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In this paper, we show that there exists a critical number that stabilises the Reissner–Mindlin–

Timoshenko system with frictional dissipation acting only on the equation for the transverse

displacement. We identify that the Reissner–Mindlin–Timoshenko system has two speed

characteristics v2
1 := K/ρ1 and v2

2 := D/ρ2 and we show that the system is exponentially

stable if only if

v2
1 = v2

2 .

In the general case, we prove that the system is polynomially stable with optimal decay rate.

Numerical experiments using finite differences are given to confirm our analytical results. Our

numerical results are qualitatively in agreement with the corresponding results from dynamical

in infinite dimensional.

Key words: Reissner–Mindlin–Timoshenko system; wave propagation speed; asymptotic be-

haviour; finite difference.

1 Introduction

In this work, we consider the dissipative Reissner–Mindlin–Timoshenko system given by

ρ1ωtt −K(ψ + ωx)x −K(ϕ+ ωy)y + d1ωt = 0, in Ω × IR+, (1.1)

ρ2ψtt − Dψxx − D

(
1 − μ

2

)
ψyy − D

(
1 + μ

2

)
ϕxy +K(ψ + ωx) = 0, in Ω × IR+, (1.2)

ρ2ϕtt − Dϕyy − D

(
1 − μ

2

)
ϕxx − D

(
1 + μ

2

)
ψxy +K(ϕ+ ωy) = 0, in Ω × IR+. (1.3)

Here ρ1 = ρh, ρ2 = ρh3

12
where ρ is the (constant) mass per unit of surface area, h is the

(uniform) plate thickness, μ is Poisson’s ratio (0 < μ < 1/2), D = Eh3

12(1−μ2)
is the modulus

of flexural rigidity, K = kEh
2(1+μ)

is the shear modulus where E is the Young’s modulus and k
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is the shear correction. The functions ω, ψ and ϕ depend on (x, y, t) ∈ Ω× IR+ denote the

transverse displacement of the plate and the rotational angles of a filament of the plate,

respectively. Details on physical deduction of this hyperbolic system (for the undamped

case) can be found in ref. [12, 13].

We consider the initial data given by

ω(x, y, 0) = ω0(x, y), ωt(x, y, 0) = ω1(x, y), in Ω, (1.4)

ψ(x, y, 0) = ψ0(x, y), ψt(x, y, 0) = ψ1(x, y), in Ω, (1.5)

ϕ(x, y, 0) = ϕ0(x, y), ϕt(x, y, 0) = ϕ1(x, y), in Ω, (1.6)

where Ω ⊂ IR2 is a bounded domain with boundary Γ = Γ 1 ∪ Γ 2. The boundary

conditions are

ω = 0, on Γ × IR+, (1.7)

ψ = 0,

(
1 − μ

2

(
∂ϕ

∂x
+

∂ψ

∂y

)
,

∂ϕ

∂y
+ μ

∂ψ

∂x

)
· ν = 0, on Γ1 × IR+, (1.8)

ϕ = 0,

(
∂ψ

∂x
+ μ

∂ϕ

∂y
,
1 − μ

2

(
∂ϕ

∂x
+

∂ψ

∂y

))
· ν = 0, on Γ2 × IR+. (1.9)

Here, we are considering Ω ⊂ IR2 as the rectangular configuration given by

Ω := [0, L1] × [0, L2], with L1, L2 > 0,

with boundary given by

Γ1 := {(x, y) : 0 < x < L1, y = 0, L2},
Γ2 := {(x, y) : 0 < y < L2, x = 0, L1},

satisfying Γ := Γ 1 ∪ Γ 2.

The system (1.1)–(1.9) is damped by d1ωt where d1 > 0 is the damping coefficient and,

in this sense, its energy is decreasing with time t. It is interesting to know if the energy is

controlled by an exponential or polynomial function. We therefore, focus on establishing

necessary and sufficient conditions to obtain stability of this system.

One of the questions regarding stability of hyperbolic systems modelling mechanical

deformations in beams and plates concerns the minimum dissipation needed to obtain

exponential decay. The wave propagation speed play an important role in this respect.

For one-dimensional cases of Timoshenko systems where few dissipative mechanisms act,

exponential decay occurs if and only if

κ

ρ1
=

b

ρ2
,

where κ/ρ1 and b/ρ2 are the speeds of wave propagation to one-dimensional case. This

is the case of the dissipative system given by

ρ1ϕtt − κ(ϕx + ψ)x = 0, (1.10)

ρ2ψtt − bψxx + κ(ϕx + ψ) + γψt = 0, (1.11)
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analysed by Muñoz Rivera and Racke [18]. There are a large number of publications

concerning the stabilisation of Timoshenko systems where several types of dissipative

mechanisms are considered [2–4, 10, 15, 17, 22, 23]. In this context, we can ask what are

the speeds of wave propagation of the Reissner–Mindlin–Timoshenko. Then, keeping in

mind the system (1.1)–(1.3) and taking into account that

1 − μ

2
= 1 − 1 + μ

2
, (1.12)

we can rewrite (1.1)–(1.3) as

ρ1ωtt −K(ψ + ωx)x −K(ϕ+ ωy)y + d1ωt = 0, in Ω × IR+, (1.13)

ρ2ψtt − DΔψ + D
1 + μ

2
ψyy − D

1 + μ

2
ϕxy +K(ψ + ωx) = 0, in Ω × IR+, (1.14)

ρ2ϕtt − DΔϕ + D
1 + μ

2
ϕxx − D

1 + μ

2
ψxy +K(ϕ+ ωy) = 0, in Ω × IR+. (1.15)

Now, since h = ρ1

ρ
, then we observe that K

ρ1
= k

2(1+μ)
E
ρ
, where the ratio between the

tension E and the density ρ has dimension of speed. Analogously, one also has D
ρ2

= 1
(1−μ2)

E
ρ

with dimension of speed. Therefore, we put

v21 := K/ρ1 and v22 := D/ρ2, (1.16)

being the speeds of wave propagation for the Reissner–Mindlin–Timoshenko system.

From the above, we ask: what happens regarding the stability of system (1.1)–(1.9)

when

v21 − v22 = 0? (1.17)

Some previous results concerning Reissner–Mindlin–Timoshenko systems should be

mentioned. The most well known are due to Lagnese [12]. He addressed the question

of uniform and strong stability of purely elastic plates due to boundary feedbacks. In

particular, he considered a bounded domain Ω having a Lipschitz boundary Γ such that

Γ = Γ 0 ∪Γ 1, where Γ0 and Γ1 are relatively open, disjoint subsets of Γ with Γ1 � ∅ and

he considered the following boundary conditions

ω = ψ = ϕ = 0 in Γ0, (1.18)

K

(
∂ω

∂x
+ ψ,

∂ω

∂y
+ ϕ

)
· ν = m1 in Γ1, (1.19)

D

(
∂ψ

∂x
+ μ

∂ϕ

∂y
,
1 − μ

2

(
∂ϕ

∂x
+

∂ψ

∂y

))
· ν = m2 in Γ1, (1.20)

D

(
1 − μ

2

(
∂ϕ

∂x
+

∂ψ

∂y

)
,

∂ϕ

∂y
+ μ

∂ψ

∂x

)
· ν = m3 in Γ1, (1.21)

where ν := (ν1, ν2) is the unit exterior normal to Γ and {m1, m2, m3} signifies the linear

boundary dissipations given by

(m1, m2, m3)
′ = −F(ωt, ψt, ϕt)

′,
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with F = [fij] a 3 × 3 matrix of real L∞(Γ1) functions such that F is symmetric and

positive semi-definite on Γ1. Lagnese proved that the problem (1.1)–(1.3) with d1 = 0 and

boundary conditions (1.18)–(1.21) is exponentially stable, without any restrictions on the

coefficients of the system.

Muñoz Rivera and Portillo Oquendo [16] considered the Reissner–Mindlin–Timoshenko

systems having boundary conditions of memory type and they proved exponential stability,

provided that the kernels have exponential behaviour, and are polynomially stable for

kernels of polynomial type. Similar dissipations have been used by Santos [21], where the

author considered a Timoshenko model in Ω ⊂ IRn. On the other hand, when damping

mechanisms act on the whole domain, we should note the work of Fernándes Sare [8].

He considered the Reissner–Mindlin–Timoshenko equations with damping acting only on

the rotational angles ψ and ϕ. He proved, using a resolvent criterion, that the system is

not exponentially stable independent of any relations between the coefficients, making

this case different from the analogous one-dimensional case.

In this work, we are concerned with the stability of system (1.1)–(1.9) taking into

account the wave propagation speeds (1.16). When then ask: what happens with the

decay of the energy of this system when v21 = v22 ?

The method that we used to determine the asymptotic behaviour is based on Gearhart–

Herbst–Prüss–Huang Theorem [9] for dissipative systems (see also [11, 20]). We now give

two theorems in this direction.

Theorem 1.1 Let S(t) = eAt be a C0-semigroup of contractions on a Hilbert space H.

Then, S(t) is exponentially stable if and only if

ρ(A) ⊇ {iλ : λ ∈ IR} ≡ iIR, (1.22)

and

lim|λ|→∞||(iλI − A)−1||L(H) < ∞, (1.23)

hold, where ρ(A) is the resolvent set of the differential operator A.

On the other hand, to show the polynomial stability we use the result due to Borichev

and Tomilov [5].

