3 × 10−3. The height of this maximum
decreases by approximately 30 % when the particle volume fraction is increased from
0 to 1.3 × 10−3. When the particle volume fraction is increased from 1.3 × 10−3
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to 1.4× 10−3, there is a dramatic collapse by two orders of magnitude in the mean
square velocity. There is very little change in u′2x when the average volume fraction is
further increased from 1.4× 10−3 to 2× 10−3. This dramatic collapse is observed in
the mean square velocities in the spanwise direction, u′2y , shown in figure 2(c). There is
a larger decrease of approximately 75 % in the values of u′2y when the particle volume
fraction is increased from 0 to 1.3 × 10−3. However, when the volume fraction is
increased from 1.3 × 10−3 to 1.4 × 10−3, there is a decrease of two orders of
magnitude in the cross-stream mean square velocity. The variation in the correlation
u′xu′y with volume fraction, shown in figure 2(d), is similar to that for the mean
square velocities. There is a gradual decrease of approximately 50 % in u′xu′y when
the particle volume fraction is increased from 0 to 1.3 × 10−3, and a discontinuous
decrease by over two orders of magnitude when the volume fraction is increased from
1.3× 10−3 to 1.4× 10−3. The variation in u′xu′y is of significance, since it implies that
the Reynolds stress is virtually zero for φav > 1.4× 10−3, and momentum transport is
entirely due to the viscous stress or due to transport by the particles.

The discontinuous decrease in the turbulence intensities at a critical particle volume
fraction is also observed for other values of the Stokes number, although the critical
volume fraction does vary with Stokes number, as discussed a little later. More
importantly, the discontinuous decrease is also observed for the Schiller–Naumann
correlation (2.6) which has an inertial correction, as shown in figure 3. There is a
collapse of the turbulence intensities when the volume fraction is increased from
9 × 10−4 to 1 × 10−3; in contrast, there is a continuous variation in the velocity
correlations for φav 6 9 × 10−4 and φav > 1 × 10−3. All the features of the second
moments of velocity fluctuations and correlation u′xu′y are qualitatively similar to those
for the linear drag law, but the critical volume fraction is different, and it does depend
on the drag law. However, the phenomenon of turbulence collapse itself appears to
be independent of the form of the drag law.

Figure 3 also shows the variation in the fluid fluctuating velocities when different
particle force models are used. The results of different force models for the mean
velocity are not shown in figure 3(a) in order to enhance clarity. In the other panels,
the dotted lines are the results when the drag force is given by (2.6), the dashed lines
are the results when the correction for the undisturbed velocity profile is included
as described in item (ii) in § 2.2 and the solid lines are the results when the lift
force and the wall corrections to the drag and lift forces (items (iii) and (v) in § 2.2)
are included. There is a discernible reduction of approximately 10 % in the mean
square velocities when the correction for the undisturbed velocity profile is included.
However, there is very little change in the mean and mean square velocities when the
lift force and the wall corrections are included. The modification of the force law has
the same qualitative effect on the velocity fluctuations at other particle Stokes numbers
as well. More importantly, the critical volume fraction for the turbulence collapse does
not change when corrections are included in the force law. For other Stokes numbers,
it is found that the critical volume fraction is either unchanged or is altered by a
maximum of 10−4 when the force laws are modified.

The variation of the mean and mean square of the fluctuating velocity at a higher
channel Reynolds number of 5600 (friction Reynolds number 180) is shown in
figure 4. In this case, turbulence collapse happens at a significantly higher volume
fraction of approximately 2.9 × 10−3. In comparison to the unladen flow, there is a
gradual attenuation of the mean square fluctuating velocities of approximately 35 %
in the streamwise direction and approximately 50 % in the cross-stream direction
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FIGURE 3. The mean velocity scaled by the average velocity (ūx/ū) (a), the mean square
of the fluid fluctuating velocities in the streamwise (b) and cross-stream (c) directions,
scaled by ū2, and the correlation (u′xu′y/ū

2) (d) as a function of the scaled coordinate (y/h),
for average particle volume fractions φav = 0 (E), 5× 10−4 (A), 9× 10−4 (C), 10−3 (B),
1.1× 10−3 (D) and 1.4× 10−3 (6). The particle force is given by (· · ·) Schiller–Naumann
(2.6); (– – –) (2.6) with correction for undisturbed velocity at the particle centre (item (ii)
in § 2.2); (——) (2.6) with correction for undisturbed velocity at the particle centre
(item (ii) in § 2.2), wall correction for drag force (item (iii) in § 2.2) and translational
lift force with wall correction (item (v) in § 2.2). The channel Reynolds number is 3300
and the particle Stokes number is 32.45.

and in the Reynolds stress when the particle volume fraction is increased from 0 to
2.9× 10−3. When the volume fraction is further increased from 2.9× 10−3 to 3× 10−3,
there is a discontinuous decrease by an order of magnitude. A further increase in the
particle volume fraction does not appreciably change the turbulence intensities.

Two other tests have been done to verify that the turbulence collapse observed in
the simulations is a fluid-dynamical phenomenon rather than a computational artefact.
In the first test, an attempt has been made to determine whether the flow for particle
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FIGURE 4. The mean fluid velocity (a), the mean square of the fluid fluctuating velocities
in the streamwise (b) and cross-stream (c) directions and the correlation u′xu′y (d), scaled
by suitable powers of ū, as a function of the scaled coordinate (y/h), for average particle
volume fractions 0 (E), 2× 10−3 (A), 2.5× 10−3 (C), 2.9× 10−3 (B), 3× 10−3 (D) and
3.5× 10−3 (6). The Schiller–Naumann correlation (2.6) is used for the drag force on the
particles. The channel Reynolds number is 5600 and the particle Stokes number is 25.11.

loading just above the critical volume fraction becomes turbulent if it is perturbed in
a manner similar to that used for an unladen flow. For an accurate interpretation of
the simulation results, it is important to note that, in DNS simulations of an unladen
flow, if the initial state is a laminar velocity profile, the flow continues to be in the
laminar state even when the Reynolds number exceeds the transition Reynolds number.
It is necessary to impose a reasonably large perturbation in order to cause a transition
to the turbulent steady state. In the simulations, the perturbation is imposed on the
Fourier–Chebyshev transforms of the fluid velocity field, as indicated in § 2.3. The
perturbations to the Fourier–Chebyshev coefficients of the streamwise and spanwise
velocities, scaled by the maximum of the parabolic velocity profile for a laminar flow,
are set to an amplitude A times a random number in the interval −1 to +1. The cross-
stream component of the velocity is determined from the incompressibility condition.
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The perturbation amplitude A= 0.1 is used here for the unladen flow. If the Reynolds
number exceeds the transition Reynolds number, the turbulent steady state is sustained
after the perturbation is imposed. If the Reynolds number is less than the transition
Reynolds number, the laminar state is recovered even after the perturbation is imposed.

We have examined the effect of perturbations on a particle laden flow at volume
fraction 1.4×10−3 or higher for the Stokes drag law (2.5), and 10−3 and higher for the
nonlinear drag law (2.6). The procedure for generating the perturbations is identical
to that used to generate turbulence in an unladen flow. Even when the amplitude is
A=0.15 (in comparison to the amplitude 0.1 that is adequate for an unladen flow), we
observe that the perturbations decay, and the final steady state is as shown in figures 2
and 3.

In the second test, simulations have been carried out for decreasing volume fraction,
where the initial state is the steady particle-laden flow with volume fraction 1.4× 10−3

using the Stokes drag law at particle Stokes number 105.47. Particles are deleted at
random so that the final volume fraction is 1.3× 10−3. The state with low fluctuation
intensities persists at final volume fraction 1.3× 10−3 in the absence of perturbations.
However, when we impose perturbations of the same form as those used to trigger
turbulence in an unladen flow with the same amplitude A= 0.1, it is found that the
turbulence is sustained, and the fluctuation amplitudes are identical to those for a flow
with volume fraction 1.3 × 10−3 in figure 2. A similar result is obtained when the
Schiller–Naumann correlation (2.6) is used for the drag law, and the corrections for
the drag and lift forces are included. These tests indicate that the turbulence collapse
transition is a robust steady-state phenomenon, independent of numerical details or the
path used to attain the final state.

