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A computational parameter study of the viscous axisymmetric supersonic flow over a
double cone is made with a view to determining the boundary of the region in which such
flows are unsteady. The study is restricted to the case when the boundary layer is laminar.
The features of both the steady and unsteady flows in different characteristic regions of
the parameter space are described. In particular, the phenomenon of pulsating flow typical
of spiked blunt bodies (small first-cone angle, θ1, and large second-cone angle, θ2), is
shown to be inviscid in nature. In θ1–θ2 space, the region of unsteady flow is enclosed in
a loop with a lower and an upper θ2 branch with a maximum θ1 between. The location
of the lower θ2 branch is determined by the second-cone detachment angle θ2d. For this
reason, the gas model in one of the conditions is chosen to be thermally perfect carbon
dioxide (at Mach number 8) for which θ2d is quite large. In the other cases, the gas model
is perfect-gas nitrogen at Mach numbers 2, 4 and 7.7. In the hypersonic range, within the
uncertainties, and in the parameter range covered, the unsteadiness boundary is shown to
depend on only three dimensionless parameters.

Key words: high-speed flow, hypersonic flow, shock waves

1. Introduction

It has been known since the 1950s that supersonic flows over axisymmetric spiked blunt
bodies in a uniform free stream can exhibit violent pulsating unsteadiness. One way to
think of such bodies is as double cones, with the first-cone angle, θ1, being small and the
second, θ2 ≤ π/2, large. Of course, in the case when θ1 = θ2, this is the axisymmetric flow
over a (finite) cone, which is known to be steady. Therefore, in the θ1–θ2 space, there must
exist a boundary that separates the region of steady from that of unsteady flow. The aim of
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Figure 1. Schematic sketches of two forms of steady double-cone flow. (a) The reattachment occurs on cone
2. (b) The separation bubble is small and reattachment occurs almost immediately on cone 1. In both cases only
the beginning of a supersonic shock train is indicated following the reattachment. This may or may not reach
and penetrate the sonic surface, indicated by a dashed line.

this work is to determine this boundary. Obviously, there are other geometric and physical
dimensionless variables that are pertinent to this problem and these will be discussed later.

It is useful to aid the discussion with two sketches that illustrate two manifestations of
steady flows over double cones, see figure 1. A first cone of angle θ1, small enough for
the cone 1 shock to be attached and of length �1 is followed by a second cone of angle
θ2 and length �2. The cone 2 shock causes the boundary layer developing on cone 1 to
separate. The separation deflects the flow again and causes the separation shock. In (a)
the separation length is relatively long, so that reattachment occurs on cone 2, where
a reattachment shock ensues. If θ2 is sufficiently large, the cone 2 shock is detached
and curved with a subsonic flow region downstream of it. This is the situation shown
in the sketch. The interaction of the reattachment shock with the other shocks initiates
a supersonic shock train, which may or may not penetrate through to the shoulder of
cone 2. In (b), the separation length is quite small and reattachment occurs on cone 1.
Again a supersonic shock train occurs. These sketches also define the three dimensionless
geometrical parameters of the problem

θ1, θ2 and Λ = �2/�1. (1.1a,b)

Unsteady double-cone flows have been studied extensively in the case when θ1 is near
zero, i.e. spiked-body flow. Detailed reviews have been presented by Kenworthy (1978) and
Ahmed & Qin (2011), and we restrict discussion to a few contributions that are relevant to
our aim. Mair (1952) investigated supersonic flow at Mach number 1.96 over blunt bodies
with a forward pointing spike experimentally and was the first to observe the pulsating
unsteadiness. Shortly thereafter, Stollery, Maull & Belcher (1960) had taken a hypersonic
gun tunnel into operation at Imperial College, London. In two early projects studied in
this facility, Maull (1960) and Wood (1961) confirmed the unsteady behaviour in the
hypersonic range for spiked blunt bodies and spiked cones, respectively. Wood (1961)
recognized the importance of the detachment angle of cone 2, θ2d, in the unsteadiness
boundary and presented a map in θ2–Λ space in which boundaries between different flow
types were drawn. He distinguished between pulsating unsteadiness at larger θ2 and a
milder oscillating flow at smaller θ2. The promise of using a spike, that it might cause
drag and heat-load reduction, which also motivated an investigation by Bogdonoff & Vas
(1959), was thus disappointed.

Spiked cones were also part of the high Mach number investigation by Holden (1966)
extending the map of Wood (1961) and including detailed heat-load measurements.
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Supersonic double-cone flow

A very detailed and wide-ranging experimental investigation of spiked cone flow was
performed by Kenworthy (1978), who further extended Wood’s map and analysed and
classified pressure traces and Strouhal numbers of the unsteady flows. It is interesting
that Kenworthy’s data indicate that the unsteadiness boundary in θ2–Λ space is virtually
independent of Λ for Λ ≥ 0.5 and lies approximately at θ2 = θ2d. This differs from the
Wood (1961) and Holden (1966) maps which show the boundary at ∼15◦ above θ2d for
M = 10 at Λ = 0.5. Kenworthy found that the pulsating unsteadiness was insensitive to
Reynolds number.

A thorough computational investigation of one of Kenworthy’s cases was presented
by Feszty, Badcock & Richards (2004), which reproduced the features of the experiment
in great detail. A computational study of the more general spiked blunt body flow was
presented by Panaras & Drikakis (2009).