Theorem 1.2 Let S(t) be a bounded C0-semigroup on a Hilbert space H with generator A
such that iIR ⊂ ρ(A). Then

1

|λ|α ‖(iλI − A)−1‖L(H) � C, ∀λ ∈ IR ⇔ ‖S(t)A−1‖L(H) �
c

t1/α
. (1.24)

This paper is organised as follows. In Section 2 we discuss the existence, regularity and

uniqueness of global solutions of (1.1)–(1.9). To do this, we use the semigroup technique

(see [19]). In Section 3, we study the lack of exponential decay in accordance with a

nice relationship between the wave propagation speeds (1.16). In Section 4, we study the
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exponential and polynomial decay of system (1.1)–(1.9). In general, we show that the

Reissner–Mindlin–Timoshenko systems is polynomially stable giving an optimal decay

rate. In Section 5, we show the numerical results by using finite difference method to

confirm our analytical results. Finally, in Section 6, we conclude our work with some

comments.

2 Semigroup setting

To give an accurate formulation for the Reissner–Mindlin–Timoshenko system, let Ω ⊂ IR2

denote the interior of a rectangle given by

Ω := [0, L1] × [0, L2], L1, L2 > 0.

For the boundary Γ = ∂Ω of Ω, we define

Γ1 := {(x, y) : 0 < x < L1, y = 0, L2},
Γ2 := {(x, y) : 0 < y < L2, x = 0, L1}.

Thus, Γ := Γ 1 ∪Γ 2. With the above hypothesis on Ω, let us consider the Hilbert space

H := H1
0 (Ω) × L2(Ω) ×H1

Γ1
(Ω) × L2(Ω) ×H1

Γ2
(Ω) × L2(Ω),

where

H1
Γi

(Ω) := {ψ ∈ H1(Ω) : ψ = 0 on Γi}, (i = 1, 2),

with inner product given by

(U,V )H = ρ1

∫
Ω

u2v2 dxdy + ρ2

∫
Ω

u4v4 dxdy + ρ2

∫
Ω

u6v6 dxdy

+K

∫
Ω

(u3 + u1
x)(v

3 + v1x) dxdy +K

∫
Ω

(u5 + u1
y)(v

5 + v1y) dxdy

+ D

∫
Ω

u3
xv

3
x dxdy + D

∫
Ω

u5
yv

5
y dxdy + D

(
1 − μ

2

)∫
Ω

(u3
y + u5

x)(v
3
y + v5x) dxdy

+ Dμ

∫
Ω

u3
xv

5
y dxdy + Dμ

∫
Ω

u5
yv

3
x dxdy, (2.1)

with norm given by

||U||2H = ρ1

∫
Ω

|u2|2 dxdy + ρ2

∫
Ω

|u4|2 dxdy

+ ρ2

∫
Ω

|u6|2 dxdy +K

∫
Ω

|u3 + u1
x|2 dxdy +K

∫
Ω

|u5 + u1
y|2 dxdy

+ D

∫
Ω

|u3
x|2 dxdy + D

∫
Ω

|u5
y|2 dxdy + D

(
1 − μ

2

)∫
Ω

|u3
y + u5

x|2 dxdy

+ Dμ

∫
Ω

u3
xu

5
y dxdy + Dμ

∫
Ω

u5
yu

3
x dxdy, (2.2)
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where U = (u1, u2, u3, u4, u5, u6)′, V = (v1, v2, v3, v4, v5, v6)′ and ′ denotes the transpose of

the vector.

Let us denote by V the following Hilbert space

V = H1
0 (Ω) ×H1

Γ1
(Ω) ×H1

Γ2
(Ω).

The next lemma, which is a consequence of Korn’s inequality, provides us an equivalence

between the above norm on (2.2) and usual norm in H (see [12, 13]).

Lemma 2.1 With the above notation we have that

(a) There exists a constant α0 > 0 such that, for all (ψ,ϕ) ∈ H1
Γ1

(Ω) ×H1
Γ2

(Ω),

α0

[
||ψ||2H1 + ||ϕ||2H1

]
�

∫
Ω

[
D|ψx|2 + D|ϕy|2

+ D

(
1 − μ

2

)
|ψy + ϕx|2 + Dμψxϕy + Dμϕyψx

]
dxdy;

(b) Moreover, for every K0 > 0, there exists β(K0) such that, for all K � K0 and

(ω,ψ, ϕ) ∈ V,

β(K0)||(ω,ψ, ϕ)||2V �

∫
Ω

[
K|ψ + ωx|2dxdy +K|ϕ+ ωy|2dxdy + D|ψx|2 + D|ϕy|2

+ D

(
1 − μ

2

)
|ψy + ϕx|2 + Dμψxϕy + Dμϕyψx

]
dxdy.

Now, if we write U = (ω,ωt, ψ, ψt, ϕ, ϕt)
′ and U0 = (ω0, ω1, ψ0, ψ1, ϕ0, ϕ1)

′ then the

equations (1.1)–(1.9) can be rewritten as follows

dU

dt
= AU, for t > 0, (2.3)

U(0) = U0, (2.4)

where A : D(A) ⊂ H → H is the operator defined by

A :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Id 0 0 0 0
K
ρ1
Δ − d1

ρ1
Id

K
ρ1

∂x 0 K
ρ1

∂y 0

0 0 0 Id 0 0

− K
ρ2

∂x 0 B1 0 D
ρ2

(
1+μ

2

)
∂2
xy 0

0 0 0 0 0 Id

− K
ρ2

∂y 0 D
ρ2

(
1+μ
2

)
∂2
xy 0 B2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where the operators Bi(i = 1, 2) are given by

B1 =
D

ρ2

[
∂2
x +

(
1 − μ

2

)
∂2
y

]
− K

ρ2
Id,

B2 =
D

ρ2

[(
1 − μ

2

)
∂2
x + ∂2

y

]
− K

ρ2
Id.

Here Id denotes the identity operator, and

D(A) =
(
H2(Ω) ∩H1

0 (Ω)
)

×H1
0 (Ω) ×

(
H2(Ω) ∩H1

Γ1
(Ω)
)

×H1
Γ1

(Ω) ×
(
H2(Ω) ∩H1

Γ2
(Ω)
)

×H1
Γ2

(Ω).

Our result on existence and uniqueness of solutions follows:

Theorem 2.2 The operator A generates a C0-semigroup S(t) of contraction on H. Thus, for

any initial data U0 ∈ H, problem (1.1)–(1.9) has a unique weak solution U ∈ C0([0,∞),H).

Moreover, if U0 ∈ D(A), then U is strong solution of (1.1)–(1.9), i.e., U ∈ C1([0,∞),H) ∩
C0([0,∞),D(A)).

Proof It is easy to see that D(A) is dense in H. On the other hand, for U =

(ω,W,ψ,Ψ, ϕ, Φ)′ ∈ D(A), a direct computation gives that

Re(AU,U)H = −d1

∫
Ω

|W |2 dxdy � 0, (2.5)

from which it follows that A is a dissipative operator for d1 > 0. Next, taking any

F = (f1, f2, f3, f4, f5, f6)′ ∈ H we solve the equation

AU = F. (2.6)

From (2.6), we can conclude that

W = f1, Ψ = f3, Φ = f5. (2.7)

Substituting (2.7) into (2.6), we get

K(ψ + ωx)x +K(ϕ+ ωy)y = ρ1f
2 + d1f

1, (2.8)

D

(
ψxx +

1 − μ

2
ψyy +

1 + μ

2
ϕxy

)
−K(ψ + ωx) = ρ2f

4, (2.9)

D

(
1 − μ

2
ϕxx + ϕyy +

1 + μ

2
ψxy

)
−K(ϕ+ ωy) = ρ2f

6, (2.10)
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from where we can define the bilinear form a(·, ·), with domain V × V, given by

a(Θ, Θ̃) := K

∫
Ω

(u3 + u1
x)(v

3 + v1x) dxdy +K

∫
Ω

(u5 + u1
y)(v

5 + v1y) dxdy

+ D

∫
Ω

u3
xv

3
x dxdy + D

∫
Ω

u5
yv

5
y dxdy

+ D

(
1 − μ

2

)∫
Ω

(u3
y + u5

x)(v
3
y + v5x) dxdy

+ Dμ

∫
Ω

u3
xv

5
y dxdy + Dμ

∫
Ω

u5
yv

3
x dxdy, (2.11)

where Θ = (u1, u3, u5) and Θ̃ = (v1, v3, v5). It is not difficult to see that a(·, ·) is continuous

and coercive. Then, thanks to the Lax–Milgram theorem (see [6]), equation (2.6) admits

a unique solution U ∈ D(A). Therefore, we deduce that 0 ∈ ρ(A), where ρ(A) is the

resolvent set of A. Then by the resolvent identity, for small λ > 0, we have R(λI−A) = H
(see Theorem 1.2.4 in [14]). Finally, thanks to the Lumer–Phillips theorem (see [19],

Theorem 1.4.3), the operator A generates a C0-semigroup of contractions etA on H. �

We introduce the energy functional of equations (1.1)–(1.9). It is given by

E(t) :=
1

2

∫
Ω

[
ρ1|ωt|2 + ρ2|ψt|2 + ρ2|ϕt|2 +K|ψ + ωx|2 +K|ϕ+ ωy|2 + D|ψx|2

+ D|ϕy|2 + D

(
1 − μ

2

)
|ψy + ϕx|2 + 2Dμψxϕy] dxdy, for t � 0. (2.12)

It is immediate that the energy functional (2.12) is a monotone decreasing function of

the time t. Indeed, to see this we have the following Proposition:

Proposition 2.3 Let (ω,ωt, ϕ, ϕt, ψ, ψt) be the solution of (1.1)–(1.9). Then, the instantan-

eous rate of change of energy of the system with respect to time t is given by

d

dt
E(t) = −d1

∫
Ω

|ωt|2 dxdy � 0, ∀t � 0. (2.13)