In another series of tests, the steady fluid velocity field for the particle-laden flow
is used as the initial condition, and all the particles are deleted. In this case, the flow
is unladen, but the initial condition is that for a particle-laden flow at steady state.
The fluid velocity field is then evolved in time until a steady state is reached. The
results of the tests for the linear drag law with particle Stokes number 105.47 are as
follows. When the particle volume fraction is 1.3× 10−3 or less, the velocity profile
evolves to the unladen turbulent state, as shown in figure 5. When the particle volume
fraction is 1.4×10−3 or more, the velocity profile evolves to a parabolic profile for the
laminar state. This indicates that when the volume fraction exceeds the critical loading
for the particle-laden flow, the velocity fluctuations (of very low magnitude) are due
to the presence of particles in a laminar flow and not due to the fluid turbulence;
the dramatic decrease in the turbulence intensities is because the flow has completely
relaminarised due to the presence of the particles.

The turbulence collapse is observed for particles with different particle Stokes
numbers, as shown in figure 6. A measure of the departure from the unladen mean
velocity profile, (1ūx)

2, is defined as

(1ūx)
2(φav)=

∫ h

0
dy(ūx − ūx0)

2∫ h

0
dy(ūx0)

2

, (3.1)

where ūx is the mean velocity for average volume fraction φav and ūx0 is the mean
velocity for the unladen turbulent flow. The averages of the mean square of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

90
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.90


Turbulent disruption in a gas–particle suspension 889 A28-19

0 0.2 0.4

1.4

1.2

1.0

0.8

0.6

0.4

0.2

(y/h)

(u
x/

u)

FIGURE 5. The solid lines show the scaled mean fluid velocity (ūx/ū) as a function of
scaled cross-stream distance for average particle volume fractions φav= 1.3× 10−3 (E) and
1.4× 10−3 (A). The dashed lines show the steady mean velocity profiles when the solid
lines are used as initial conditions and all the particles are deleted from the simulation
domain. The channel Reynolds number is 3300, Stokes law is used for the particle drag
and the Stokes number is 105.47.

fluctuating velocities over the channel width are defined as measures of the mean
square velocities denoted by the angle brackets 〈 〉s,

〈?〉s =
2
h

∫ h/2

0
dy?. (3.2)

These measures, scaled by the square of the average velocity, are shown as a
function of volume fraction in figure 6 for different particle Stokes numbers and for
two different forms of the particle drag law. The discontinuous change in the velocity
profile and the discontinuous decrease in the turbulence intensities are observed
at a critical volume fraction for all particle Stokes numbers, and for two different
drag laws. The measures of the turbulence intensity clearly decrease by two orders
of magnitude at the transition volume fraction when the Stokes drag law is used
to calculate particle drag. Even when the Schiller–Naumann correlation (2.6), with
corrections for the undisturbed velocity at the particle centre, lift and the presence of
the wall, is used, there is a decrease of approximately 1.5 orders of magnitude in the
turbulence intensities.

There is also a large reduction in the wall shear stress at the critical volume fraction.
It should be recalled that, in our protocol, the average fluid velocity is maintained
constant as the particle loading is increased by varying the pressure gradient. The
variation of the scaled wall shear stress, (τw/(ρf ū2)) is shown as a function of the
average volume fraction in figure 7(a). There is a step decrease in the scaled wall
shear stress at the critical volume fraction, and then a gradual increase as the volume
fraction is further increased. The scaled wall shear stress is also equal to (u∗/ū)2,
where u∗ = (τw/ρf )

1/2 is the friction velocity based on the fluid density. The friction
Reynolds number Re∗ = (ρf u∗h/2ηf ), decreases sharply at the transition, due to the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

90
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.90


889 A28-20 P. Muramulla, A. Tyagi, P. S. Goswami and V. Kumaran

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

10-3

10-4

10-5

10-3

10-4

10-5

10-2

10-3

10-4

10-2

10-3

10-4

10-5

10-6

(÷ 103) (÷ 103)

(÷ 103) (÷ 103)

ƒa√ ƒa√

(¯u
y�2

˘ s/
u2 )

(¯u
x�2

˘ s/
u2 )

(Î
u x

)

(¯|
u� x 

u� y|˘
s/

u2 )

(a) (b)

(c) (d)

FIGURE 6. The measure 1ūx (3.1) for the difference between the mean velocity profile
and the unladen turbulent velocity profile (a), the measures of the fluid fluctuating velocity
(3.2) (〈u′2x 〉s/ū

2) (b), (〈u′2y 〉s/ū
2) (c) and (〈|u′xu′y|〉s/ū

2) (d) as a function of the average
particle volume fraction φav . The solid lines are the results for channel Reynolds number
3300 when the Stokes law (2.5) is used for the drag force on the particles and for Stokes
numbers of 21.09 (E), 105.47 (A) and 316.40 (C). The dashed lines are the results for
channel Reynolds number 3300 when the Schiller–Naumann correlation (2.6) is used for
the drag force, the correction for the undisturbed velocity and the wall effect on the
particle drag and lift forces are included and for Stokes numbers of 6.49 (u), 32.45 (q)
and 97.34 (s). The dotted lines are the results for channel Reynolds number 5600 when
the particle force is given by the Schiller–Naumann correlation (2.6), for Stokes numbers
of 25.11 (6), 50.22 (B) and 75.33 (D).

decrease in the wall shear stress, even though the Reynolds number based on the
average flow velocity and the channel width is unchanged.

The fluid velocity distributions are examined both at the centre and near the wall
of the channel. Since there is a variation in the flow properties in the cross-stream
y direction, the distributions are calculated in two zones, one of extent 20 % of the
channel width at the wall, and the second spanning 20 % of the channel width at the
centre. In these two zones, the distributions for the fluctuating velocities in the three
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FIGURE 7. The wall shear stress τw scaled by ρf ū2 and the Reynolds number Re∗ =
(ρf u∗h/2ηf ) based on the friction velocity (b) as a function of the average particle volume
fraction φav . The solid lines, referenced to the left y axis in (b), are the results for channel
Reynolds number 3300 when the Stokes law (2.5) is used for the drag force on the
particles for Stokes numbers 21.09 (E), 105.47 (A) and 316.40 (C). The dashed lines,
referenced to the left y axis in (b), are the results for channel Reynolds number 3300
when the Schiller–Naumann correlation (2.6) is used for the drag force, the correction for
the undisturbed velocity and the wall effect on particle drag and lift forces are included
for Stokes numbers of 6.49 (u), 32.45 (q) and 97.34 (s). The dotted lines, referenced
to the right y axis in (b), are the results for channel Reynolds number 5600 when the
particle force is given by the Schiller–Naumann correlation (2.6), for Stokes numbers of
25.11 (6), 50.22 (B) and 75.33 (D). The vertical dotted lines show the range of φav over
which there is turbulence collapse for the particle Stokes number and drag law indicated
by the symbols on the abscissa.

directions, P(u′x), P(u′y) and P(u′z), are shown as a function of the velocity fluctuations
scaled by the standard deviation in figure 8. In figure 8(a) for the streamwise velocity
distribution, there is not much change in the distribution function close to the wall.
The distributions at φav = 1.3 × 10−3 and 1.4 × 10−3 are both close to a Gaussian
distribution, but with a small positive skewness. The distribution function for the
streamwise fluctuations at the centre does show some change at transition; the
distribution has a pronounced negative skewness at φav = 1.3× 10−3, but it becomes
close to a symmetric Gaussian distribution after turbulence collapse at φav=1.4×10−3.
There is a striking change in the probability distribution for the cross-stream velocity
fluctuations in figure 8(b). The peaked distribution function with high-velocity tails
for the turbulent flow at φav = 1.3 × 10−3 transitions to a distribution function that
is closer to a Gaussian after turbulence collapse at φav = 1.4 × 10−3 in both zones.
A similar, but less pronounced, transition is observed for the spanwise velocity
fluctuations in figure 8(c). Thus, the large attenuation of the velocity fluctuations is
also accompanied by a change in the forms of the velocity distribution functions.