The work on unsteadiness was mainly restricted to the case when θ1 is effectively zero,
i.e. to spiked bodies. Where it concerned spiked cones, the emphasis was on resolving the
θ2–Λ space at zero θ1. Two main types of unsteadiness were observed as Λ was increased.
At small Λ the flow is steady. Then with Λ increasing, a transition to the ‘oscillatory’
flow was followed by a transition to the ‘pulsating’ flow, the main distinction between
them being amplitude. Several authors also observed hysteretic behaviour related to the
direction of Λ change. With the exception of a single case found by Kenworthy (1978)
no unsteadiness was observed for θ2 < θ2d. This case was the oscillatory type at θ2 ∼ 5◦
below the detachment angle.

In the case of finite θ1, the emphasis has been on steady flows, a dominating purpose
being testing of computations. The separation length and the distributions of skin friction
and heat flux are particularly sensitive features of such flows and difficult to reproduce
computationally. An extensive investigation representative of this area is that by Holden
et al. (2007), which includes detailed experimental data on double-cone flows with θ1 =
25◦ and θ2 = 55◦. This provided test cases for various kinds of numerical simulations.
The sensitivity of this configuration to non-equilibrium high-enthalpy real-gas phenomena
was used by Olejniczak, Candler & Hornung (1997) to test computational models against
free-piston shock tunnel experiments. Three models with θ1 = 25◦ and θ2 = 65◦, 68◦ and
70◦ were tested in high-enthalpy nitrogen flow, and holographic interferograms were taken.
At the two larger values of θ2 evidence of unsteadiness was found. More such free-piston
shock tunnel results including high-speed video visualizations were presented by Knisely
(2016) for (θ1, θ2) = (25◦, 55◦). While the main shocks in these were steady during the run,
the shear layer at the edge of the supersonic shock train was unsteady.

A case in which the stability and conditional unsteadiness of double-cone flows other
than that with θ1 = 0 was studied was Tumuklu, Theofilis & Levin (2018), in which the
area around the separation region and the supersonic shock train was analysed theoretically
and computationally. In that case the stability was clearly Reynolds-number dependent.

In summary, previous work on the unsteadiness boundary in double-cone flows has
centred on exploring the θ2–Λ space at θ1 = 0. Instead, in the present work, the aim
is to search for the boundary in the θ1–θ2 space with only two values of Λ: 0.5 and 1.
Knowledge of this boundary would be valuable, e.g. in the design of experiments that test
computational models.

2. Parameters

This investigation is restricted to nitrogen flows with a constant ratio of specific heats
γ = 1.4 and, in one case, thermally perfect carbon dioxide. Any dimensionless quantity
Q, which may here be thought of as a function describing the unsteadiness boundary, will
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A A′ B C D

Gas N2 N2 CO2 N2 N2
Model γ = 1.4 γ = 1.4 th. perf. γ = 1.4 γ = 1.4
p∞, Pa 100 200 100 284 568
T∞, K 300 300 250 250 250
Tw, K 300 300 300 300 300
U∞, m s−1 2720 2720 2000 1289 645
M∞ 7.7 7.7 8.0 4.0 2.0
�1, m 0.1 0.1 0.1 0.07 0.07
Re 17 200 34 400 34 130 22 370 19 400
ε 0.181 0.181 0.091 0.219 0.375
θ2d , deg. 56.4 56.4 65.9 52.8 41.5

Table 1. Free-stream conditions of the cases computed.

therefore be
Q = Q(θ1, θ2, Λ, M∞, γ, Re, Tw/T0), (2.1)

where M∞ is the free-stream Mach number, Re = ρ∞U∞�1/μ∞ is the Reynolds number
with free-stream density, velocity and viscosity and Tw/T0 is the wall to total temperature
ratio.

In the hypersonic Mach number range, the separate dependence on Mach number and γ

may be lumped into dependence on a single parameter, the inverse normal-shock density
ratio

ε = γ − 1 + 2/M2∞
γ + 1

. (2.2)

For example, the detachment angle of a cone is very well approximated, see Hayes &
Probstein (1959), by

θd = 2 arctan

√
2
ε

− π

2
. (2.3)

In all but one of the cases considered (M∞ = 2) this lumping together of M∞ and γ

is justified, and even for M∞ as low as 2, for which ε = 0.375, the error made by the
approximation for θd is only 43◦ vs the true value 41.5◦. At M∞ = 4, with γ = 1.4, this
difference reduces to 0.6◦ (53.4◦, 52.8◦) and at M∞ = 7.7 to 0.2◦ (56.6◦, 56.4◦). Also, in
all cases except M∞ = 2, the wall to total temperature ratio is small. Thus, for hypersonic
flow, the problem is reduced to five independent parameters

Q = Q(θ1, θ2, Λ, ε, Re). (2.4)

It is clear that the unsteadiness boundary is strongly influenced by the cone 2 detachment
angle, θ2d. It is therefore desirable that a large range of θ2d values be considered. For this
reason one of the cases in the study is that of thermally perfect carbon dioxide. The four
vibrational degrees of freedom of CO2 cause the specific heats to be quite large when they
are excited, and, at the condition considered for that case, ε = 0.091 so that θ2d = 65.9◦.
This value of ε was determined by measuring the density ratio across the normal part of
the cone 2 shock in one of the CO2 computations. A summary of the conditions considered
is given in table 1.

Condition A’ differs from A only in the doubling of the value of p∞ in order to get an
idea of the effect of Re. While it is clear from the range of parameters that some of these
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Supersonic double-cone flow

flows will exhibit temperatures that are high enough for nitrogen to be at least vibrationally
excited in physical flows, these degrees of freedom are deliberately kept unexcited and the
gas is constrained to be perfect with constant γ = 1.4. This is not true in the carbon dioxide
case, where vibrational equilibrium is assumed.