Proof As usual, we can find that if we multiply formally equations (1.1)–(1.3) by ωt, ψt
and ϕt, respectively. Then using integration by parts, we obtain

ρ1

2

d

dt

∫
Ω

|ωt|2 dxdy +
ρ2

2

d

dt

∫
Ω

|ψt|2 dxdy +
ρ2

2

d

dt

∫
Ω

|ϕt|2 dxdy +K

∫
Ω

(ψ + ωx)ωxt dxdy

+K

∫
Ω

(ϕ+ ωy)ωyt dxdy +K

∫
Ω

(ψ + ωx)ψt dxdy +K

∫
Ω

(ϕ+ ωy)ϕt dxdy

+
D

2

d

dt

∫
Ω

|ψx|2 dxdy +
D

2

d

dt

∫
Ω

|ϕy|2 dxdy +
D

2

(
1 − μ

2

)
d

dt

∫
Ω

|ψy|2 dxdy

+
D

2

(
1 − μ

2

)∫
Ω

ϕxψyt dxdy +
D

2

(
1 − μ

2

)∫
Ω

ψyϕxt dxdy
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+
D

2

(
1 − μ

2

)
d

dt

∫
Ω

|ϕx|2 dxdy + Dμ

∫
Ω

ϕyψxt dxdy + Dμ

∫
Ω

ψxϕyt dxdy

−K
∫
Γ

(ψ + ωx)ν1ωt dΓ−K
∫
Γ

(ϕ+ ωy)ν2ωt dΓ

−D
∫
Γ1

(
1 − μ

2
(ϕx + ψy), ϕy + μψx

)
· νϕt dΓ1

−D
∫
Γ2

(
ψx + μϕy,

1 − μ

2
(ϕx + ψy)

)
· νψt dΓ2 = −d1

∫
Ω

|ωt|2 dxdy.

Thus, we arrive at

ρ1

2

d

dt

∫
Ω

|ωt|2 dxdy +
ρ2

2

d

dt

∫
Ω

|ψt|2 dxdy +
ρ2

2

d

dt

∫
Ω

|ϕt|2 dxdy

+
K

2

d

dt

∫
Ω

|ψ + ωx|2 dxdy +
K

2

d

dt

∫
Ω

|ϕ+ ωy|2 dxdy

+
D

2

d

dt

∫
Ω

|ψx|2 dxdy +
D

2

d

dt

∫
Ω

|ϕy|2 dxdy +
D

2

(
1 − μ

2

)
d

dt

∫
Ω

|ψy + ϕx|2 dxdy

+ 2Dμ

∫
Ω

ψxϕy dxdy − F = −d1

∫
Ω

|ωt|2 dxdy.

where F is given by

F = K

∫
Γ

(ψ + ωx)ν1ωt dΓ +K

∫
Γ

(ϕ+ ωy)ν2ωt dΓ

+ D

∫
Γ2

(
ψx + μϕy,

1 − μ

2
(ϕx + ψy)

)
· νψt dΓ2

+ D

∫
Γ1

(
1 − μ

2
(ϕx + ψy), ϕy + μψx

)
· νϕt dΓ1.

Therefore, from boundary conditions (1.7)–(1.9), we obtain that F = 0 and then

d

dt
E(t) := −d1

∫
Ω

|ωt|2 dxdy � 0, ∀t � 0, (2.14)

since d1 > 0. Hence, we obtain the energy dissipation law

E(t) � E(0), ∀t � 0. (2.15)

It is clear that if d1 = 0, we obtain the energy conservation law

E(t) = E(0), ∀t � 0. (2.16)

�

Remark 1 An important physical property of the energy of the hyperbolic systems says

respect to the positivity of the energy. In that direction, we note that E(t) � 0 for 0 < μ < 1.
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Indeed, we have:

E(t) :=
1

2

∫
Ω

[
ρ1|ωt|2 + ρ2|ψt|2 + ρ2|ϕt|2 +K|ψ + ωx|2 +K|ϕ+ ωy|2

+ D|ψx|2 + D|ϕy|2 + D

(
1 − μ

2

)
|ψy + ϕx|2 + 2Dμψxϕy

+ Dμ|ψx|2 + D|ϕy|2 − Dμ|ψx|2 − D|ϕy|2
]
dxdy

=
1

2

∫
Ω

[
ρ1|ωt|2 + ρ2|ψt|2 + ρ2|ϕt|2 +K|ψ + ωx|2 +K|ϕ+ ωy|2

+ D(1 − μ)(|ψx|2 + |ϕy|2) + D

(
1 − μ

2

)
|ψy + ϕx|2

+ Dμ|ψx + ϕy|2
]
dxdy � 0, ∀t � 0.

However, μ is the Poisson’s ratio and then we take 0 < μ < 1/2.

3 Lack of exponential decay

Our starting point is to show that the semigroup associated with the Reissner–Mindlin–

Timoshenko system (1.1)–(1.9) is not exponentially stable if v21 � v22 where v21 and v22 are

defined in (1.16).

To do this we will argue by contradiction, that is, we will show that there exists a

sequence of values (λn) ⊂ IR with limn→∞ |λn| = ∞ and Un = (ωn,Wn, ψn,Ψn, ϕn, Φn)
′ ⊂

D(A) for Fn = (f1n, f2n, f3n, f4n, f5n, f6n)
′ ⊂ H such that

(iλnI − A)Un = Fn, (3.1)

where Fn is bounded in H but ‖Un‖H tends to infinity. Rewriting the spectral equation

in terms of its components, we have

iλnωn −Wn = f1
n , (3.2)

iλnWn − K

ρ1
(ψn + ωnx)x − K

ρ1
(ϕn + ωny)y +

d1

ρ1
Wn = f2

n , (3.3)

iλnψn −Ψn = f3
n , (3.4)

iλnΨn − D

ρ2

[
ψnxx +

(
1 − μ

2

)
ψnyy +

(
1 + μ

2

)
ϕnxy

]
+
K

ρ2
(ψn + ωnx) = f4

n , (3.5)

iλnϕn − Φn = f5
n , (3.6)

iλnΦn − D

ρ2

[(
1 − μ

2

)
ϕnxx + ϕnyy +

(
1 + μ

2

)
ψnxy

]
+
K

ρ2
(ϕn + ωny) = f6

n . (3.7)

Now we are in a position to establish the principal result of this section.

https://doi.org/10.1017/S0956792515000467 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000467


Stability to the dissipative Reissner–Mindlin–Timoshenko acting 167

Theorem 3.1 Let us suppose that

v21 − v22 � 0. (3.8)

Then, the semigroup associated with the system (1.1)–(1.9) is not exponentially stable.

Proof Let us take Fn = (0, f2
n , 0, f

4
n , 0, f

6
n )

′ with

f2
n := F2 sin(δλ1x) sin(δλ2y),

f4
n := F4 cos(δλ1x) sin(δλ2y),

f6
n := F6 sin(δλ1x) cos(δλ2y),

where

λj = λj,n :=
nπ

δLj
, j = 1, 2, (n ∈ IN), δ :=

√
ρ2

D
.

Here F2, F4 and F6 are constants that will be chosen suitably. Now, we define

λn :=

√
λ2

1 + λ2
2. (3.9)

Taking into account the above, the equations (3.2)–(3.7) can be rewritten as

−λ2
nρ1ωn −K(ψn + ωnx)x −K(ϕn + ωny)y + iλnd1ωn = ρ1f

2
n , (3.10)

−λ2
nρ2ψn − D

[
ψnxx +

(
1 − μ

2

)
ψnyy +

(
1 + μ

2

)
ϕnxy

]
+K(ψn + ωnx) = ρ2f

4
n , (3.11)

−λ2
nρ2ϕn − D

[(
1 − μ

2

)
ϕnxx + ϕnyy +

(
1 + μ

2

)
ψnxy

]
+K(ϕn + ωny) = ρ2f

6
n . (3.12)

Now, we choose

ωn(x, y) := A sin(δλ1x) sin(δλ2y),

ψn(x, y) := B cos(δλ1x) sin(δλ2y),

ϕn(x, y) := C sin(δλ1x) cos(δλ2y),

where A, B and C depend on λn and will be determined explicitly in what follows. Note

that this choice is just compatible with boundary conditions (1.7)–(1.9). Therefore, the

solutions of system (3.10)–(3.12) is equivalent to finding A, B and C such that[
−λ2

nρ1 +Kδ2
(
λ2

1 + λ2
2

)
+ iλnd1

]
A+Kδλ1B +Kδλ2C = ρ1F

2, (3.13)

Kδλ1A+

[
− λ2

nρ2 + Dδ2λ2
1 + Dδ2λ2

2 − D

(
1 + μ

2

)
δ2λ2

2 +K

]
B

+ D

(
1 + μ

2

)
δ2λ1λ2C = ρ2F

4, (3.14)
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Kδλ2A+ D

(
1 + μ

2

)
δ2λ1λ2B +

[
− λ2

nρ2 + Dδ2λ2
1 + Dδ2λ2

2

− D

(
1 + μ

2

)
δ2λ2

1 +K

]
C = ρ2F

6. (3.15)

Choosing F2 = 0, F4 = F6 = 1 and taking account the definition of λn given by (3.9)

and δ, we get [
−λ2

n

(
ρ1 −K

ρ2

D

)
+ iλnd1

]
A+Kδλ1B +Kδλ2C = 0, (3.16)

