No CrossRef data available.
Article contents
Coniveau filtrations and Milnor operation
$Q_n$
Part of:
Fiber spaces and bundles
Cycles and subschemes
Homology and homotopy of topological groups and related structures
Linear algebraic groups and related topics
Published online by Cambridge University Press: 08 May 2023
Abstract
Let BG be the classifying space of an algebraic group G over the field ${\mathbb C}$ of complex numbers. There are smooth projective approximations X of
$BG\times {\mathbb P}^{\infty}$, by Ekedahl. We compute a new stable birational invariant of X defined by the difference of two coniveau filtrations of X, by Benoist and Ottem. Hence we give many examples such that two coniveau filtrations are different.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 175 , Issue 3 , November 2023 , pp. 521 - 538
- Copyright
- © The Author(s), 2023. Published by Cambridge University Press on behalf of Cambridge Philosophical Society
References
Benoist, O. and Ottem, J.. Two coniveau filtrations. Duke Math J. 170 (2021), 2719–2753.CrossRefGoogle Scholar
Bloch, S. and Ogus, A.. Gersten’s conjecture and the homology of schemes. Ann. Sci. Ecole Norm. Sup. 7 (1974), 181–202.CrossRefGoogle Scholar
Colliot Thérène, J. L. and Voisin, C.. Cohomologie non ramifieet conjecture de Hodge entíere. Duke Math. J. 161 (2012), 735–801.Google Scholar
Ekedahl, T.. Approximating classifying spaces by smooth projective varieties. Preprint 44 (2009), arXiv:0905.1538.Google Scholar
Kameko, M. and Yagita, N.. The Brown–Peterson cohomology of the classifying cohomologies of projective unitary group PU(n) and exceptional Lie groups. Trans. Amer. Math. Soc. 360 (2008), 2265–2284.CrossRefGoogle Scholar
Kordonskii, E.. Stable rationality of the group
$Spin_{10}$
. Russian Math. Soc. 360 (2000), 178–179.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231013002517622-0681:S0305004123000282:S0305004123000282_inline596.png?pub-status=live)
Merkurjev, A.. Rationality problem for classifying spaces of Spinor groups. Proc. Skeklov Inst. Math. 307 (2019), 115–124.Google Scholar
Paranjape, K.. Some spectral sequences for filtered complexes and applications. J. Algebra 186 (1996), 793–806.CrossRefGoogle Scholar
Pirutka, A. and Yagita, N.. Note on the counterexamples for the integral Tate conjecture over finite fields. Doc. Math. (2015), 501–511. Extra vol. Alexander S. Merkurjev’s sixtieth birthday.CrossRefGoogle Scholar
Quillen, D.. Elementary proofs of some results of the cobordism theory using Steenrod operations. Adv. Math. 7 (1971), 29–56.CrossRefGoogle Scholar
Quillen, D.. The mod 2 cohomology rings of extra-special 2-groups and the spinor groups. Math. Ann. 194 (1971), 197–212.CrossRefGoogle Scholar
Ravenel, D., Wilson, S. and Yagita, N.. Brown–Peterson cohomology from Morava K-theory. K-theory. 15 (1998), 147–199.CrossRefGoogle Scholar
Reichstein, Z. and Scavia, F.. The Noether problem for spinor groups of small rank. J. Algebra 48 (2020), 134–152.CrossRefGoogle Scholar
Tamanoi, M.. The image of the BP-Thom map for Eilenberg–MacLane spaces. Trans. Amer. Math. Soc. 249 (1997), 1209–1237.CrossRefGoogle Scholar
Tezuka, M. and Yagita, N.. The image of the map from group cohomology to Galois cohomology. Trans. Amer. Math. Soc. 363 (2011), 4475–4503.CrossRefGoogle Scholar
Totaro, B.. The Chow ring of classifying spaces. Proc.of Symposia in Pure Math. “Algebraic K-theory” (University of Washington, Seattle, 1997) 67 (1999), 248-281.Google Scholar
Voevodsky, V.. Reduced power operations in motivic cohomology. Publ. Math. Inst. Hautes Études Sci. 98 (2003), 1–57.CrossRefGoogle Scholar
Voevodsky, V.. Motivic cohomology with
${\mathbb Z}/2$
coefficient. Publ. Math. Inst. Hautes Études Sci. 98 (2003), 59–104.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231013002517622-0681:S0305004123000282:S0305004123000282_inline597.png?pub-status=live)
Voevodsky, V.. On motivic cohomology with
${\mathbb Z}/l$
-coefficients. Ann. Math. bf 174 (2011), 401–438.Google Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231013002517622-0681:S0305004123000282:S0305004123000282_inline598.png?pub-status=live)
Yagita, N.. Coniveau filtration of cohomology of groups. Proc. London Math. Soc. 101 (2010), 179–206.CrossRefGoogle Scholar
Yagita, N.. Algebraic BP-theory and norm varieties. Hokkaido Math. J. 41 (2012), 275–316.Google Scholar
Yagita, N.. Chow rings of nonabelian p-groups of order
$p^3$
. J. Math. Soc. Japan 64 (2012), 507–531.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231013002517622-0681:S0305004123000282:S0305004123000282_inline599.png?pub-status=live)
Yagita, N.. Chern classes and the Rost cohomological invariant. Kodai Math. J. 36 (2013), 174–178.CrossRefGoogle Scholar