3. Computational matters

3.1. The software
The Eilmer flow simulation software is a derivative of the Navier–Stokes solver
described by Jacobs (1991). It has been further developed over the years, especially for
high-temperature hypersonic flows, and with some significant effort toward verification by
Gollan & Jacobs (2013). While the scope of the Eilmer code exceeds its use in this work,
the description in this section is limited to the formulation of the code’s features that were
used in the present simulations.

Eilmer is formulated around the integral form of the conservation equations, which can
be written as

∂

∂t

∫
V

U dV = −
∮

S

(
F̄c − F̄v

) · n̂ dA +
∫

V
Q dV, (3.1)

where S is the bounding surface and n̂ is the outward-facing unit normal of the control
surface. For axisymmetric flow, the symbol V in (3.1) is the volume and A the area of the
cell boundary per radian in the circumferential direction. For a single chemical species,
the array of conserved quantities is

U =

⎡
⎢⎢⎢⎣

ρ

ρvx

ρvy

ρE

⎤
⎥⎥⎥⎦ , (3.2)

where the conserved quantities are respectively density, x-momentum per volume,
y-momentum per volume and total energy per volume.

The flux vectors are divided into convective and viscous-transport contributions. With
the specific internal energy of the gas being u and the total specific energy being E =
u + 1

2v2, the convective component is

F̄c =

⎡
⎢⎢⎢⎣

ρvx

ρv2
x + p

ρvyvx

ρEvx + pvx

⎤
⎥⎥⎥⎦ î +

⎡
⎢⎢⎢⎣

ρvy

ρvxvy

ρv2
y + p

ρEvy + pvy

⎤
⎥⎥⎥⎦ ĵ, (3.3)

and the viscous component is

F̄v =

⎡
⎢⎣

0
τxx
τyx

τxxvx + τyxvy + qx

⎤
⎥⎦ î +

⎡
⎢⎣

0
τxy
τyy

τxyvx + τyyvy + qy

⎤
⎥⎦ ĵ, (3.4)
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where the viscous stresses are

τxx = 2μ
∂vx

∂x
+ λ

(
∂vx

∂x
+ ∂vy

∂y
+ vy

y

)
,

τyy = 2μ
∂vy

∂y
+ λ

(
∂vx

∂x
+ ∂vy

∂y
+ vy

y

)
,

τxy = τyx = μ

(
∂vx

∂y
+ ∂vy

∂x

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

Note that the x-coordinate is along the axis of symmetry and y is the radial coordinate.
The secondary viscosity coefficient λ is expressed in terms of the primary coefficient μ

via Stokes’ hypothesis, λ = −2
3μ. The components of the viscous heat flux are related to

the gradients of temperature as

qx = k
∂T
∂x

, qy = k
∂T
∂y

. (3.6a,b)

The vector of source terms in an axisymmetric flow accounts for a contribution to the
radial momentum from the pressure and shear stress acting on the out-of-plane faces of
the control volume

Q =

⎡
⎢⎣

0
0

(p − τθθ ) Axy/V
0

⎤
⎥⎦ , (3.7)

where Axy is the projected area of the cell in the (x, y)-plane and

τθθ = 2μ
vy

y
+ λ

(
∂vx

∂x
+ ∂vy

∂y
+ vy

y

)
. (3.8)

See Jacobs (1991) for a derivation of these terms.
To complete the conservation equations, a thermal model of the gas is used and the

transport coefficients are required. For the simulations with nitrogen, an ideal-gas thermal
model is assumed with molecular weight MN2 = 28.0134 and ratio of specific heats γ =
1.4. The molecular transport coefficients are provided via Sutherland’s approximation

μ(T) = μref
Tref + S
T + S

(
T

Tref

)3/2

, (3.9)

with μref = 1.663 × 10−5 Pa s, Tref = 273 K and S = 107 K. The approximation for
thermal conductivity is similar, with kref = 0.0242 W m K−1, Tref = 273 K and S =
150 K.

For the simulations with carbon dioxide, the thermal model and transport coefficients
from the NASA chemical equilibrium analysis CEA code (Gordon & McBride 1994) was
used, together with coefficients taken directly from their database.

The conservation equations are applied to each finite-volume cell for which the
boundary, projected onto the (x, y)-plane, consists of four straight lines (or cell interfaces).
Flux values are estimated at midpoints of the cell interfaces and the integral conservation
equation (3.1) is approximated as the algebraic expression

dU
dt

= − 1
V

∑
cell-surface

(
F̄c − F̄v

) · n̂ dA + Q, (3.10)

where U and Q now represent cell-average values.
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Supersonic double-cone flow

The full flow domain is subdivided into blocks of finite-volume cells, arranged into
two-dimensional structured grids. During a simulation, a halo of ghost cells around each
block of cells facilitates the exchange of data between adjacent blocks and the application
of boundary conditions. The exchange of data for adjacent blocks is a simple copy of
the cell data, prior to the evaluation of the fluxes of conserved quantities across the cell
interfaces. Solid-wall boundary conditions are approximated by reflecting the data for cells
that are interior to the block, into the corresponding ghost cells. For the convective fluxes,
components of velocity in the ghost cells are adjusted to be mirror images of the interior
velocities. For no-slip solid-wall boundaries, the velocity at the boundary face is set to
zero and temperature is set to a specific value. At the supersonic inflow boundary, constant
flow data are copied into the ghost cells while, at the simple outflow boundary, interior-cell
flow data are copied into the downstream ghost cells.