Kδλ1A+

[
−D

(
1 + μ

2

)
δ2λ2

2 +K

]
B + D

(
1 + μ

2

)
δ2λ1λ2C = ρ2, (3.17)

Kδλ2A+ D

(
1 + μ

2

)
δ2λ1λ2B +

[
−D

(
1 + μ

2

)
δ2λ2

1 +K

]
C = ρ2. (3.18)

Solving (3.16), we obtain that A is

A = − Kδλ1B +Kδλ2C

−λ2
n

(
ρ1 −K ρ2

D

)
+ iλnd1

. (3.19)

Substituting (3.19) into (3.17) and (3.18), respectively, we arrive at[(
−D

(
1 + μ

2

)
δ2λ2

2 +K

)(
−λ2

n

(
ρ1 −K

ρ2

D

)
+ iλnd1

)
−K2δ2λ2

1

]
B

+

[(
D

(
1 + μ

2

)
δ2λ1λ2

)(
−λ2

n

(
ρ1 −K

ρ2

D

)
+ iλnd1

)
−K2δ2λ1λ2

]
C

= ρ2

[
−λ2

n

(
ρ1 −K

ρ2

D

)
+ iλnd1

]
, (3.20)

and [(
D

(
1 + μ

2

)
δ2λ1λ2

)(
−λ2

n

(
ρ1 −K

ρ2

D

)
+ iλnd1

)
−K2δ2λ1λ2

]
B

+

[(
−D

(
1 + μ

2

)
δ2λ2

1 +K

)(
−λ2

n

(
ρ1 −K

ρ2

D

)
+ iλnd1

)
−K2δ2λ2

2

]
C

= ρ2

[
−λ2

n

(
ρ1 −K

ρ2

D

)
+ iλnd1

]
. (3.21)

Note that the system (3.20)–(3.21) can be rewritten as

βB + γC = r, (3.22)

γB + θC = r, (3.23)

such that its solutions is given by

B =
r(θ − γ)

βθ − γ2
, C =

r(β − γ)

βθ − γ2
, (3.24)
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where

β =

[(
−D

(
1 + μ

2

)
δ2λ2

2 +K

)(
−λ2

n

(
ρ1 −K

ρ2

D

)
+ iλnd1

)
−K2δ2λ2

1

]
,

θ =

[(
−D

(
1 + μ

2

)
δ2λ2

1 +K

)(
−λ2

n

(
ρ1 −K

ρ2

D

)
+ iλnd1

)
−K2δ2λ2

2

]
,

γ =

[(
D

(
1 + μ

2

)
δ2λ1λ2

)(
−λ2

n

(
ρ1 −K

ρ2

D

)
+ iλnd1

)
−K2δ2λ1λ2

]
,

r = ρ2

[
−λ2

n

(
ρ1 −K

ρ2

D

)
+ iλnd1

]
.

Thus, we have for B and C the following explicit expressions

B =
ρ2

[(
−D

(
1+μ
2

)
δ2λ2

1 +K
) (

−λ2
n

(
ρ1 −K ρ2

D

)
+ iλnd1

)
−K2δ2λ2

2

]
K
(
−ρ1λ2

n + iλnd1

) (
−D

(
1+μ

2

)
δ2λ2

n +K
)

−
ρ2

[(
−D

(
1+μ
2

)
δ2λ1λ2

) (
−λ2

n

(
ρ1 −K ρ2

D

)
+ iλnd1

)
−K2δ2λ1λ2

]
K
(
−ρ1λ2

n + iλnd1

) (
−D

(
1+μ

2

)
δ2λ2

n +K
) , (3.25)

and

C =
ρ2

[(
−D

(
1+μ

2

)
δ2λ2

2 +K
) (

−λ2
n

(
ρ1 −K ρ2

D

)
+ iλnd1

)
−K2δ2λ2

1

]
K
(
−ρ1λ2

n + iλnd1

) (
−D

(
1+μ

2

)
δ2λ2

n +K
)

−
ρ2

[(
−D

(
1+μ

2

)
δ2λ1λ2

) (
−λ2

n

(
ρ1 −K ρ2

D

)
+ iλnd1

)
−K2δ2λ1λ2

]
K
(
−ρ1λ2

n + iλnd1

) (
−D

(
1+μ

2

)
δ2λ2

n +K
) . (3.26)

Substituting B and C given by (3.25) and (3.26) into (3.19), we get

A = − δρ2 (λ1 + λ2)(
−ρ1λ2

n + iλnd1

) . (3.27)

From (3.25)–(3.27), we can conclude that

A → 0, (3.28)

B →
(
L1L2 + L2

2

L2
1 + L2

2

)
ρ2

ρ1

(ρ1

K
− ρ2

D

)
, (3.29)

C →
(
L1L2 + L2

1

L2
1 + L2

2

)
ρ2

ρ1

(ρ1

K
− ρ2

D

)
, (3.30)

when n → ∞, where Lj is the length of interval [0, Lj], for j = 1, 2. Since

Ψn = iλnψn,

https://doi.org/10.1017/S0956792515000467 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000467


170 A. D. S. Campelo et al.

then using the definition of ||Un||H and hypothesis (3.8), we have

||Un||2H � ρ2

∫
Ω

|Ψn|2dxdy

= ρ2

∫
Ω

|λnψn|2 dxdy

= ρ2

∫
Ω

|λnB cos(δλ1x) sin(δλ2y)|2 dxdy

= ρ2 |λnB|2 L1L2

4
→ ∞ as n → ∞. (3.31)

Therefore, applying the Theorem 1.1 we conclude that the semigroup S(t) associated

with the system (1.1)–(1.9) has lack of exponential decay. �

4 Asymptotic stability

In this section, we will show exponential decay as well as polynomial decay using the

semigroup associated with the Reissner–Mindlin–Timoshenko system (1.1)–(1.9) according

to a dependency between the speeds of wave propagation.

In order to show exponential decay from semigroup associated with the Reissner–

Mindlin–Timoshenko system (1.1)–(1.9), first let us consider the product in H of U =

(ω,W,ψ,Ψ, ϕ, Φ)′ ∈ D(A) with the resolvent equation of A, that is

iλ||U||2H − (AU,U)H = (F,U)H.

Then, taking the real part and using inequality (2.5), we obtain

d1

∫
Ω

|W |2 dxdy � ||U||H||F ||H. (4.1)

We will show that the resolvent is uniformly bounded over the imaginary axis. Thus,

we state the following lemma.

Lemma 4.1 With the above notation, we have

iIR ⊂ ρ(A).

Proof Since (I − A)−1 is compact in H, to check that iIR ⊂ ρ(A) it is sufficient to check

that A has no purely imaginary eigenvalue. Suppose that there exists λ0 ∈ IR∗ such that

iλ0 is an eigenvalue and U = (ω,W,ψ,Ψ, ϕ, Φ)′ is a normalised eigenvector, that is

AU = iλ0U.

Thus, we get

iλ0ω −W = 0, (4.2)

iλ0ρ1W −K(ψ + ωx)x −K(ϕ+ ωy)y + d1W = 0, (4.3)
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iλ0ψ −Ψ = 0, (4.4)

iλ0ρ2Ψ − D

(
ψxx +

1 − μ

2
ψyy +

1 + μ

2
ϕxy

)
+K(ψ + ωx) = 0, (4.5)

iλ0ϕ− Φ = 0, (4.6)

iλ0ρ2Φ− D

(
1 − μ

2
ϕxx + ϕyy +

1 + μ

2
ψxy

)
+K(ϕ+ ωy) = 0. (4.7)

Therefore, from (4.1) with F = 0 we conclude that W = 0. Then, from (4.2) we get

ω = 0. Now, from (4.3), (4.5) and (4.7) and using Korn’s and Poincaré’s inequalities we

can conclude that ψ = ϕ = 0. Finally, using (4.4) and (4.6) we have that Ψ = Φ = 0. This

implies that U = 0. But this is a contradiction, therefore there is no purely imaginary

eigenvalues. �

In particular this result implies that the semigroup is strongly stable, that is

S(t)U0 → 0,

where S(t) := eAt is the C0-semigroup of contractions on Hilbert space H and U0 is the

initial data.

4.1 Exponential decay

Here, we will prove that the C0-semigroup associated with the Reissner–Mindlin–

Timoshenko system (1.1)–(1.9) is exponential stability if and only if

v21 = v22 ,

where v21 and v22 are given in (1.16). To do this, let us consider the resolvent equation

iλU − AU = F in H, (4.8)

which can be rewritten in terms of its components as

iλω −W = f1, (4.9)

iλρ1W −K(ψ + ωx)x −K(ϕ+ ωy)y + d1W = f2, (4.10)

iλψ −Ψ = f3, (4.11)

iλρ2Ψ − D

(
ψxx +

1 − μ

2
ψyy +

1 + μ

2
ϕxy

)
+K(ψ + ωx) = f4, (4.12)

iλϕ− Φ = f5, (4.13)

iλρ2Φ− D

(
1 − μ

2
ϕxx + ϕyy +

1 + μ

2
ψxy

)
+K(ϕ+ ωy) = f6, (4.14)

where F = (f1, f2, f3, f4, f5, f6)′ ∈ H and U = (ω,W,ψ,Ψ, ϕ, Φ)′ ∈ D(A). Note that for

simplicity in our calculations we put ρ1f
2 = f2, ρ2f

4 = f4 and ρ2f
6 = f6.