The variation in the critical volume fraction with particle Stokes number is shown in
figure 9(a). For the Stokes drag law, there is an initial decrease in the critical volume
fraction as the Stokes number is increased for St . 100, and then the critical volume
fraction tends to a constant value for St & 100. Similarly, for the Schiller–Naumann
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FIGURE 8. The probability distributions for the fluid velocity fluctuations in the
streamwise (a), cross-stream (b) and spanwise (c) directions in the zone near the wall (E)
and at the centre (A) for channel Reynolds number Reb = 3300, particle volume fractions
1.3× 10−3 (red) and 1.4× 10−3 (blue). The Stokes drag law is used for the particles, and
the Stokes number is 105.47. The dotted line is the Gaussian distribution.

correlation (2.6), there is a decrease in the critical volume fraction with Stokes
number for St . 40, and the critical volume fraction is independent of the Stokes
number for St & 40.

An examination of (2.2) and (2.4) reveals the reason for the lack of dependence
of the critical volume fraction on the particle Stokes number at high Stokes number.
The force f in (2.2) contains two parts, the drag force and the gravitational force.
The gravitational force mpg in (2.3) does depend on the particle material density, but
it turns out that the gravitational force is much smaller than the drag force. For the
largest Stokes number considered here, the ratio (|vt|/ū) is 1.3× 10−2, and therefore
the gravitational force is approximately two orders of magnitude smaller than the
drag due to the gas flow. The drag force, given by (2.5) or (2.6), is independent of
the particle material density. The particle acceleration in (2.4) does depend on the
particle material density. However, in a steady flow, the average particle acceleration
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FIGURE 9. The critical average volume fraction φcr for turbulence collapse as a function
of the Stokes number for (E) the Stokes drag law (2.5) and Reb = 3300, (A) the
Schiller–Naumann correlation (2.6) and Reb = 3300, (C) the Schiller–Naumann correlation
(2.6) with the correction to undisturbed velocity at the particle centre and the wall effect
on drag and lift force and Reb= 3300 and (6) for the Schiller–Naumann correlation (2.6)
and Reb = 5600.

is zero. Since the Stokes number is varied here by changing the particle material
density and keeping the particle diameter and fluid viscosity unchanged, the critical
volume fraction is independent of Stokes number for high Stokes number.

The increase in the critical volume fraction at low Stokes number is less easily
understood. It is expected that, when the Stokes number becomes smaller, there is
less force exerted by the particles and fluid, and the difference in the local particle
and fluid velocities is smaller. Due to this, a higher number of particles are required
for turbulence collapse. This expectation is consistent with the increase in the critical
volume fraction as the Stokes number is decreased. However, the data in figure 9 are
insufficient to deduce a clear scaling law for the dependence of the critical volume
fraction on Stokes number in this limit.

3.2. Particle fluctuations
The details of the mean and mean square velocities and the particle velocity
distributions are summarised in appendix B. The important conclusions that are
as follows.

(i) The particle volume fraction is approximately constant across the channel, and
there is virtually no change in the cross-stream variation of the volume fraction
at turbulence collapse.

(ii) The particle mean velocity is nearly constant across the channel, below and above
the critical volume fraction. The particle mean velocity is approximately equal to
the average flow velocity ū, because the terminal velocity of the particles is small
compared to the flow velocity.

(iii) There is a small increase of approximately 15 %–30 % in the mean and mean
square of the particle fluctuating velocities at the critical volume fraction. This is
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much smaller than the decrease, by approximately an order of magnitude, in the
fluid turbulence intensities.

(iv) Below the critical volume fraction, the particle fluctuating velocities are smaller
than the fluid fluctuating velocities, suggesting that the fluid turbulence is
driving the particle fluctuations. Above the critical volume fraction, the particle
fluctuating velocities are higher than the fluid fluctuating velocities, indicating
that the particle fluctuations are driving the fluid fluctuations.

(v) There is no qualitative change in the distribution functions for the particle
velocities at the critical volume fraction.

3.3. Momentum balance
The fluid mean momentum equations are

0=−
∂ p̄
∂x
+ ηf

d2ūx

dy2
+

dτ Rf
xy

dy
−µf np(ux − vx), (3.3)

0=−
∂ p̄
∂y
+

dτ Rf
yy

dy
−µf np(uy − vy), (3.4)

where np is the number density of the particles, ui and vi are the local undisturbed
fluid velocity and the particle velocity,

τ Rf
xy =−ρf u′xu′y (3.5)

is the Reynolds stress, and µf is the drag coefficient, which is a function of the
difference between the fluid and particle velocities for the nonlinear drag law (2.6).
The fourth term on the right in (3.3) and the third term on the right in (3.4) are due
to the drag force exerted by the particles on the fluid.

The terms in the momentum balance equation (3.3), are shown in figure 10 for
the Schiller–Naumann correlation (2.6), with correction to the undisturbed velocity
at particle centre and the wall effect on drag and lift force. The force density due
to the particles, −µf np(ux − vx), exhibits a sharp decrease to zero very close to the
wall, because the particles are excluded within a region of width one particle radius
from the wall. Close to the wall, the separation between the fluid grid points used for
Chebyshev collocation becomes smaller than the particle diameter; the minimum grid
spacing is approximately 0.7 times the particle diameter. In order to account for the
finite size of the particles, the results in figure 10 have been calculated by relaxing the
point-force approximation, and calculating the force within a Chebyshev grid interval
based on the fraction of the particle surface within the cell, as prescribed by the Faxen
theorem. This procedure results in the continuous decrease in the force density due to
the particles close to the wall. The procedure of Esmaily & Horwitz (2018) used here
was validated against fully resolved particle simulations, and was found to accurately
predict the turbulence statistics even when the particle size is comparable to or larger
than the grid size. It is also important to note that the maximum in the divergence of
the Reynolds stress is at a distance greater than the particle diameter from the wall.

When the volume fraction is increased from 0.9× 10−3 to 1× 10−3, there is little
change in the magnitude and shape of the terms (ηf d2ūx/dy2) (divergence of the
viscous stress) and −µf np(ux − vx) (force density due to the particles). There is a
significant change in the divergence of the Reynolds stress, which is larger than
the force density due to the particles near the wall at φav = 0.9× 10−3 (figure 10a),
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FIGURE 10. The terms in the fluid momentum equation (3.3) scaled by (ρf ū2/h) as a
function of scaled cross-stream distance for volume fractions 9× 10−4 (a) and 10−3 (b).
The channel Reynolds number is 3300, the particle Stokes number is 32.45, the particle
force is given by the Schiller–Naumann correlation (2.6), with the correction to the
undisturbed velocity at the particle centre and the wall effect on drag and lift force are
included. The different symbols areE— −(∂ p̄/∂x),A— (ηf d2ūx/dy2), C— (dτ Rf

xy /dy),

6— −µf np(ux − vx).

but decreases to virtually zero across the entire channel for φav=1×10−3 (figure 10b).
For φav = 1 × 10−3, there is a balance between the divergence of the viscous stress
due to the mean flow, the drag force due to the particles and the pressure gradient,
as shown in figure 10(b).