Calculation of the fluxes at each cell interface is preceded by an interpolation phase
where cell-average quantities are reconstructed index direction by index direction. Having
flow data available in the ghost cells allows all interfaces, including those on a boundary,
to be treated by the flux calculator as internal interfaces. For each flow variable, w, left and
right values (wL and wR respectively) at a cell interface are evaluated as the corresponding
cell average value plus a limited higher-order interpolated increment. Given an array of
cell centres [L1, L0, R0, R1] with the interface of interest located between L0 and R0,
we fit separate quadratic interpolants to subranges [L1, L0, R0] and [L0, R0, R1] and then
evaluate wL and wR as

wL = wL0 + αL0
[
ΔL+ × (2hL0 + hL1) + ΔL− × hR0

]
sL,

wR = wR0 − αR0
[
ΔR+ × hL0 + ΔR− × (2hR0 + hR1)

]
sR,

ΔL− = wL0 − wL1
1
2

(hL0 + hL1)

,

ΔL+ = wR0 − wL0
1
2

(hR0 + hL0)

= ΔR−,

ΔR+ = wR1 − wR0
1
2

(hR0 + hR1)

,

αL0 = hL0/2
hL1 + 2hL0 + hR0

,

αR0 = hR0/2
hL0 + 2hR0 + hR1

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.11)

where h represents the width of a cell. The high-order increment is limited by sL and
sR and, as described by van Albada, van Leer & Roberts (1981), these limiter values are
evaluated as

sL = ΔL−ΔL+ + |ΔL−ΔL+| + ε

Δ2
L− + Δ2

L+ + ε
,

sR = ΔR−ΔR+ + |ΔR−ΔR+| + ε

Δ2
R− + Δ2

R+ + ε
,

ε = 1.0 × 10−12.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.12)
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Finally, minimum and maximum limits are also applied, so that the newly interpolated
values lie within the range of the original cell-centred values. Unlimited, this
reconstruction scheme has third-order truncation error.

With local flow data on the left and right of each face, fluxes are calculated with an
adaptive calculator that selects the AUSMDV scheme (the version by Wada & Liou (1994)
of the Advection Upwind Splitting Methods) away from shocks and equilibrium flux
method (Macrossan 1989) near shocks. The switching between the two flux calculators
is governed by a shock detector that is a simple measure of the relative change in normal
velocity at interfaces. Specifically, we indicate a strong compression at the interface when

vR0 − vL0

min(aR0, aL0)
< Tol, (3.13)

where Tol is the compression tolerance and is typically set at −0.3. This measure is
applied to all interfaces in a block and then a second pass propagates the information to
nearby interfaces. If a first cell interface is identified as having a strong compression, the
equilibrium flux method is used for all interfaces attached to the cell containing that first
interface.

Evaluation of the spatial derivatives of temperature and velocity, needed for the viscous
fluxes, is performed via the use of the divergence theorem on secondary cells that are
temporarily constructed around the midpoint of each interface.

Time integration of the discrete equations is performed with an explicit third-order
Runge–Kutta method that updates the conserved quantities over time step Δt in stages

U1 = U0 + 1
2
Δt

dU
dt

∣∣∣∣
0
,

U2 = U0 + Δt
(

2
dU
dt

∣∣∣∣
1
− dU

dt

∣∣∣∣
0

)
,

U3 = U0 + Δt
(

4
6

dU
dt

∣∣∣∣
2
+ 1

6
dU
dt

∣∣∣∣
1
+ 1

6
dU
dt

∣∣∣∣
0

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.14)

After each stage of the update, the new conserved quantities are used to compute the other
flow quantities such as pressure, temperature and sound speed.

With the update process described above, the remaining components of the software
set up an initial flow state for all cells across the domain, compute values for the
conserved quantities in each cell, and then repeatedly step in time, allowing the flow to
evolve according to the conservation equations and the applied boundary conditions. This
stepping is performed synchronously, with blocks of cells distributed across many MPI
tasks running in parallel on a cluster computer.

3.2. Resolution test
The computational domain was subdivided into between 30 and 40 blocks in two different
arrangements depending on the included angle between the two cone generators, see
figure 2. In a base grid each block had 3600 cells making for a total of over 100 000.

At this point it is convenient to jump ahead and show the unsteadiness boundary at
condition A in order to show the regions in which the resolution was tested. Figure 3
shows this boundary and labels four unsteady regions, a, b, c and d, and three steady ones,
e, f and g. In order to test the resolution, sample computations were performed at location
f in this map, with the base grid and four times and nine times increased cell numbers,
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Supersonic double-cone flow

(b)(a)

Figure 2. Examples of the two forms of division of the flow domain into blocks. When the included angle
between the two cone generators is 115◦ or less, the form on the right is used, with some overlap to test grid
topology independence. Each block has the same number of grid cells. As can be seen from the relative sizes
of the blocks, the grid was heavily clustered near the walls and toward the cone 1 tip for good resolution of the
boundary layer and the tip flow.
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Figure 3. A map showing typical unsteady (a, b, c, d) and steady (e, f, g) locations in the case of condition A
with Λ = 1.

i.e. over 400 000 and 900 000 cells. These three resolution levels will be referred to as
‘resolution factors 1, 2 and 3’ respectively. The results are shown in figure 4.

While figure 4 shows that the overall features are only slightly different between these
three resolutions, a more quantitative comparison is given in figure 5 which presents the
differences between the temperature fields of resolution factors 1 and 2, and between 2
and 3. The first of these shows that in most of the flow field, the difference amounts to
less than 0.5 %. One source of differences clearly arises from the intersection of the grid
orientation discontinuity with the cone 2 shock. Also the beginning of the shock train
shows significant differences. The difference between the temperature fields of resolution
factors 2 and 3 is correspondingly smaller.