We will use a series of lemmas aiming to reached the exponential decay.
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Lemma 4.2 There exists a positive constant M such that any strong solution of system

(1.1)–(1.9) satisfies

K

2

∫
Ω

|ψ + ωx|2 dxdy +
K

2

∫
Ω

|ϕ+ ωy|2 dxdy � C1

[ ∫
Ω

|ψx|2 dxdy

+

∫
Ω

|ϕy|2 dxdy +

(
1 − μ

2

)∫
Ω

|ψy + ϕx|2 dxdy

+

∫
Ω

μϕyψx dxdy +

∫
Ω

μψxϕy dxdy

]
+M||U||H||F ||H, (4.15)

where C1 is a positive constant.

Proof Multiplying equation (4.10) by ω and integrating on Ω, we get

iλρ1

∫
Ω

Wω dxdy︸ ︷︷ ︸
:=I1

−K
∫
Ω

(ψ + ωx)xω dxdy −K

∫
Ω

(ϕ+ ωy)yω dxdy

+ d1

∫
Ω

Wω dxdy =

∫
Ω

f2ω dxdy.

Substituting ω given by (4.9) into I1 and integrating by parts, we get

− ρ1

∫
Ω

W (f1 +W ) dxdy +K

∫
Ω

(ψ + ωx)ωx dxdy

+K

∫
Ω

(ϕ+ ωy)ωy dxdy −K

∫
Γ

(ψ + ωx)ων1 dΓ

−K

∫
Γ

(ϕ+ ωy)ων2 dΓ + d1

∫
Ω

Wω dxdy =

∫
Ω

f2ω dxdy,

from where it follows using the boundary conditions (1.7)–(1.9) that

K

∫
Ω

|ψ + ωx|2 dxdy +K

∫
Ω

|ϕ+ ωy|2 dxdy = ρ1

∫
Ω

|W |2 dxdy

+K

∫
Ω

(ψ + ωx)ψ dxdy +K

∫
Ω

(ϕ+ ωy)ϕ dxdy︸ ︷︷ ︸
:=I2

+ρ1

∫
Ω

Wf1 dxdy

− d1

∫
Ω

Wω dxdy︸ ︷︷ ︸
:=I3

+

∫
Ω

f2ω dxdy. (4.16)
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Using Lemma 2.1, we have that

I2 �
K

2

∫
Ω

|ψ + ωx|2 dxdy +
K

2

∫
Ω

|ψ|2 dxdy +
K

2

∫
Ω

|ϕ+ ωy|2 dxdy +
K

2

∫
Ω

|ϕ|2 dxdy

�
K

2

∫
Ω

|ψ + ωx|2 dxdy +
K

2

∫
Ω

|ϕ+ ωy|2 dxdy

+ C1

[ ∫
Ω

|ψx|2 + |ϕy|2 +

(
1 − μ

2

)
|ψy + ϕx|2 + μϕyψx + μψxϕy dxdy

]
. (4.17)

In addition, we have

I3 �
d1

|λ|

∫
Ω

|W ||W + f1| dxdy

�
d1

|λ|

∫
Ω

|W |2 dxdy +
d1

|λ|

∫
Ω

|W ||f1| dxdy. (4.18)

Substituting I2 and I3 into (4.16), we get

K

2

∫
Ω

|ψ + ωx|2 dxdy +
K

2

∫
Ω

|ϕ+ ωy|2 dxdy �

(
ρ1 +

d1

|λ|

)∫
Ω

|W |2 dxdy

+ C1

[ ∫
Ω

|ψx|2 + |ϕy|2 +

(
1 − μ

2

)
|ψy + ϕx|2 + μϕyψx + μψxϕy dxdy

]
+
d1

|λ|

∫
Ω

|W ||f1| dxdy +

∫
Ω

f2ω dxdy.

From the above inequality and from (4.1), we conclude that there exists a positive

constant M such that

K

2

∫
Ω

|ψ + ωx|2 dxdy +
K

2

∫
Ω

|ϕ+ ωy|2 dxdy

� C1

[ ∫
Ω

|ψx|2 + |ϕy|2 +

(
1 − μ

2

)
|ψy + ϕx|2 + μϕyψx + μψxϕy dxdy

]
+M||U||H||F ||H,

from where our conclusion follows. The proof is now complete. �

Lemma 4.3 There exists a positive constant M such that any strong solution of system

(1.1)–(1.9) satisfies

ρ2

∫
Ω

|Ψ |2 dxdy + ρ2

∫
Ω

|Φ|2 dxdy � C2

[ ∫
Ω

|ψx|2 dxdy

+ D

∫
Ω

|ϕy|2 dxdy + D

(
1 − μ

2

)∫
Ω

|ψy + ϕx|2 dxdy
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+ Dμ

∫
Ω

ϕyψx dxdy + Dμ

∫
Ω

ψxϕy dxdy

]
+
K

2

∫
Ω

|ψ + ωx|2 dxdy

+
K

2

∫
Ω

|ϕ+ ωy|2 dxdy +M||U||H||F ||H, (4.19)

where C2 is a positive constant.

Proof Multiplying equation (4.12) by ψ and integrating on Ω, we get

iλρ2

∫
Ω

Ψψ dxdy︸ ︷︷ ︸
:=I4

−D
∫
Ω

ψxxψ dxdy − D

(
1 − μ

2

)∫
Ω

ψyyψ dxdy

− D

(
1 − μ

2

)∫
Ω

ϕxyψ dxdy − Dμ

∫
Ω

ϕxyψ dxdy

+K

∫
Ω

(ψ + ωx)ψ dxdy =

∫
Ω

f4ψ dxdy.

Substituting ψ given by (4.11) into I4 and integrating by parts, we get

− ρ2

∫
Ω

Ψ (f3 +Ψ ) dxdy + D

∫
Ω

|ψx|2 dxdy

+ D

(
1 − μ

2

)∫
Ω

|ψy|2 dxdy + D

(
1 − μ

2

)∫
Ω

ϕxψy dxdy

+ Dμ

∫
Ω

ϕyψx dxdy +K

∫
Ω

(ψ + ωx)ψ dxdy

− D

∫
Γ2

(
ψx + μϕy,

1 − μ

2

(
ϕx + ψy

))
· νψ dΓ2

=

∫
Ω

f4ψ dxdy,

from where it follows using the boundary conditions (1.8)–(1.9) that

ρ2

∫
Ω

|Ψ |2 dxdy = D

∫
Ω

|ψx|2 dxdy

+ D

(
1 − μ

2

)∫
Ω

|ψy|2 dxdy + D

(
1 − μ

2

)∫
Ω

ϕxψy dxdy

+ Dμ

∫
Ω

ϕyψx dxdy +K

∫
Ω

(ψ + ωx)ψ dxdy

− ρ2

∫
Ω

Ψf3 dxdy −
∫
Ω

f4ψ dxdy. (4.20)

On the other hand, multiplying equation (4.14) by ϕ, integrating by parts on Ω, using
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(4.13) and finally using the boundary conditions (1.8)–(1.9), we get

ρ2

∫
Ω

|Φ|2 dxdy = D

∫
Ω

|ϕy|2 dxdy

+ D

(
1 − μ

2

)∫
Ω

|ϕx|2 dxdy + D

(
1 − μ

2

)∫
Ω

ψyϕx dxdy

+ Dμ

∫
Ω

ψxϕy dxdy +K

∫
Ω

(ϕ+ ωy)ϕ dxdy

− ρ2

∫
Ω

Φf5 dxdy −
∫
Ω

f6ϕ dxdy. (4.21)

Summing the equalities (4.20) and (4.21), we arrive at

ρ2

∫
Ω

|Ψ |2 dxdy + ρ2

∫
Ω

|Φ|2 dxdy = D

∫
Ω

|ψx|2 dxdy

+ D

∫
Ω

|ϕy|2 dxdy + D

(
1 − μ

2

)∫
Ω

|ψy + ϕx|2 dxdy

+ Dμ

∫
Ω

ϕyψx dxdy + Dμ

∫
Ω

ψxϕy dxdy +K

∫
Ω

(ψ + ωx)ψ dxdy

+K

∫
Ω

(ϕ+ ωy)ϕ dxdy − ρ2

∫
Ω

Ψf3 dxdy −
∫
Ω

f4ψ dxdy

− ρ2

∫
Ω

Φf5 dxdy −
∫
Ω

f6ϕ dxdy. (4.22)

Substituting (4.17) into (4.22), we get

ρ2

∫
Ω

|Ψ |2 dxdy + ρ2

∫
Ω

|Φ|2 dxdy � C2

[ ∫
Ω

|ψx|2 dxdy

+ D

∫
Ω

|ϕy|2 dxdy + D

(
1 − μ

2

)∫
Ω

|ψy + ϕx|2 dxdy

+ Dμ

∫
Ω

ϕyψx dxdy + Dμ

∫
Ω

ψxϕy dxdy

]
+
K

2

∫
Ω

|ψ + ωx|2 dxdy

+
K

2

∫
Ω

|ϕ+ ωy|2 dxdy − ρ2

∫
Ω

Ψf3 dxdy −
∫
Ω

f4ψ dxdy

− ρ2

∫
Ω

Φf5 dxdy −
∫
Ω

f6ϕ dxdy,

from where we can conclude that

ρ2

∫
Ω

|Ψ |2 dxdy + ρ2

∫
Ω

|Φ|2 dxdy � C2

[ ∫
Ω

|ψx|2 dxdy

+ D

∫
Ω

|ϕy|2 dxdy + D

(
1 − μ

2

)∫
Ω

|ψy + ϕx|2 dxdy
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+ Dμ

∫
Ω

ϕyψx dxdy + Dμ

∫
Ω

ψxϕy dxdy

]
+
K

2

∫
Ω

|ψ + ωx|2 dxdy

+
K

2

∫
Ω

|ϕ+ ωy|2 dxdy +M||U||H||F ||H.