3.4. Energy balance
The equation for the fluid mean kinetic energy is

0 = −ūx
∂ p̄
∂x
+ ηf

d
dy

(
ūx

dūx

dy

)
− ηf

(
dūx

dy

)2

+
d(τ Rf

xy ūx)

dy

− τ Rf
xy

dūx

dy
− ūxµf np(ux − vx). (3.6)

In (3.6), the first term on the right is the rate of increase of energy due to the pressure
gradient, the third term on the right is the viscous dissipation of energy due to the
mean shear, the fifth term on the right is the turbulent production of energy due to
the Reynolds stress, which results in a transfer of energy from the mean flow to the
fluctuations, and the sixth term is the rate of dissipation of energy due to the mean
particle drag. The second and fourth terms on the right of (3.6) are the divergences
of energy fluxes due to the fluid viscous stress and the Reynolds stress, respectively.
The fluctuating kinetic energy balance equation is

0 = −
dqy

dy
−

dp′u′y
dy
+ ηf∇ · (u′ · (∇u′)T)+ τ Rf

xy
dūx

dy
− ηf (∇u′) : (∇u′ + (∇u′)T)−Df , (3.7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

90
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.90


889 A28-26 P. Muramulla, A. Tyagi, P. S. Goswami and V. Kumaran

where
qy =

1
2ρf u′yu′2 (3.8)

is the energy flux due to the fluid fluctuating velocity, and

Df (x, t) = µf npux(ux − vx)+µf npuy(uy − vy)+µf npuz(uz − vz)

− ūxµf np(ux − vx) (3.9)

is the difference between the total energy dissipation rate due to the particles and the
mean energy dissipation rate in (3.6).

When (3.6) and (3.7) are averaged across the channel cross-section using (3.2),
divergences of the energy fluxes average to zero due to no-slip conditions at the solid
walls, and we obtain

0=−ū
∂ p̄
∂x
− ηf

〈(
∂ ūx

∂y

)2
〉

s

−

〈
τ Rf

xy
∂ ūx

∂y

〉
s

− 〈ūxµf np(ux − vx)〉s, (3.10)

0=
〈
τ Rf

xy
∂ ūx

∂y

〉
s

− ηf 〈(∇u′) : ((∇u′ +∇u′)T)〉s − 〈Df 〉s. (3.11)

The terms in the energy balance equations, equations (3.6) and (3.7), are shown
in figure 11. The divergences of the energy fluxes, which are the second and fourth
terms on the right in (3.6) and the first, second and third terms on the right in
(3.7), are not shown, since these are the transport terms which do not alter the
total fluid energy dissipation rate. For volume fraction φ = 0.9 × 10−3, figure 11(a)
shows that the largest terms are the mean pressure work ūx(dp̄/dx), the mean viscous
dissipation (η(dūx/dy)2) and the dissipation due to the particle drag ūxµf np(ux − vx).
The transport of energy from the mean flow to the fluctuations due to the Reynolds
stress −τ Rf

xy (dūx/dy), and the viscous dissipation due to the fluid fluctuating velocity
ηf (∇u′ : (∇u′ + (∇u′)T)) are comparable in magnitude close to the wall, while the
dissipation Df (3.9) due to the drag force is smaller. When the volume fraction is
increased to 1 × 10−3, the transfer of energy from mean flow to the fluctuations
−τ Rf

xy (dūx/dy) decreases virtually to zero throughout the channel, and consequently,
the energy dissipation due to the fluid fluctuations also decreases to zero. There is
a balance between the work done due to the mean pressure gradient, the viscous
energy dissipation and the dissipation due to the mean particle drag.

The terms in the spatially averaged fluid energy conservation equation, equation
(3.10), averaged across the channel cross-section, ū(dp̄/dx), the turbulent production
〈τ Rf

xy (∂ ūx/∂y)〉s and the dissipation due to the particles 〈ūxµf np(ux − vx)〉s, all scaled by
(ρf ū3/h), are shown in figure 12. The turbulent energy production rate, shown by the
E symbol, shows a large decrease at the critical volume fraction, consistent with the
results in figure 11. The total energy dissipation rate due to the particle drag, shown
by theA symbol, does increase at the critical volume fraction. However, this increase
is not more than one half of the decrease in the turbulent production rate. There is also
a decrease in the energy dissipation rate due to the mean shear, with the consequence
that the total energy dissipation rate in the fluid actually decreases significantly at
the transition volume fraction. This indicates that the decrease in the turbulent energy
production is not due to a compensating increase in the rate of dissipation of energy
due to the particles. Consequently, turbulence attenuation is not due to the increase
in dissipation due to particle drag, but rather due to the disruption of the turbulence
production mechanism.
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FIGURE 11. The terms in the fluid energy equations (3.6) and (3.7), scaled by (ρf ū3/h)
as a function of scaled cross-stream distance for volume fractions 9 × 10−4 (a) and
10−3 (b). The channel Reynolds number is 3300, the particle force is given by the
Schiller–Naumann correlation (2.6), with correction to the undisturbed velocity at the
particle centre and the wall effect on drag and lift force, and the particle Stokes number
is 32.45. The different symbols are E −ūx(dp/dx), A (ηf (dūx/dy)2), C −τ Rf

xy (dūx/dy),

6 −ūcµf np(ux − vx),B ηf (∇u′ : (∇u′ + (∇u′)T)),D Df .
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FIGURE 12. The cross-sectionally averaged turbulent energy production rate 〈τ Rf
xy (dūx/dy)〉s

(E), the rate of dissipation of energy due to particle drag 〈ūxµf np(ux − vx)〉s (A), the total
rate of input of energy ū(∂ p̄/∂x) (C) and the rate of dissipation of energy due to mean
shear ηf 〈(dūx/dy)2〉s (6), all scaled by (ρf ū3/h), as a function of volume fraction. In (a),
the Stokes drag law (2.5) is used for the drag force, the channel Reynolds number is
3300, with particle Stokes numbers of 21.09 (dotted lines), 105.47 (solid lines) and 316.40
(dashed lines). In (b), the Schiller–Naumann correlation (2.6) is used for the drag force,
the channel Reynolds number is 5600 and for particle Stokes numbers of 25.11 (dotted
lines), 50.22 (dashed lines) and 75.33 (solid lines).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

90
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.90


889 A28-28 P. Muramulla, A. Tyagi, P. S. Goswami and V. Kumaran

-200 0 200 400 600 800

1.0

0.5

0

(÷ 102)

Te
rm

s i
n 

eq
ua

tio
n 

(3
.1

0)

(tu/h)

FIGURE 13. The spatially averaged turbulent energy production rate 〈τ Rf
xy (dūx/dy)〉s (E),

the rate of dissipation of energy due to particle drag 〈ūxµf np(vx − ux)〉s (A), the total rate
of input of energy ū(∂ p̄/∂x) (6) and the rate of dissipation of energy due to mean shear
ηf 〈(dūx/dy)2〉s (C), all scaled by (ρf ū3/h), as a function of scaled time (tū/h). The particle
force is given by the Schiller–Naumann correlation (2.6), the channel Reynolds number
Reb is 3300 and the particle Stokes number is 32.45.

3.5. Turbulence decay
The time evolution of the terms in the energy balance equation, averaged over the
half-width of the channel, due to the addition of particles from an initially unladen
flow is examined in figure 13. Here, the initial condition is a fully developed unladen
turbulent flow at steady state. The particles are instantaneously added at t = 0 at
random locations with a velocity equal to the interpolated fluid velocity at the particle
location, so that the final volume fraction is 1× 10−3. The terms in the kinetic energy
equation are shown as a function of the scaled time, (tū/h). There is a sharp decrease
in the turbulent energy production rate upon addition of particles, and the production
rate virtually decreases to zero within approximately 200 integral times. There is a
smaller and less sharp increase in the dissipation rate due to the particle drag. The
mean viscous dissipation rate also decreases, resulting in a decrease in the total energy
dissipation rate of energy. This clearly shows that the addition of particles disrupts
the turbulent energy production rate, and the collapse of the energy production is
not accompanied by a commensurate increase in the energy dissipation due to the
drag force exerted by the particles. This disruption of the energy production results
in a decrease in the pressure drop at constant flow rate. This is consistent with the
relaminarisation of the flow – because the wall shear stress decreases when the flow
is relaminarised, a lower pressure drop is required to drive the flow.