The magnitude of these differences would be totally unacceptable in investigations
into turbulence structure or acoustics, such as have been studied by Ritos, Kokkinakis
& Drikakis (2018) or Kokkinakis et al. (2020) or for studies of instability modes such as
that of Tumuklu et al. (2018), where accuracy to several orders of magnitude is essential.
However, in our case, the typical unsteadiness that occurs inside the loop of figure 3
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(a) (b) (c)

Figure 4. Temperature distributions at the flow condition A, with Λ = 1 represented by location f in figure 3,
with (a–c) resolution factors: 1, 2, 3. The temperature ranges from blue = 300 K to red = 4000 K.
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Figure 5. (a) Difference between the temperature fields of the middle and left plot in figure 4. Temperature
scale: −40 K to 40 K. (b) The same with the right and middle plots. Temperature scale: −20 to 20 K. 40 K
represents 1 % of the maximum temperature in figure 4.

involves unsteady motion of the cone 1 and cone 2 shocks of between 10 % and 100 %
of the body scale, so that the resolution achieved with the coarse grid is adequate.

Another sensitive test is the boundary layer profile. At a location 21 mm from the tip of
cone 1, which is 21 % along �1, profiles of tangential velocity and temperature are plotted
in figure 6 for this flow. These show that there is no significant difference between the
different resolutions. The closest point to the surface in the three cases is at 24, 12 and
8 viscous length scales, respectively. It should be pointed out that much finer resolution
is required for high-enthalpy non-equilibrium real-gas cold-wall flows, and our case is
relatively forgiving.

For a resolution test in the case of unsteady flow, it is necessary to catch exactly the
same phase of the flow in the different resolution cases. An example of that is shown in
figure 7 for a flow at condition A and location a in figure 3. This shows pseudo-schlieren
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Figure 6. Boundary layer profiles at flow condition A represented by location f in figure 3 with Λ = 1, at 21
mm from the tip of cone 1, with three resolution factors: 1, 2 and 3. Full lines: resolution factor 3, triangular
symbols: resolution factor 2, squares: lowest resolution (factor = 1); n denotes the normal distance from the
surface.

(a) (b) (c)

Figure 7. Snapshots at the same phase in the unsteady flow at condition A, with Λ = 1, represented by location
a in figure 3, with (a–c) resolution factors: 1, 2, 3. The colour scale represents the magnitude of the density
gradient. The white lines are streamlines, i.e. integral curves of the instantaneous velocity field.

images with superimposed streamlines. The shock structure and streamline features are
only very slightly different in the three resolutions. The time difference between these
three views is only a few μs so that this also confirms the time accuracy of the scheme.
The Courant–Friedrichs–Lewy number in these simulations was 0.8.

The resolution test suggests that a reasonable strategy is to use the base grid for most of
the computations and to apply spot checks to keep an eye open for possible problems. It is
important to be able to do this, because more than 300 computations are needed to cover
the conditions in table 1 with sufficient density, and each flow takes ∼8 h on the machine
used, making for almost 5 months of computing time.

4. Examples of results

4.1. Steady flows
The features of flows located in the three characteristic regions labelled e, f and g in
the map of figure 3 at condition A with Λ = 1 are brought out by the results shown in
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(a) (b) (c)

Figure 8. Three views of the steady flows represented by locations (a–c) g, f and e in the map of figure 3,
more precisely, (θ1, θ2) = (25◦, 54◦), (39◦, 68◦), (28◦, 85◦), respectively, with Λ = 1. The colour is coded as
velocity magnitude from blue = 0 through white to red = 2720 m s−1. The white line is the sonic line. Note
that the supersonic shock train reaches all the way to the cone 2 shoulder in the two left figures.

(a) (b) (c)

Figure 9. Three views of the steady flows represented by locations equivalent for Λ = 0.5 to (a–c) g, f and
e in the map of figure 3, more precisely, (θ1, θ2) = (25◦, 55◦), (40◦, 70◦), (33◦, 87◦), respectively. To see
these locations relative to the Λ = 0.5 unsteadiness boundary, refer to figure 21 right. The colour is coded as
velocity magnitude from blue = 0 through white to red = 2720 m s−1. The white line is the sonic line. Again,
the supersonic shock train reaches all the way to the cone 2 shoulder in the two left figures.

figure 8. The colour code is velocity magnitude and the sonic line has been drawn in
white. The latter brings out the feature of these steady flows that there is a subsonic island
in an otherwise supersonic flow except for the subsonic flow in the boundary layer and
the separated region. Between these subsonic parts of the flow the supersonic shock train
reaches all the way to the shoulder of cone 2, except in the case e, where it dissipates on
the way. Figure 9 shows the same situations in the case when Λ = 0.5.