The proof is now complete. �

The next lemma gives the important relation between the coefficients of the Reissner–

Mindlin–Timoshenko for obtaining the necessary and sufficient condition for exponential

stability of system (1.1)–(1.9).

Lemma 4.4 There exists a positive constant M such that any strong solution of system

(1.1)–(1.9) satisfies

D

[ ∫
Ω

|ψx|2 dxdy +

∫
Ω

|ϕy|2 dxdy +

(
1 − μ

2

)∫
Ω

|ψy + ϕx|2 dxdy

+ μ

∫
Ω

ϕyψx dxdy + μ

∫
Ω

ψxϕy dxdy

]
� |λ|

∣∣∣∣Dρ1

K
− ρ2

∣∣∣∣ ∫
Ω

∣∣W ∣∣ |ψx + ϕy| dxdy +M||U||H||F ||H. (4.23)

Proof Multiplying equation (4.12) by ωx, integrating by parts on Ω and using (4.11), we

have

iλρ2

∫
Ω

Ψωx dxdy + D

∫
Ω

ψxωxx dxdy

+ D

(
1 − μ

2

)∫
Ω

ψyωxy dxdy + D

(
1 − μ

2

)∫
Ω

ϕxωxy dxdy

+ Dμ

∫
Ω

ϕyωxx dxdy +K

∫
Ω

(ψ + ωx)ωx dxdy

− D

∫
Γ

(
ψx + μϕy,

1 − μ

2

(
ϕx + ψy

))
· νωx dΓ

=

∫
Ω

f4ωx dxdy. (4.24)

On the other hand, multiplying equation (4.14) by ωy , integrating by parts on Ω and

using equation (4.13), we obtain

iλρ2

∫
Ω

Φωy dxdy + D

(
1 − μ

2

)∫
Ω

ϕxωxy dxdy

+ D

∫
Ω

ϕyωyy dxdy + D

(
1 − μ

2

)∫
Ω

ψyωxy dxdy

+ Dμ

∫
Ω

ψxωyy dxdy +K

∫
Ω

(ϕ+ ωy)ωy dxdy
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− D

∫
Γ

(
1 − μ

2
(ϕx + ψy), ϕy + μψx

)
· νωy dΓ

=

∫
Ω

f6ωy dxdy. (4.25)

Summing up the results and taking into account the boundary conditions (1.7)–(1.9), it

follows that

iλρ2

∫
Ω

Ψωx dxdy + iλρ2

∫
Ω

Φωy dxdy

+D

∫
Ω

ψxωxx dxdy + D

∫
Ω

ϕyωyy dxdy︸ ︷︷ ︸
:=I4

+ 2D

(
1 − μ

2

)∫
Ω

ψyωxy dxdy + 2D

(
1 − μ

2

)∫
Ω

ϕxωxy dxdy

+ Dμ

∫
Ω

ϕyωxx dxdy + Dμ

∫
Ω

ψxωyy dxdy

+K

∫
Ω

(ψ + ωx)ωx dxdy +K

∫
Ω

(ϕ+ ωy)ωy dxdy

=

∫
Ω

f4ωx dxdy +

∫
Ω

f6ωy dxdy. (4.26)

On the other hand, from (4.10) we have

− iλρ1

∫
Ω

W (ψx + ϕy) dxdy −K

∫
Ω

(ψ + ωx)xψx dxdy

−K

∫
Ω

(ψ + ωx)xϕy dxdy −K

∫
Ω

(ϕ+ ωy)yψx dxdy

−K

∫
Ω

(ϕ+ ωy)yϕy dxdy + d1

∫
Ω

W (ψx + ϕy) dxdy

=

∫
Ω

f2(ψx + ϕy) dxdy,

from where it follows that

K

∫
Ω

ψxωxx dxdy +K

∫
Ω

ϕyωyy dxdy

= −iλρ1

∫
Ω

W (ψx + ϕy) dxdy −K

∫
Ω

|ψx|2 dxdy

−K

∫
Ω

|ϕy|2 dxdy −K

∫
Ω

(ψ + ωx)xϕy dxdy

−K

∫
Ω

(ϕ+ ωy)yψx dxdy + d1

∫
Ω

W (ψx + ϕy) dxdy

−
∫
Ω

f2(ψx + ϕy) dxdy. (4.27)
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Substituting (4.27) into I4, we can rewrite (4.26) as follow

iλρ2

∫
Ω

Ψωx dxdy + iλρ2

∫
Ω

Φωy dxdy

− D

K

[
iλρ1

∫
Ω

W (ψx + ϕy) dxdy +K

∫
Ω

|ψx|2 dxdy

+K

∫
Ω

|ϕy|2 dxdy +K

∫
Ω

(ψ + ωx)xϕy dxdy

+K

∫
Ω

(ϕ+ ωy)yψx dxdy − d1

∫
Ω

W (ψx + ϕy) dxdy

+

∫
Ω

f2(ψx + ϕy) dxdy

]
+ 2D

(
1 − μ

2

)∫
Ω

ψyωxy dxdy

+ 2D

(
1 − μ

2

)∫
Ω

ϕxωxy dxdy + Dμ

∫
Ω

ϕyωxx dxdy

+ Dμ

∫
Ω

ψxωyy dxdy +K

∫
Ω

(ψ + ωx)ωx dxdy

+K

∫
Ω

(ϕ+ ωy)ωy dxdy =

∫
Ω

f4ωx dxdy +

∫
Ω

f6ωy dxdy,

from where it follows that

iλρ2

∫
Ω

Ψωx dxdy︸ ︷︷ ︸
:=I5

+ iλρ2

∫
Ω

Φωy dxdy︸ ︷︷ ︸
:=I6

− iλ
Dρ1

K

∫
Ω

W (ψx + ϕy) dxdy − D

∫
Ω

|ψx|2 dxdy

− D

∫
Ω

|ϕy|2 dxdy − D

∫
Ω

(ψ + ωx)xϕy dxdy

− D

∫
Ω

(ϕ+ ωy)yψx dxdy + 2D

(
1 − μ

2

)∫
Ω

ψyωxy dxdy

+ 2D

(
1 − μ

2

)∫
Ω

ϕxωxy dxdy + Dμ

∫
Ω

ϕyωxx dxdy

+ Dμ

∫
Ω

ψxωyy dxdy +K

∫
Ω

(ψ + ωx)ωx dxdy

+K

∫
Ω

(ϕ+ ωy)ωy dxdy +
d1D

K

∫
Ω

W (ψx + ϕy) dxdy

=
D

K

∫
Ω

f2(ψx + ϕy) dxdy +

∫
Ω

f4ωx dxdy +

∫
Ω

f6ωy dxdy. (4.28)

Substituting ω given by (4.9) into I5 and I6, we have

I5 + I6 = ρ2

∫
Ω

WΨx dxdy︸ ︷︷ ︸
:=I7

+ ρ2

∫
Ω

WΦy dxdy︸ ︷︷ ︸
:=I8

+ ρ2

∫
Ω

f1Ψx dxdy + ρ2

∫
Ω

f1Φy dxdy.
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Substituting Ψ given by (4.11) and Φ given by (4.13) into I7 and I8, respectively, we get

I5 + I6 = iλρ2

∫
Ω

W (ψx + ϕy) dxdy − ρ2

∫
Ω

W (f3
x + f5

y) dxdy

− ρ2

∫
Ω

f1
xΨ dxdy − ρ2

∫
Ω

f1
yΦ dxdy. (4.29)

Substituting (4.29) into (4.28) and after simplifications, we get

D

∫
Ω

|ψx|2 dxdy + D

∫
Ω

|ϕy|2 dxdy + D

∫
Ω

ψyϕx dxdy + D

∫
Ω

ϕxψy dxdy

= iλ

(
ρ2 − Dρ1

K

)∫
Ω

W (ψx + ϕy) dxdy +K

∫
Ω

(ψ + ωx)ωx dxdy

+K

∫
Ω

(ϕ+ ωy)ωy dxdy +
d1D

K

∫
Ω

W (ψx + ϕy) dxdy

− D

K

∫
Ω

f2(ψx + ϕy) dxdy −
∫
Ω

f4ωx dxdy −
∫
Ω

f6ωy dxdy

−ρ2

∫
Ω

W (f3
x + f5

y ) dxdy − ρ2

∫
Ω

f1
xΨ dxdy − ρ2

∫
Ω

f1
yΦ dxdy, (4.30)

from where it follows that

D

∫
Ω

|ψx|2 dxdy + D

∫
Ω

|ϕy|2 dxdy + D

(
1 − μ

2

)∫
Ω

|ψy + ϕx|2 dxdy

+ Dμ

∫
Ω

ϕyψx dxdy + Dμ

∫
Ω

ψxϕy dxdy

= iλ

(
ρ2 − Dρ1

K

)∫
Ω

W (ψx + ϕy) dxdy + D

(
1 − μ

2

)∫
Ω

|ψy − ϕx|2 dxdy

+K

∫
Ω

(ψ + ωx)ωx dxdy +K

∫
Ω

(ϕ+ ωy)ωy dxdy︸ ︷︷ ︸
:=I9

+
d1D

K

∫
Ω

W (ψx + ϕy) dxdy − D

K

∫
Ω

f2(ψx + ϕy) dxdy

−
∫
Ω

f4ωx dxdy −
∫
Ω

f6ωy dxdy

−ρ2

∫
Ω

W (f3
x + f5

y ) dxdy − ρ2

∫
Ω

f1
xΨ dxdy − ρ2

∫
Ω

f1
yΦ dxdy. (4.31)

Noting that

I9 = ρ1

∫
Ω

|W |2 dxdy + d1

∫
Ω

Wω dxdy + ρ1

∫
Ω

Wf1 dxdy +

∫
Ω

f2ω dxdy

�

(
ρ1 +

d1

|λ|

)∫
Ω

|W |2 dxdy +

∫
Ω

f2ω dxdy +

(
ρ1 +

d1

|λ|

)∫
Ω

|W ||f1| dxdy,

and using Lemma 2.1, our conclusion follows. Therefore, the proof is now complete. �

Now we are in the position to prove the main result of this paper.
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Theorem 4.5 The semigroup associated with the Reissner–Mindlin–Timoshenko system

(1.1)–(1.9) is exponentially stable if and only if v21 = v22 .