The time evolution of the profiles for the turbulent energy production rate, the
dissipation rate due to the mean shear and the dissipation rate due to the particle
drag are shown in figure 14. The profiles are averaged over six time intervals of extent
(100h/ū), in order to obtain profiles that are relatively smooth in comparison to the
instantaneous profiles. The sharp near-wall maximum in the turbulent production
rate is evident in the first time interval in figure 14(a). However, there is a rapid
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FIGURE 14. The turbulent energy production rate τ Rf
xy (dūx/dy) (a), the rate of dissipation

of energy due to particle drag ūxµf np(vx − ux) (b) and the rate of dissipation of energy
due to mean shear ηf (dūx/dy)2, all scaled by (ρf ū3/h), averaged over scaled time periods
(tū/h)= 0–100 (E), 100–200 (A), 200–300 (C), 300–400 (B), 400–500 (D) and 500–600
(6). The channel Reynolds number is 3300, the particle force is given by the Schiller–
Naumann correlation (2.6), with the correction to the undisturbed velocity at the particle
centre and the wall effect on drag and lift force, and the particle Stokes number is 32.45.

decrease in the energy production rate in the second time interval, and the energy
production rate is virtually zero within (300h/ū). In figure 14(b) there is an increase
in the magnitude of the energy dissipation due to the drag near the centre of the
channel. This is because there is an increase in the fluid mean velocity at the centre
of the channel, shown in figure 2(a), when the particles are added to an unladen
flow, whereas there is virtually no change in the particle mean velocity, shown in
figure 19. This results in an increase in ūx − v̄x at the centre of the channel, and
therefore an increase in the magnitude of the energy dissipation due to particle
drag. However, in the near-wall region, where there is a significant decrease in the
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turbulent energy production, there is virtually no change in the energy dissipation due
to the particles. There is, however, a significant decrease in the viscous dissipation of
energy near the wall, as shown in figure 14(c), due to a decrease in the fluid strain
rate at the wall when compared to an unladen flow (see figure 2a). The profiles of
the production and dissipation rates clearly show a collapse in the turbulent energy
production, with no comparable increase in the dissipation due to the particles, and
an overall decrease in the energy dissipation rate. This indicates that the turbulence
is not attenuated due to an increase in the energy dissipation rate due to particle drag
in the zone of maximum turbulent production, but rather the particles seem to have
a direct role in disrupting the turbulence production mechanism.

4. Conclusions

In the present study, we have investigated the phenomenon of turbulence collapse
for two different fluid Reynolds numbers and over a range of particle Stokes numbers.
The study reveals a hitherto unknown facet of turbulent particle–gas suspensions,
which is the discontinuous decrease in the turbulence intensities at a critical volume
fraction. There is a reduction of 1–2 orders of magnitude in all components of
the second moment of the turbulent velocity fluctuations when the volume fraction
exceeds a critical value. This transition is robust in many ways. For a steady flow with
volume fraction above the critical value, upon imposition of velocity perturbations of
relatively large magnitude (50 % larger than that used to generate turbulence in DNS
in an unladen flow), the perturbation decays and the velocity profile spontaneously
returns to its initial value. When the volume fraction is below the critical value,
the fluid velocity statistics revert to those for an unladen turbulent flow when the
particles are deleted. In contrast, when the volume fraction is above the critical value,
the flow reverts to the laminar parabolic profile when the particles are deleted. This
suggests that, above the critical volume fraction, the flow is essentially a laminar flow
with superposed fluid velocity fluctuations generated due to the force exerted by the
particles.

The phenomenon of turbulence collapse is remarkably robust and has been found
to occur irrespective of the drag law. This has been tested using both the linear
Stokes drag law and the Schiller–Naumann correlation (2.6) and the turbulence
collapse phenomenon is observed in both cases, although the critical volume fraction
does depend on the drag law. It is observed that there is very little change in the
fluid statistics, and no significant change in the critical volume fraction, due to the
inclusion of the correction for the undisturbed velocity at the particle centre, the lift
force and the effect of a nearby wall. Thus, this phenomenon is not dependent on
the detailed models for the drag and lift forces on the particles, which are likely to
become more refined as time progresses, but is a basic characteristic of turbulent
particle–gas suspensions.

There is no comparable change in the particle fluctuation intensities at the critical
volume fraction. The particle concentration and mean velocity show no change despite
the large decrease in the fluid turbulence. The particle mean square velocities show an
increase, in the range of 10 %–50 %, at the critical volume fraction, in contrast to the
decrease of 1–2 orders of magnitude in the fluid fluctuating velocities. There is also a
small but discernible decrease in the particle–particle and particle–wall collision times,
commensurate with the increase in the particle fluctuating velocities. There is virtually
no change in the distribution functions for the particle fluctuating velocities. Thus, the
particle dynamics does not undergo a significant change at the critical volume fraction.
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An important observation is that the magnitudes of the particle velocity fluctuations
are smaller than those of the fluid velocity fluctuations below the critical volume
fraction, whereas the former are larger than the latter above the critical volume
fraction. This indicates that the fluid velocity fluctuations are causing the particle
velocity fluctuations via the drag coupling below the critical volume fraction, whereas
the particle fluctuations are driving the fluid fluctuations above the critical volume
fraction.

One of the important limitations of the present study is that it has been conducted
at two Reynolds numbers, 3300 and 5600. Even though these are relatively low, they
are of importance in practical applications like pneumatic conveying (Goswami &
Kumaran 2011b). Due to the relatively low Reynolds number, it was feasible to carry
out a sufficiently large number of simulations in order to detect the discontinuous
changes in the turbulence intensities – there have been five drag laws used here, for
each drag law there have been six different particle Stokes numbers used, at least
five volume fractions have been examined for each Stokes number to detect the
critical volume fraction and three different production runs have been carried out for
each volume fraction to ensure repeatability, resulting in approximately 500 different
simulation runs. Moreover, the simulation time required for a particle-laden flow is
significantly higher than that for an unladen flow. Whereas an unladen flow repeatably
reaches the turbulent steady state within approximately (50h/ū), it is necessary to run
the simulation for approximately (1000h/ū) for the particle statistics to reach steady
state for a particle-laden flow, followed by averaging for another (300h/ū).

The second important limitation is the assumption of a steady drag force on the
particles. Although the particle Reynolds numbers based on particle diameter and
average fluid mean velocity are approximately 60 and 103, the particle Reynolds
number based on the root mean square difference between the fluid and particle
velocity is in the range 4–15. For particle Reynolds numbers greater than 24, there
is a separation bubble at the rear of the sphere but no vortex shedding, and inertial
effects cannot be neglected. One important objective of the present analysis was to
examine whether the turbulence collapse phenomenon does depend on the specific
form of the drag law used. For this reason, simulations have been carried out using
two different forms of the drag law, the Stokes drag law which is applicable in the
absence of inertia, and the Schiller–Naumann correlation (2.6). The force on the
fluid due to the particle has been modelled as a point force, and the particle shape
has not been resolved in the simulations. In order to examine the accuracy of the
point-force approximation, an attempt has been made to include the symmetric and
antisymmetric point dipoles due to the particles in a related study (Tyagi 2017). The
results of that study are qualitatively similar to those from the present simulations,
although small quantitative differences less than 10 % have been observed. Another
important limitation is that the channel width is sufficiently small that the particle
volume fraction and the mean velocity are nearly constant across the channel. The
small channel width, approximately 60 times the particle diameter, was necessary
to limit the number of particles to approximately 36 000 for the largest volume
fraction, so that hard-particle simulations that include the effect of particle collisions
could be carried out in reasonable time. However, as shown in figure 21, the range
of parameters considered includes cases where the collision time is smaller and
larger than the viscous relaxation time of a particle, as well as cases where the
particle–particle collision time is smaller and larger than the particle–wall collision
time. The particle Stokes number has been varied over two orders of magnitude.