4.2. Unsteady flows
In most of the unsteady regions of the θ1–θ2 space, the unsteadiness is not very regular, as
evidenced by visualization videos and pressure traces. Figure 10 shows three snapshots of
flows at condition A and locations b, c and d in the map of figure 3. The corresponding
pressure traces taken at the half-way point along the cone 1 generator are shown in figure 11
together with an example of a pressure trace from a steady flow. Despite the fact that, in
all cases, the flows are started in a very abrupt manner, by specifying the free-stream
conditions at the inflow boundary, with an initial condition of reduced pressure, the flow
reaches steady state in ∼1 ms, or approximately 20 flow times. However, the time to steady
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(a) (b) (c)

Figure 10. Three snapshot views during the unsteady flows at condition A and represented by locations (a–c)
b, c and d in the map of figure 3. The colour is coded as temperature from blue = 300 K through white to
red = 4000 K.
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Figure 11. Three pressure traces at the half-way point on cone 1 for the three unsteady flows shown in
figure 10(a–c) are shown in (a–c), as well as an example of a pressure trace (d) for a steady flow at condition A
and location f in the map of figure 3.

state is much longer in flows at small θ1 and just below θ2 = θ2d, as will be discussed in
connection with the special unsteadiness observed by Kenworthy (1978).

Region a in the map of figure 3 is where close to periodic unsteadiness takes place. This
is illustrated by the sequence of pseudo-schlieren images of a flow at condition A and Λ =
0.5, with (θ1, θ2) = (12◦, 75◦) in figure 12. The nine panels in this sequence are separated
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

Figure 12. One cycle of the pulsating unsteadiness, condition A at location a in figure 3. The separation of
the panels is approximately 35 μs.

by 40 μs from each other. The first and last of these are at approximately the same phase, so
that the sequence covers approximately one cycle of the pulsating unsteadiness. The colour
measures the magnitude of the density gradient from sky blue = 0 to red = maximum.
The white lines are streamlines, i.e. integral curves of the instantaneous velocity field. If
this were a steady axisymmetric flow, the streamlines that are totally inside the domain
would be closed curves. The fact that they can spiral into or out of a focus is because the
flow is unsteady. It appears that the cycle is dominated by the generation, trapping, growth
and spilling of a vortex ring. This mechanism will be analysed in more detail in the next
section.

Figure 13 shows corresponding pressure traces taken at the half-way points of cone 1
and cone 2. These illustrate the almost periodic nature of the flow.

A form of unsteadiness that does not occur in the results of our finite Reynolds-number
computations may be illustrated by an inviscid computation at (θ1, θ2) = (12◦, 75◦) with
Λ = 1, otherwise condition A. This case is shown in figure 14. A shock train occurs in
this flow too, showing that that is an inviscid feature. The shock train is quite unsteady and
radiates acoustic noise toward the cone 2 shock. In our viscous computations of steady
flows this unsteadiness is damped. The shock train unsteadiness is a feature related to the
work of Tumuklu et al. (2018) who found a number of coupled instability modes, which
include the Kelvin–Helmholtz instability of the shear layer at the edge of the shock train.
This form of unsteadiness is not part of our search for boundaries. (Note that this condition
exhibits pulsating unsteadiness in viscous flow, where vorticity is generated at the cone 1
tip, see figure 12).
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Figure 13. Pressure traces at the two half-way points on cone 1 (red) and cone 2 (green), condition A, location
a in figure 3. The frequency is approximately 3 kHz, making the Strouhal number Sr = fd/U∞ = 0.176, where
d is the base diameter of cone 2. Kenworthy’s value for the somewhat different geometry of a spiked body with
the same �1/d is 0.22.

Figure 14. Result of an inviscid computation, otherwise at condition A, (θ1, θ2) = (12◦, 75◦) with Λ = 1,
showing an unsteady supersonic shock train radiating acoustic noise.

4.3. Kenworthy’s unsteadiness at small θ1 and θ2 < θ2d

As was mentioned in the Introduction, Kenworthy (1978) reported a small-amplitude
periodic unsteadiness near (θ1, θ2) = (1◦, 50◦), Λ = 0.65, M∞ = 6, γ = 1.4, Re =
130 000. This was quite unusual, because nobody had previously observed unsteadiness
for θ2 < θ2d. It only occurred at this particular value of Λ, steady flow being observed at
values below and above it. In order to understand this better, a computation was performed
at the same conditions. Two panels of the development of this flow are shown in figure 15,
one at 1.3 ms and one at 6 ms. The separation point in this flow moves very slowly toward
the tip of cone 1. As it does so, the reattachment point moves up along cone 2. With
this particular geometry the separation point reaches the cone 1 tip approximately at the
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(a) (b)

Figure 15. Results of a computation at (θ1, θ2) = (1◦, 50◦), Λ = 0.65, M∞ = 6, γ = 1.4, Re = 130 000,
corresponding to the condition where Kenworthy observed oscillatory behaviour below the detachment angle.
The frequency is 2.5 kHz. (a) at approximately 1.3 ms, (b) at approximately 6 ms.
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Figure 16. (a) Pressure traces corresponding to the flow of figure 15 at the two half-way points of the cones,
red: cone 1, green: cone 2. (b) Pressure traces for the case of condition A with Λ = 1 and (θ1, θ2) = (10◦, 50◦)
where a steady state is reached, albeit only after 140 flow times.

same time as the reattachment point approaches the cone 2 shoulder. At that point the
small-amplitude periodic unsteadiness starts. This is nicely brought out by the pressure
traces at the two half-way points of the cones, see figure 16(a).

At first, the cone 1 sensor (red) lies upstream of the separation point, and the pressure
there reaches a steady value. At the same time the cone 2 sensor (green) lies behind the
almost normal cone 2 shock and registers close to Pitot pressure. At approximately 1.2 ms
the separation point moves across the cone 1 sensor and the red trace rises slowly as the
green trace falls. Then, at ∼5.4 ms the oscillation begins. The amplitude is approximately
the same as that observed by Kenworthy (4 % of Pitot pressure) which is small compared
to the unsteadiness typically observed inside the loop (10 % to 100 %). The frequency
of the green curve, which is at the same sensor location as Kenworthy’s, corresponds to
a Strouhal number Sr = fd/U∞ = 0.118 which compares well to the approximate value
0.110, determined from Kenworthy’s geometry and flow speed, and f measured from his
pressure trace. Here, d is the base diameter of cone 2.