Proof From Lemmas 4.2–4.4, we can conclude that

||U||2H � M||U||H||F ||H , ∀U ∈ D(A),

from where we obtain

||U||H � M, ∀U ∈ D(A).

Using Prüss’s result [20], the conclusion of the theorem follows. �

4.2 Polynomial decay

In this section, we will show that in general the Reissner–Mindlin–Timoshenko system

(1.1)–(1.9) goes to zero polynomially as 1/
√
t.

Theorem 4.6 Let us suppose that v21 − v22 � 0. Then, the semigroup associated with the

system(1.1)–(1.9) is polynomially stable and

||S(t)U0||H �
1√
t
||U0||D(A). (4.32)

Moreover, this rate of decay is optimal, in the sense that decay must be slower than t−
1

2−ε

for any ε > 0.

Proof We note that, by using Young’s inequality, the following inequality holds∫
Ω

|W ||ψx + ϕy| dxdy �
|λ|
2

∫
Ω

|W |2 dxdy +
1

2|λ|

∫
Ω

|ψx + ϕy|2 dxdy, (4.33)

for |λ| > 0. On the other hand, from Lemma 4.4, we get∫
Ω

|ψx + ϕy|2 dxdy � |λ|
∣∣∣∣Dρ1

K
− ρ2

∣∣∣∣ ∫
Ω

|W ||ψx + ϕy| dxdy + C1||U||H||F ||H

�
|λ|2
2

∣∣∣∣Dρ1

K
− ρ2

∣∣∣∣2 ∫
Ω

|W |2 dxdy +
1

2

∫
Ω

|ψx + ϕy|2 dxdy

+ C2||U||H||F ||H,

which implies that

1

2

∫
Ω

|ψx + ϕy|2 dxdy � C1|λ|2
∫
Ω

|W |2 dxdy + C2||U||H||F ||H, (4.34)

where C1, C2 are positive constants. Substituting (4.34) into (4.33), we obtain∫
Ω

|W ||ψ + ϕy| dxdy �
|λ|
2

∫
Ω

|W |2 dxdy + C1|λ|
∫
Ω

|W |2 dxdy +
C2

|λ| ||U||H||F ||H.
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Then, using (4.1) we have that∫
Ω

|W ||ψ + ϕy| dxdy � C3|λ|||U||H||F ||H +
C2

|λ| ||U||H||F ||H. (4.35)

Combining the Lemmas 4.2–4.4, we obtain that there exists a positive constant M1 such

that

||U||2H � M1|λ|2||U||H||F ||H,
for |λ| > 0 large enough. Therefore, we get

1

|λ|2 ||U||H � M1||F ||H,

which is equivalent to

||(λI − A)−1||L(H) � M1|λ|2.
Then using Theorem 2.4 in [5], we obtain

||S(t)A−1||L(H) = O(t−1/2) ⇒ ||S(t)A−1||L(H) �
M1√
t
.

Since 0 ∈ ρ(A), it follows that A is onto H, then taking AU0 = F , we get

||S(t)U0||H �
M1√
t

||U0||D(A),

completing the first assertion of this theorem. To prove that the rate of decay is optimal,

we will argue by contradiction. Suppose that the rate t−1/2 can be improved. That is to

say, that the rate is t−
1

2−ε for some 0 < ε < 2. From Theorem 5.3 in [7] the operator

|λ|−2+ ε
2 ||(λI − A)−1||L(H),

should be limited, but this does not happen. For this, let us suppose that there exists a

sequence (λn) ⊂ IR with limn→∞ |λn| = ∞ and (Un) ⊂ D(A) for (Fn) ⊂ H such that

(iλnI − A)Un = Fn.

Then, we can consider

Fn =
(
0, F2 sin(δλ1x) sin(δλ2y), 0, F

4 cos(δλ1x) sin(δλ2y), 0, F
6 sin(δλ1x) cos(δλ2y)

)′
,

for each n ∈ IN, with F2 � 0, F4 � 0, F6 � 0 constants, where λ1 = nπ
δL1

, λ2 = nπ
δL2

, δ =
√

ρ2

D

and Un = (ωn,Wn, ψn,Ψn, ϕn, Φn)
′. Moreover, we choose

ωn = A sin (δλ1x) sin (δλ2y),

ψn = B cos (δλ1x) sin (δλ2y),

ϕn = C sin (δλ1x) cos (δλ2y).
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So, choosing

λ = λn :=

√
λ2

1 + λ2
2 = O(n), ∀n ∈ IN,

and proceeding as in the proof of Theorem 3.1, we can conclude that

|λn|−2+ ε
2 ||Un||H � O

(
n
ε
2

)
→ ∞,

as n → ∞. Therefore, the rate cannot be improved and the proof is now complete. �

5 Numerical approach

In this section, we consider a numerical scheme using finite difference and we reproduce

numerically the analytical results established on exponential decay for the Reissner–

Mindlin–Timoshenko system. We present a numerical method consistent of second order

in all mesh parameters and ensuring naturally decay of energy like obtained in the

previous sections.

We are concerned mainly with the lack of exponential decay according with the speeds

of wave propagation v21 and v22 . More precisely, if (3.8) holds, then the dissipative system

of Reissner–Mindlin–Timoshenko treated here is not exponentially stable. Otherwise, we

get the exponential decay of solutions.

5.1 Fully-discrete scheme in finite differences and properties

Given I, J, N ∈ IN we set Δx = L1

I+1
, Δy = L2

J+1
and Δt = T

N+1
and we introduce the nets

x0 = 0 < x1 = Δx < · · · < xI = IΔx < xI+1 = (I + 1)Δx = L1, (5.1)

y0 = 0 < y1 = Δy < · · · < yJ = JΔy < xJ+1 = (J + 1)Δy = L2, (5.2)

t0 = 0 < t1 = Δt < · · · < tN = NΔt < tN+1 = (N + 1)Δt = T , (5.3)

with xi = iΔx, yj = jΔy and tn = nΔt for i = 0, 1, 2, . . . , I + 1, j = 0, 1, 2, . . . , J + 1 and

n = 0, 1, 2, . . . , N + 1.

Taking an explicit scheme using finite differences, our problem consists of finding

(ωn
i,j , ψ

n
i,j , ϕ

n
i,j) satisfying the following numerical scheme:

ρ1∂t∂tω
n
i,j = K∂x∂xω

n
i,j +K

∂x + ∂x
2

ψni,j +K∂y∂yω
n
i,j +K

∂y + ∂y
2

ϕni,j − d1
∂t + ∂t

2
ωn
i,j , (5.4)

ρ2∂t∂tψ
n
i,j = D∂x∂xψ

n
i,j + D

1 − μ

2
∂y∂yψ

n
i,j + D

1 + μ

2

(
∂y + ∂y

2

∂x + ∂x
2

)
ϕni,j

− K

2
(ψni+1/2,j + ψni−1/2,j + ψni,j+1/2 + ψni,j−1/2) −K

∂x + ∂x
2

ωn
i,j , (5.5)

ρ2∂t∂tϕ
n
i,j = D∂y∂yϕ

n
i,j + D

1 − μ

2
∂x∂xϕ

n
i,j + D

1 + μ

2

(
∂x + ∂x

2

∂y + ∂y
2

)
ψni,j

− K

2
(ϕni+1/2,j + ϕni−1/2,j + ϕni,j+1/2 + ϕni,j−1/2) −K

∂y + ∂y
2

ωn
i,j , (5.6)
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for all i = 1, 2, . . . , I j = 1, 2, . . . , J and n = 1, 2, . . . , N. To simplicity our numerical

calculations, we consider the homogeneous boundary conditions given by

ωn
0,j = ωn

I+1,j = uni,0 = ωn
i,J+1 = 0, ∀n = 1, 2, . . . , N, (5.7)

ψn0,j = ψnI+1,j = ψni,0 = ψni,J+1 = 0, ∀n = 1, 2, . . . , N, (5.8)

ϕn0,j = ϕnI+1,j = ϕni,0 = ϕni,J+1 = 0, ∀n = 1, 2, . . . , N, (5.9)

and initial conditions given by

ω0
i,j = ω(xi, yj , 0), ω1

i,j = ω0
i,j + Δtωt(xi, yj , 0), ∀i = 1, . . . , I, j = 1, . . . , J, (5.10)

ψ0
i,j = ψ(xi, yj , 0), ψ1

i,j = ψ0
i,j + Δtψt(xi, yj , 0), ∀i = 1, . . . , I, j = 1, . . . , J, (5.11)

ϕ0
i,j = ϕ(xi, yj , 0), ϕ1

i,j = ϕ0
i,j + Δtϕt(xi, yj , 0), ∀i = 1, . . . , I, j = 1, . . . , J. (5.12)