An analysis of the fluid momentum equation indicates that there is a sharp
decline, by a factor of 10 or more, in the divergence of the Reynolds stress. This
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is accompanied by a small increase in the drag force exerted on the fluid by the
particles. Similarly, in the energy equation, there is a dramatic decrease in the
turbulent energy production rate at the transition volume fraction. There is a small
decrease in the energy dissipation rate due to the mean flow, and a small increase in
the dissipation rate due to the particle drag. It is significant to note that the increase
in the energy dissipation rate due to the particles is only approximately one half
of the decrease in the turbulent energy production. This results in a decrease in the
total energy dissipation rate in the fluid at the critical volume fraction. Moreover,
there is no increase in the energy dissipation rate due to particle drag in the zone
of maximum turbulence production, as shown in figure 14(b); rather, there is an
increase in the dissipation rate in the centre of the channel due to the increase in
the difference between the particle and fluid mean velocities. This clearly indicates
that the turbulence collapse is not due to the increased dissipation by the particles,
but rather due to the disruption of the turbulent production by the particles. This is
at variance with the conventional wisdom in turbulent gas–particle flows, that the
turbulence attenuation is due to the increase in the energy dissipation due to the
particles. Rather, the present study shows that the turbulence attenuation is due to the
collapse in the Reynolds stress and the turbulent production rate in the fluid. This
collapse occurs discontinuously at a critical volume fraction, in contrast to the current
belief that there is a steady decline in the turbulence intensity. The exact mechanism
of this disruption is the subject of further study.
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Appendix A. Direct numerical simulations
The primitive variable formulation along with the coupled method has been used

to integrate Navier–Stokes equation using the Kleiser–Schumann algorithm (Kleiser &
Schumann 1980; Canuto, Hussaini & Zang 1988). The numerical formulation for the
fluid turbulence is adapted from chapter 7 of Canuto et al. (2007). The procedure has
been validated earlier in Goswami (2008) for one-way coupling for wall-bounded two
phase flow based on the open source incompressible Navier–Stokes solver Channelflow
(Gibson et al. 2008). This has been extended to include two-way coupling between the
particles and fluid. The simulation procedure is the same as that used in Goswami &
Kumaran (2011a). Here, a brief summary of the simulation procedure and validation
is provided, followed by the interpolation procedure for calculating the fluid velocity
at the particle location and the particle force on the fluid.

The instantaneous velocity field can be decomposed into the mean velocity and the
fluctuating velocity,

u(x, t)=U(y)ex + u′(x, t), (A 1)

where x and y are the streamwise and cross-stream directions, U(y) is the mean (time-
averaged) velocity and ex is the unit vector in the streamwise (x) direction. Similarly,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

90
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.90


Turbulent disruption in a gas–particle suspension 889 A28-33

the pressure field can be decomposed into the linearly varying mean pressure and the
fluctuating pressure as

p(x, t)=
dP
dx

x+ p′(x, t).

The pressure gradient term can be written as

∇p(x, t)=
dP
dx

ex +∇p′(x, t). (A 2)

Substituting (A 1) and (A 2) in (2.2), we get

∂u′

∂t
+

1
ρf
∇p′ = ν∇2u′ −

[
u′ · ∇u′ +U

∂u′

∂x
+ u′y

∂U
∂y

ex

]
+

[
ν
∂2U
∂y2
−

1
ρf

dP
dx

]
ex +

f
ρf
.

(A 3)
Different forms have been used for the nonlinear term in the momentum

conservation equation (A 3). Here, we have used the rotational form of Kleiser &
Schumann (1980). Since this introduces errors at higher wavenumbers, the dealiasing
procedure of Zang (1991) has been used. Crank–Nicholson time discretisation has
been used for the linear terms in (A 3), and a second-order Adams–Bashforth scheme
has been used for the nonlinear term.

The zero-velocity boundary conditions at the walls are enforced using the influence
matrix method. After carrying out the Fourier transforms in the streamwise and
spanwise directions, the momentum equations are reduced to two independent
one-dimensional Helmholtz equations for the divergence of the velocity and the
wall-normal component of the velocity. The inhomogeneous pressure boundary
condition in the equation for the divergence of the velocity is adjusted in order
to ensure that the tangential velocity boundary condition is satisfied. The procedure
is explained in Kleiser & Schumann (1980).

A.1. Fluid velocity interpolation
The fluid velocity is calculated at finite number of fluid grid points, but the calculation
of fluid drag on a particle requires the interpolation of fluid velocities at the particle
location. The most accurate method to calculate the interpolated velocities is direct
summation of the Fourier and Chebyshev series, known as spectral interpolation,
used, for example, in McLaughlin (1989). Spectral interpolation requires a significant
computational cost O(N3Np), where N is the number of grid points in each direction
and Np is the number of particles, so it not feasible to simulate large numbers of
particles. Yeung & Pope (1988) concluded that linear interpolation is not accurate to
calculate the interpolated fluid velocity because there could be high velocity gradients
near the wall. Yeung & Pope (1988) and Balachandar & Maxey (1989) studied
different interpolation schemes such as linear interpolation, Lagrangian interpolation,
Hermite and cubic interpolation for accuracy and found that the interpolation scheme
should at least be third-order accurate in the spatial directions. In the case of
wall-bounded flows, Chebyshev polynomials are used in the wall-normal direction to
capture the near-wall physics. Since we are using a pseudo-spectral method, it is easy
to implement Chebyshev polynomial interpolation in the wall-normal direction. For
this reason, Kontomaris, Hanratty & McLaughlin (1992) studied mixed interpolation
schemes like linear–Chebyshev, third-order Lagrangian–Chebyshev, third-order
Lagrangian–Chebyshev, Hermite–Chebyshev etc. They found that Hermite–Chebyshev
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is the most accurate interpolation scheme but it requires the storage of the first and
second derivatives of the three-dimensional velocity field in the periodic directions.
This requires a large amount of computational memory. Garg et al. (2007) have
compared different interpolation schemes, and have concluded that a higher-order
polynomial interpolation scheme could result in larger errors than a lower-order
scheme in some cases, if there is no correction for the undisturbed velocity at the
particle location. Since we do include the correction for the undisturbed velocity
(Esmaily & Horwitz 2018), and considering both accuracy and memory optimisation,
we have used a fifth-order Lagrangian Chebyshev interpolation scheme in our study,
as used by Goswami & Kumaran (2010).

In the pseudo-spectral method, the fluid velocity can be written as,

u′(x, y, z, t)=
Nx/2−1∑

nx=−Nx/2

Nz/2−1∑
nz=−Nz/2

Ny−1∑
ny=0

ˆ̃u(nx, ny, nz, t)e2πı[(nxx/Lx)+(nzz/Lz)]Tn(y), (A 4)

where Nx, Ny and Nz are the total number of grid points in the streamwise, wall-
normal and vorticity directions, all lengths are scaled by the half-width of the channel,
Lx and Lz are the box lengths in the x and z directions. The summations over nx and
nz are computationally expensive if the particles are not at the fluid grid points, since
fast Fourier transforms cannot be used. In the present simulations, these have been
carried out by the less computationally expensive Lagrangian interpolation,

u(x, y, z, t)=
k∑

j=0

ujlj(x)lj(z), (A 5)

where lj are the Lagrange basis functions. Here, we have used fifth-order Lagrangian
basis sets, k= 5,

lj(x)=
∏

06m6k

x− xm

xj − xm
, (A 6)

lj(z)=
∏

06m6k

z− zm

zj − zm
. (A 7)

After summation over x and z, we get the velocity in the x–y plane,

u(x, y, z, t)=
Ny−1∑
ny=0

û(x, ny, z, t)Tn(y). (A 8)

The summation in (A 8) is carried out to obtain velocities at 36 wall-normal grid
points surrounding the particle location. Then, fifth-order Lagrangian interpolation is
used to obtain the velocity at the particle location.