A remarkable feature of this area of the map of figure 3 is that the time to reach a steady
state (or the oscillatory one in Kenworthy’s geometry) is very much longer than in the
other steady-flow regions. It corresponds typically to more than 100 flow times. In our
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

( j) (k) (l)

Figure 17. Time sequence of panels separated by 40 μs at condition D with (θ1, θ2) = (1◦, 90◦) and Λ = 0.5.

computations in this region of the map with Λ = 1 and 0.5, steady states are reached. An
example is shown in figure 16 right.

5. Analysis of the pulsating unsteadiness

In order to gain more insight into the mechanism of the pulsating unsteadiness the case of
condition D, with (θ1, θ2) = (1◦, 90◦) and Λ = 0.5 is studied in detail here. Figure 17
shows a time sequence of pseudo-schlieren images with superimposed streamlines
covering one cycle. As in the case of figure 12, the sequence starts in (a,b,c) with the
cone 2 shock causing separation of the boundary layer on cone 1, thus lifting the vorticity
generated at the tip of cone 1 off the surface and beginning to accumulate it in a vortex
ring around the axis. The sense of the rotation (clockwise in this view) is such that the
self-propagation direction of the vortex ring is to the left. Also, the vortex ring resists
being stretched. Both of these help to trap the vortex ring. In (d,e,f ), the shock has been
pushed all the way to the cone 1 tip as the vortex ring grows. In (g,h,i) the vortex ring

916 A5-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

20
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.203


H.G. Hornung, R.J. Gollan and P.A. Jacobs

(a) (b)

Figure 18. In the case (θ1, θ2) = (1◦, 90◦) with Λ = 0.5, (a) shows the result of an inviscid computation.
(b) shows what happens if, in a viscous heat-conducting flow the no-slip and cold-wall conditions are replaced
by setting the wall-normal components of the gradients of temperature and wall-parallel velocity equal to zero,
i.e. setting the wall shear stress and heat flux to the wall to zero.

displaces the shock further upstream, thus opening up the sonic bottleneck between the
cone 2 shoulder and the shock and allowing the vortex ring to escape over the cone 2
shoulder. The shock can now collapse onto cone 2 again, see (j,k,l), and the cycle repeats.

It seems, therefore, that the unsteadiness hinges on the accumulation of the vorticity,
generated at the cone 1 tip by the no-slip condition, into a vortex ring. Thus, if the
no-slip condition is removed, e.g. either by an inviscid computation or by a viscous,
heat-conducting computation in which the no-slip and cold-wall boundary conditions
are replaced by no shear and no heat flux conditions, the unsteadiness should disappear.
Figure 18 shows the results of such computations with otherwise the same conditions as
in figure 17. Clearly, the removal of the no-slip condition removes the unsteadiness and
almost identical steady flows result.

The removal of the no-slip condition also removes the vorticity source at the tip of
cone 1 and, in view of our understanding of the vortex ring mechanism, it is therefore
not surprising that it removes the unsteadiness. It is interesting to observe that one could
generate vorticity in an otherwise inviscid flow by the baroclinic torque in a curved shock
wave by making the tip of cone 1 blunt. The vorticity downstream of a curved shock wave
in a steady free stream is given by, see Hayes & Probstein (1959),

ωr
U

= cos β
(1 − ε)2

ε
, (5.1)

where ω is the vorticity, r is the shock wave radius of curvature, U is the free-stream
velocity, β is the shock angle and ε is the inverse density ratio across the shock. We want
the vorticity to be in the MHz range, and with our conditions, that means that r should be
roughly 3 mm. Such a bow shock could be generated by a nose bluntness of approximately
2 mm radius. This idea was tested by computing inviscid flow exactly as in the case shown
in figure 18(a), with the sole difference that the tip of cone 1 is cut off to make it blunt. The
result is a flow with pulsating unsteadiness, one cycle of which is shown in a time sequence
in figure 19. The similarity between the time sequences in figures 17 and 19 shows that the
occurrence of pulsating unsteadiness is independent of the manner in which the vorticity
is generated.

The pressure traces of the viscous sharp and inviscid blunt flows are shown in figure 20.
The pressure traces of the blunt-tip inviscid flow are not as regular as those of the viscous
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

( j) (k) (l)

Figure 19. Time sequence of results of an inviscid computation with (θ1, θ2) = (1◦, 90◦) and Λ = 0.5,
otherwise at condition D with a blunt nose tip on cone 1.

one, and take a little longer to settle in. This is why the period from 2 to 5 ms is shown for
that case. One of the differences between the two flows is the duty cycle of the vorticity
production rate. In the viscous case, the rate is reduced somewhat when the shock is pushed
forward to the cone 1 tip. In the blunt case the rate of production goes practically to zero
at that time.

These examples show that the pulsating unsteadiness is essentially an inviscid
phenomenon. If vorticity is produced at a suitable rate near the tip of cone 1, pulsating
unsteadiness is enabled in otherwise suitable conditions. It follows that, although the
steady flows are Reynolds-number dependent, the unsteadiness boundaries are not.
It should be pointed out that the exercise performed in this section in the case of condition
D was repeated at two other condition A angle pairs with the same conclusions.

916 A5-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

20
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.203


H.G. Hornung, R.J. Gollan and P.A. Jacobs

0 0.5 1.0 1.5 2.0 2.5 3.0

5

6

4

3

2

1

t (ms) t (ms)

p
 (k

Pa
)

0

5

6

4

3

2

1

2.0 2.5 3.0 3.5 4.0 4.5 5.0

(b)(a)

Figure 20. Pressure traces at the half-way points on cone 1 (red) and cone 2 (green) at condition D, (θ1, θ2)
= (1◦, 90◦) with Λ = 0.5. (a) Viscous, sharp tip. (b) Inviscid, blunt tip. In both cases the frequency is
approximately 1.7 kHz making the Strouhal number Sr = fd/U∞ = 0.26.
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Figure 21. Unsteadiness boundaries in the θ1–θ2 plane; (a) Λ = 1, (b) Λ = 0.5. The short black lines indicate
the values of the second-cone detachment angle θ2d . Error bars indicating the typical uncertainties in the
determination of the boundaries are shown on the upper and lower branches for conditions A and B.

6. The unsteadiness boundary

Many of the examples used to illustrate the results were taken from conditions A and D.
It remains to present the results for all the conditions computed. To this end, figure 21
shows the unsteadiness boundaries for conditions A, B, C and D, for Λ = 1 and 0.5. At
this point we note that the boundary for condition A’ was found to be indistinguishable
from that of condition A for both values of Λ and is therefore not shown. This supports
the conclusion that the unsteadiness boundaries are essentially an inviscid phenomenon.
The lower branch of the loops enclosing the unsteady regions in each case asymptotes to
θ2 = θ2d at small θ1.

The upper branch may be understood by taking condition A, Λ = 1, and following a line
at θ1 = 30◦ from the steady region below θ2 = θ2d upward. In this steady region, the cone
2 shock is relatively weak and propagates a separation shock forward to a stable position,
forming a separation bubble followed by a supersonic shock train. As θ2 is increased across
the lower branch, the cone 2 shock strength increases dramatically, causing the separation
to move forward and lifting the vorticity off the surface, accumulating it into a trapped
vortex ring, and so setting off the unsteadiness. As θ2 is increased, the cone 2 shock is
pushed upstream, thus increasing the area of the sonic bottleneck until at the upper branch
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Figure 22. Unsteadiness boundaries with θ2 scaled to η2. (a) Λ = 1, (b) Λ = 0.5.

it allows vorticity to escape as fast as it is produced at the cone 1 tip. Support for this effect
is provided by the fact that the upper branches lie at higher values of θ2 in the case of
Λ = 0.5 than for Λ = 1, because, for fixed θ2, the distance between the cone 2 shoulder
and the cone 2 shock is approximately proportional to �2, so that the bottleneck area is
smaller for Λ = 0.5. Thus, the transition back to steady flow requires a larger value of θ2
when Λ = 0.5. Figure 21 shows a few representative error bars. These reflect the density
with which the computations covered the θ1–θ2 space and show that the upper branch was
not as well resolved as the lower.

The dominance of the second-cone detachment angle suggests that the stretched variable

η2 = θ2 − θ2d

π/2 − θ2d
(6.1)

that has already been used effectively by Hornung, Martinez Schramm & Hannemann
(2019) should be tried. Accordingly, figure 22 shows a plot of the same information in
θ1–η2 space. This graph shows that the lower branch collapses almost onto a unique
curve in these coordinates and that the upper branches of the hypersonic cases A, B and
(marginally hypersonic) C fall within the error bars of a single curve for each of Λ = 1 and
0.5. If we accept that, within the bounds of our investigation, the unsteadiness boundaries
are inviscid in nature and therefore Reynolds-number independent, (2.4) may be written
for hypersonic flow (i.e. excluding case D) as

Q = Q(θ1, η2, Λ). (6.2)

7. Conclusions

A computational parameter study of the supersonic axisymmetric flow over double cones
was conducted, with the aim to find the boundaries within which such flows are unsteady.
The study was limited to laminar boundary layer flow. While past research on the
unsteadiness concentrated on the case when θ1 is small and covered the length ratio Λ

in detail, the emphasis here was on covering the θ1–θ2 space in detail at only two values
of Λ. At each of five free-stream conditions, chosen to span a range of values of the cone
2 shock detachment angle, the unsteadiness boundary in this space was found to be a loop
with a lower θ2 branch dominated by the detachment angle, and an upper θ2 branch with a
maximum θ1 between them.

The features of the steady and unsteady flows in different parts of the θ1–θ2 space were
described and the pulsating unsteadiness was analysed in detail. The steps in the time
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development of the cycle are: vorticity generation at the cone 1 tip, its accumulation
in a vortex ring around the axis, forward displacement of the shock by the vortex ring
growth, permitting its escape around the cone 2 shoulder. By replacing the no-slip vorticity
production of the viscous flow by the baroclinic torque within a curved bow shock in
an inviscid flow with blunt tip, it was shown that the unsteadiness is independent of the
method of vorticity production and is essentially an inviscid phenomenon.

The special case of a small-amplitude unsteadiness observed by Kenworthy (1978)
at small θ1 and θ2 < θ2d could be reproduced computationally. This occurs only for a
particular small range of Λ. In this region of θ1–θ2 space the time to reach steady state
is extraordinarily long, requiring more than 100 as compared with ∼20 flow times in the
other steady-flow regions.

By scaling θ2 in a stretched coordinate involving the detachment angle, it was shown
that, for the hypersonic case, the unsteadiness boundary could be expressed in terms
of only three independent dimensionless variables within the bounds and within the
uncertainties of the investigation.
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