A.2. Particle reverse force
In spectral method, the reverse force calculated at the particle centre is represented
by delta functions, that is, the force is non-zero only at the particle centre, and is
zero otherwise. The force is represented as the sum of forces exerted by individual
particles,

f =−
Np∑

I=1

(FD
I +FL

I )δ(x− xI)δ(y− yI)δ(z− zI), (A 9)
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j vertex

Particle

(ÎV)j

FIGURE 15. The PNN method for projecting the force on a particle located within the
volume 1V onto the vertices of the volume.

where FD
I and FL

I are the drag and lift forces on the particles (see (2.4)). The force
in spectral space after Fourier–Chebyshev transformation is

f̂ (nx, ny, nz, t)=−
Np∑

I=1

(FD
I +FL

I )e
−2πı[((nxxI/Lx)+(nzzI/Lz))]

Tny(yI)√
1− y2

I

. (A 10)

Here, Np is the number of particles in the simulation box. This method involves a
very high computational cost, since complex exponential functions are evaluated at
the particle centre, which is off grid in general.

To avoid the high computational cost of the spectral representation of the reverse
force, equation (A 10), the reverse force in the simulations is determined using the
projection on nearest neighbours (PNN) method, which is computationally faster.
A projection technique is used where the particle force is projected onto the eight
surrounding fluid grid points by a volume weighted method, as illustrated in figure 15,

f =−
1
1V

8∑
j=1

(FD
I +FL

I )(1V)′jδ(x− xj). (A 11)

Here, the summation is over the eight vertices j of the volume 1V within which the
particle is located, and (1V)′j is the volume of the cuboid opposite to the vertex j.

Figure 16 shows a comparison of the fluid mean square fluctuating velocities
obtained using the PNN projection and the direct Fourier–Chebyshev transform for
a suspension with channel Reynolds number Reb = 3300 and particle Stokes number
105.47 in which the particle drag is given by Stokes law. The results of the PNN
method are in excellent agreement with those of the spectral interpolation for the
range of volume fractions considered here, and so the volume interpolation has been
used to obtain all of our results.

The present results for the mean fluid velocity and root mean square fluctuations,
scaled by friction velocity, for an unladen flow for Reynolds number (Reb) of 5600
(Reτ = 180) are compared with the results of Kim et al. (1987) in figure 17. This
figure shows that the results of the present simulation are in quantitative agreement
with previous simulations for the gas turbulence. The results have also been validated
against those of Goswami & Kumaran (2011a) for an unladen flow at a Reb = 3300,
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FIGURE 16. The scaled mean square velocities (u′2x /ū
2) (a) and (−u′xu′y/ū

2) (b) calculated
using the direct Fourier–Chebyshev transform (solid lines) and the PNN projection method
(dashed lines) for a suspension with particle volume fractions 10−3 (E) and 2× 10−3 (A)
when the channel Reynolds number is 3300, the particle drag is given by Stokes law (2.5)
and the particle Stokes number is 105.47.
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FIGURE 17. The fluid mean velocity (a) and root mean square velocity fluctuation (b)
scaled by the friction velocity u∗ as a function of the scaled coordinate (yu∗/ν) for
an unladen channel flow at Reb = 5600 and Re∗ = 180. In (a), current (——) DNS

simulation are compared with (E) Kim et al. (1987) for Re∗=180. In (b), (——)
√

u′2x /u∗,

(· · ·)
√

u′2y /u∗ and (– – –)
√

u′2z /u∗, obtained here are compared with (E)
√

u′2x /u∗, (A)√
u′2y /u∗ and (6)

√
u′2z /u∗ from Kim et al. (1987).

and quantitative agreement was found. The fluid turbulence intensities for Reb= 3300
for a particle-laden flow with Stokes number 2.5 and volume fraction φav = 10−4

are compared with experimental results obtained by Goswami & Kumaran (2011b)
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FIGURE 18. A comparison between the current simulations (lines) and the experimental
data from PIV of Goswami & Kumaran (2011b) of the fluid mean velocity ūx (a),

root mean square velocity fluctuation in the streamwise
√

u′2x and wall-normal
√

u′2y
directions (b) and the correlation u′xu′y (c), scaled by suitable powers of the turbulent
centre line velocity ūc, as a function of the scaled coordinate (y/h). The channel Reynolds
number Reb = 3300, the particle Stokes number is 2.5 and the particle volume fractions

is 10−4. In (b) (——)
√

u′2x /ūc and (– – –)
√

u′2y /ūc, from simulations are compared with

(E)
√

u′2x /ūc, and (u)
√

u′2y /ūc of Goswami & Kumaran (2011b).

using particle image velocimetry (PIV) in figure 18. This figure shows that the fluid
mean velocity and the root means square of the fluid velocity fluctuations in the
streamwise and wall-normal directions obtained from the present simulations are in
good quantitative agreement with experimental data of Goswami & Kumaran (2011b).
Figure 18(c) shows that the error bars in the experimental results for the correlation
u′xu′y are relatively large compared to the mean values due to the limited resolution
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FIGURE 19. The volume fraction φ (a) and the scaled mean particle velocity (v̄x/ū) (b) as
a function of (y/h) for cross-sectionally averaged particle volume fractions φav = 5× 10−4

(E), φav = 10−3 (A), φav = 1.3× 10−3 (C), φav = 1.4× 10−3 (B), φav = 1.6× 10−3 (D) and
φav = 2× 10−3 (6). The Stokes law is used for the drag force on the particle, the channel
Reynolds number Reb = 3300 and the particle Stokes number is 105.47. The dashed line
in (b) is the fluid mean velocity for the unladen flow.

in the experiments. Subject to these error bars, there is good quantitative agreement
between the simulation and experimental results.

Appendix B. Particle statistics
The cross-stream variations of the particle concentration and velocity fields are

shown in figure 19. There is virtually no variation in either the particle concentration
or the average velocity with cross-stream distance. It should be noted that the
particle–wall collisions are considered to be smooth and elastic; consequently, there
is no momentum exchange between the particles and the wall in the flow direction,
resulting in a ‘zero-stress’ condition for the particle phase at the wall. There is also
virtually no change in the particle mean velocity as the particle loading is increased,
and the particle mean velocity is virtually equal to the average fluid velocity. This
is because the terminal velocity of the particles is, at maximum, approximately 0.01
times the flow velocity, and so the average slip between the particle and fluid phase
is negligible.

Figure 19 shows that the particle mean velocity profiles are also independent of the
fluid turbulence intensities. In contrast, the particle fluctuating velocities in figure 20
show a strong dependence on the turbulence intensities. The mean square of the
streamwise fluctuating velocity v′2x , shown in figure 20(a), decreases with distance
from the wall of the channel. When the particle loading is increased from 5× 10−4 to
1.3× 10−3, there is a decrease in v′2x . However, when the particle loading is increased
from 1.3× 10−3 to 1.4× 10−3, there is a sharp increase of approximately 20 % in v′2x .
This is followed by a decrease upon further increase in the volume fraction from
1.3× 10−3 to 2× 10−3. A comparison of figures 2(a) and 20(a) indicates that v′2x is
significantly smaller than u′2x for φav 6 1.3× 10−3, but the particle fluctuating velocity
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FIGURE 20. The mean square of the particle fluctuating velocities in the streamwise (a),
cross-stream (b) and spanwise (c) directions, and correlation v′xv′y (d), non-dimensionalised
ū2, as a function of the scaled coordinate (y/h), for average particle volume fractions φav=

5× 10−4 (E), φav = 10−3 (A), φav = 1.3× 10−3 (C), φav = 1.4× 10−3 (B), φav = 1.6× 10−3

(D), φav = 2× 10−3 (6). The Stokes law is used for the drag force on the particles, the
channel Reynolds number is Reb = 3300 and the particle Stokes number is 105.47.

v′2x becomes larger than u′2x for φav > 1.4× 10−3. This suggests that the fluid velocity
fluctuations drive the particle velocity fluctuations for the turbulent state, whereas
the particle velocity fluctuations drive the fluid velocity fluctuations after turbulence
collapse. A similar inference can be drawn for the fluctuations in the other two
directions as discussed below.

The mean square of the fluctuating velocities in the cross-streamwise and spanwise
directions, v′2y and v′2z , in figure 20(b,c), exhibit remarkably little variation with cross-
stream distance. This lack of variation in the cross-stream direction is understandable,
because momentum conservation requires that the product of the concentration and v′2y
has to be a constant. Figure 20(b,c) shows that there is a monotonic increase in v′2y

and v′2z when the average volume fraction is increased from 5× 10−4 to 1.3× 10−3,
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FIGURE 21. The scaled time between particle–particle collisions (tppū/h) (solid lines),
time between particle–wall collisions (tpwū/h) (dashed lines) and the viscous relaxation
time of the particles (tv ū/h) (horizontal dotted lines) as a function of the volume fraction
for channel Reynolds number Reb = 3300 and Stokes numbers of 21.09 (E), 105.47 (A)
and 316.40 (C), when the Stokes law (2.5) is used for the drag force on the particles (a);
and for Stokes numbers of 6.49 (E), 32.45 (A) and 97.34 (C) when the Schiller–Naumann
correlation (2.6) is used for the drag force on the particles (b). The vertical dotted lines
show the range of φav over which there is turbulence collapse for the Stokes number
indicated by the symbols on the abscissa.

and then a discontinuous increase of approximately 30 % when the average volume
fraction is increased from 1.3× 10−3 to 1.4× 10−3. A further increase in the volume
fraction results in a slight decrease in the mean square of the fluctuating velocity. A
comparison of figures 2(b,c) and 20(b,c) shows that v′2y and v′2z are comparable to the
fluid mean square velocities u′2y and u′2z for φav 6 1.3 × 10−3 when the fluid flow is
turbulent. For φav > 1.4× 10−3, the moments of the particle velocity fluctuations are
significantly higher than the moments of the fluid velocity fluctuations.

Figure 20(d) shows that there is a discontinuous increase in the magnitude of the
velocity correlation v′xv

′
y when the average volume fraction is increased from 1.3 ×

10−4 to 1.4× 10−4. The magnitude of the particle velocity moment v′xv′y is significantly
smaller than the fluid velocity moment u′xu′y (figure 2) for the turbulent flow for φav 6
1.3× 10−3, but it becomes significantly larger after turbulence collapse for φav > 1.4×
10−3. Since the mass loading in our simulations is O(1), this implies that the stress
transmitted due to the particle velocity fluctuations is significantly larger than that due
to the fluid velocity fluctuations for φav> 1.4× 10−3. Thus, the discontinuous decrease
in the turbulence intensity at the critical volume loading also causes a discontinuous
increase in all the second moments of the particle fluctuating velocities. Whilst the
second moments of the particle velocity fluctuations are lower than those for the fluid
velocity fluctuations for φav 6 1.3× 10−3, the reverse is true for φav > 1.4× 10−3.

The time between particle–particle collisions averaged across the channel width,
tpp, and the time between particle–wall collisions, tpw, all scaled by the fluid integral
time (h/ū), are shown as a function of the volume fraction in figure 21. The viscous
relaxation time, equations (2.13) and (2.14), which is independent of the particle
volume fraction, is shown by the horizontal dotted lines in figure 21. The results
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FIGURE 22. The measures of the mean square of the fluctuating velocities (3.2) scaled
by the square of the average flow velocity, (〈v′2x 〉s/ū

2) (a), (〈v′2y 〉s/ū
2) (b), (〈v′2z 〉s/ū

2) (c)
and (−〈v′xv′y〉s/ū

2) (d) as a function of the average volume fraction for channel Reynolds
number Reb= 3300 and particle Stokes numbers of 21.09 (E), 105.47 (A) and 316.40 (C),
when the Stokes law (2.5) is used for the drag force on the particles (solid lines); and
for Stokes numbers of 6.49 (u), 32.45 (q) and 97.34 (s) when the Schiller–Naumann
correlation (2.6) is used for the drag force on the particles (dashed lines). The vertical
dotted lines show the range of φav over which there is turbulence collapse for the particle
drag law and Stokes number indicated by the symbols on the abscissa.

in figure 21(a) are obtained when the Stokes drag law is used for the particle drag.
Here, the viscous relaxation time is larger than the particle–particle and particle–wall
collision times for Stokes numbers of 105.47 and 316.40, implying that the particle
does not relax to the local fluid velocity between successive collisions. For the Stokes
number 21.09, the viscous relaxation time is smaller than the collision time for low
volume fraction, and larger than the collision time for high volume fraction. When the
Schiller–Naumann correlation (2.6) is used for the drag force, the viscous relaxation
time is smaller than the collision time for the Stokes number 6.49, comparable to the
collision time for the Stokes number 32.45 and larger for the Stokes number 97.34.
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FIGURE 23. The probability distributions for the particle velocity fluctuations in the
streamwise (a), cross-stream (b) and spanwise (c) directions in the zone near the wall (E)
and at the centre (A) for particle volume fractions of 1.3×10−3 (solid line) and 1.4×10−3

(dashed line) when the channel Reynolds number is 3300, the Stokes drag law is used for
the drag force and the particle Stokes number is 105.47. The dotted line is the Gaussian
distribution.

Thus, figure 21 shows that our simulations span the range tpw < tpp where the particle
travels across the channel before colliding with another particle, and tpp < tpw, where
the particle collides with other particles before crossing the width of the channel.
The collapse in turbulence intensities at a critical volume loading is observed for this
entire range of ratios of time scales.

The spatially averaged mean square of the particle velocity fluctuations, scaled by
the square of the average flow velocity, is shown as a function of the average particle
volume fraction in figure 22. The volume fractions bracketing the turbulence collapse
transition are shown by the vertical lines, with the symbols on the abscissa indicating
the drag law and Stokes number. There is a decrease in the streamwise fluctuating
velocity and an increase in the cross-stream and spanwise fluctuating velocities as
the volume fraction is increased, due to the enhanced transfer of fluctuating energy
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from the streamwise to the cross-stream directions by collisions. At the transition
volume fraction, there is a significant increase in the mean square velocity in all three
directions. This increase is relatively small, approximately 10 %, in the streamwise
fluctuating velocity, but it is quite large, up to 50 %, in the cross-steam and spanwise
directions. There is also a moderate increase of approximately 20 % in magnitude of
the correlation 〈v′xv′y〉s. However, the increase in the particle velocity fluctuations is
significantly smaller than the decrease by 1–2 orders of magnitude in the fluid velocity
fluctuations in figure 6.

The probability distributions for the particle fluctuating velocities are shown in
figure 23 for the turbulent flow at volume fraction 1.3 × 10−3, and after turbulence
collapse at volume fraction 1.4 × 10−3. Figure 23 shows that there is virtually no
change in the distribution functions for the particle fluctuating velocities, in contrast
to the qualitative change in the distribution function for the fluid fluctuating velocities
observed in figure 8. Thus, the particle statistics are unchanged even when there is a
significant change in the fluid statistics at turbulence collapse.
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