The numerical operators used in (5.4)–(5.6) are given by

∂xω
n
i,j :=

ωn
i+1,j − ωn

i,j

Δx
, ∂xω

n
i,j :=

ωn
i,j − ωn

i−1,j

Δx
, ∂yω

n
i,j :=

ωn
i,j+1 − ωn

i,j

Δy
, ∂yω

n
i,j

:=
ωn
i,j − ωn

i,j−1

Δy
, ∂tω

n
i,j :=

ωn+1
i,j − ωn

i,j

Δt
, ∂tω

n
i,j :=

ωn
i,j − ωn−1

i,j

Δt
,

∂x + ∂x
2

ωn
i,j :=

ωn
i+1,j − ωn

i−1,j

2Δx
,

∂y + ∂y
2

ωn
i,j :=

ωn
i,j+1 − ωn

i,j−1

2Δy
,

∂t + ∂t
2

ωn
i,j

:=
ωn+1
i,j − ωn−1

i,j

2Δt
, ∂x∂xω

n
i,j :=

ωn
i+1,j − 2ωn

i,j + ωn
i−1,j

Δx2
, ∂y∂yω

n
i,j

:=
ωn
i,j+1 − 2ωn

i,j + ωn
i,j−1

Δy2
, ∂t∂tω

n
i,j :=

ωn+1
i,j − 2ωn

i,j + ωn−1
i,j

Δt2
,

with the same approximations to the functions ψ and ϕ on the mesh. Here, we are

denoting by ωn
i,j , ϕ

n
i,j and ψni,j the numerical approximations of the exact solutions ω,ϕ and

ψ, respectively, evaluated on the mesh. More precisely, we have ωn
i,j ≈ ω(xi, yj , tn), ψ

n
i,j ≈

ψ(xi, yj , tn) and ϕni,j ≈ ϕ(xi, yj , tn). Also ψni−1/2,j and ψni+1/2,j denote the average of ψni,j at

the points (xi−1, yj , tn), (xi, yj , tn) and (xi+1, yj , tn), (xi, yj , tn), respectively. Similar meanings

hold for ψni,j−1/2 and ψni,j+1/2.

The numerical scheme presented here is explicit and its computational implementation

requires knowledge of the approximations at time level tn and tn−1 in order to approximate

the numerical solutions at time level tn+1. We note that the proposed scheme (5.4)–(5.12) is

consistent with the problem studied. In particular, the stability criterion in one-dimensional

case obeys a relation between the time step Δt and the thickness h (see [24, 25]). It is

expected that for the two-dimensional case a similar relation prevails but the proof is still

to be done. However, for the purposes of numerical convergence, we fix the thickness h

and we choose Δt < Δx for Δx = Δy.
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5.2 Discrete energy

In this section, we prove that the numerical scheme (5.4)–(5.12) has a property of numerical

consistency that preserves the instantaneous rate of change of energy according with

Proposition 2.3. With this aim in mind, we present a first property concerning the total

energy of discrete system (5.4)–(5.12).

The total energy to the numerical equations (5.4)–(5.12) at the time step tn will be

computed using the expression

En :=
ΔxΔy

2

I∑
i=0

J∑
j=0

[
ρ1

(
ωn+1
i,j − ωn

i,j

Δt

)2

+ ρ2

(
ψn+1
i,j − ψni,j

Δt

)2

+ ρ2

(
ϕn+1
i,j − ϕni,j

Δt

)2

+ D
ψn+1
i+1,j − ψn+1

i,j

Δx

ψni+1,j − ψni,j

Δx
+ D

(
1 − μ

2

)
ψn+1
i,j+1 − ψn+1

i,j

Δy

ψni,j+1 − ψni,j

Δy

+ D

(
1 − μ

2

)
ϕn+1
i+1,j − ϕn+1

i,j

Δx

ϕni+1,j − ϕni,j

Δx
+ D

ϕn+1
i,j+1 − ϕn+1

i,j

Δy

ϕni,j+1 − ϕni,j

Δy

+K

(
ωn+1
i+1,j − ωn+1

i,j

Δx
+
ψn+1
i+1,j + ψn+1

i,j

2

)(
ωn
i+1,j − ωn

i,j

Δx
+
ψni+1,j + ψni,j

2

)

+K
ψn+1
i,j+1 + ψn+1

i,j

2

ψni,j+1 + ψni,j

2

+K

(
ωn+1
i,j+1 − ωn+1

i,j

Δy
+
ϕn+1
i,j+1 + ϕn+1

i,j

2

)(
ωn
i,j+1 − ωn

i,j

Δy
+
ϕni,j+1 + ϕni,j

2

)

+K
ϕn+1
i+1,j + ϕn+1

i,j

2

ϕni+1,j + ϕni,j

2

+ D

(
1 + μ

2

)(
ψn+1
i+1,j+1 − ψn+1

i,j

2Δx

ϕni+1,j+1 − ϕni,j

2Δy
+
ψn+1
i,j+1 − ψn+1

i+1,j

2Δx

ϕni+1,j − ϕni,j+1

2Δy

+
ϕn+1
i+1,j+1 − ϕn+1

i,j

2Δx

ψni+1,j+1 − ψni,j

2Δy
+
ϕn+1
i,j+1 − ϕn+1

i+1,j

2Δx

ψni+1,j − ψni,j+1

2Δy

)]
. (5.13)

We note that En is the discrete version of the continuous energy (2.12). This total energy

built from discrete system (5.4)–(5.12) is free from any over-estimation on the mesh size

Δx and Δy. In that direction, our discrete system avoids a numerical anomaly known as

locking phenomenon on shear force. To guidance of the reader, see Almeida Júnior [1]

and references contained therein.

Moreover, one can show that En decreases for d1 > 0 and that it is constant for d1 = 0.

Instead of computing the time derivative of the energy we can use the summation by

parts.

Next, we establish the discrete counterpart of the Proposition 2.3.

Theorem 5.1 (Discrete energy) Let (ωn
i,j , ϕ

n
i,j , ψ

n
i,j) be a solution of the finite difference

scheme (5.4)–(5.12) with d1 > 0. Then for all Δt, Δx and Δy, the discrete rate of change of

energy of the numerical scheme (5.4)–(5.12) at the instant of time tn is given by
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En − En−1

Δt
= −d1

I∑
i=1

J∑
j=1

(
ωn+1
i,j − ωn−1

i,j

2Δt

)2

� 0, (5.14)

for all n = 1, . . . , N,N + 1.

Proof The proof is too long and we omit it here. Analogously to continuous case, we

use the multipliers at discrete level given by ( ∂t+∂t
2
ωn
i,j), ( ∂t+∂t

2
ϕni,j) and ( ∂t+∂t

2
ψni,j) and we

organise the results in order to make up the difference En − En−1. �

5.3 Numerical simulations

In this section, we focus on the numerical scheme (5.4)–(5.12) and its energy En to

illustrate by means of the numerical experiments the analytical results established in

previous sections. We emphasise that we are not concerned with issues of numerical

convergence between exact solution and numerical solution and the respective rate of

convergence.

Taking into account several numerical experiments by using the discrete energy En,

we get the exponential decay as well as the lack of exponential decay according with

the relationship between speeds of wave propagation v21 and v22 . In that direction,

a measure of the numerical consistence of the numerical scheme (5.4)–(5.12) can be

seen through the energy conservation law. Indeed, for d1 = 0 in (5.14) we obtain that

En = E0, n = 1, . . . , N + 1.

In our numerical experiments, we use the following data: L1 = L2 = 1, T = 4 and

thickness h = 0.015. In the initial conditions, we assume that

ω(xi, yj , 0) = ψ(xi, yj , 0) = ϕ(xi, yj , 0) = 0, (5.15)

ωt(xi, yj , 0)= 0, ∀ν ∈ IN, (5.16)

ψt(xi, yj , 0) = cos

(
ν

πxi
L1

)
sin

(
ν

πyj
L2

)
, ∀ν ∈ IN, (5.17)

ϕt(xi, yj , 0) = sin

(
ν

πxi
L1

)
cos

(
ν

πyj
L2

)
, ∀ν ∈ IN. (5.18)

In the computational mesh, we use Δx = Δy = 0.03125 and Δt = 0.00195 such that

Δt/Δx = 0.0624.

5.3.1 Undamped and full damped cases

Here, we consider the Reissner–Mindlin–Timoshenko system (1.1)–(1.9) in two physical

situations: undamped and full damped cases. For the full damped case, we consider three

frictional internal dissipations into the system, this is, we introduced the terms d1ωt, d2ψt
and d3ϕy , for d1, d2 and d3 to be positive constants.

In both cases, we have used different speeds of wave propagation.

Comments 1 For a better comparison between the results of decay, we normalise the nu-

merical energy by the initial energy, i.e., we define En := En/E0.
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Figure 1. Undamped case.

Figure 2. Undamped case.

We can see from Figures (1)–(2) that the discrete energy En is constant for all discrete

time tn and this numerical behaviour is a measure of the precision of our numerical scheme

(5.4)–(5.12). That is to say, the energy conservation law (2.16) and its discrete counterpart

are qualitatively in agreement. On the other hand, Figures (3)–(4) show that the energy En

is like an exponential function e−ωtn for ω > 0, i.e., in the full damping case the discrete

counterpart of the Reissner–Mindlin–Timoshenko system is exponentially stable independent

from relationship between v21 and v22 . The similar result in infinite dimensional was not in-

cluded in our analysis, but it is not difficult to obtain this result by using for example the

energy method.
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Figure 3. Full damped case.

Figure 4. Full damped case.

5.3.2 Damping only on transverse displacement

Here, we show the numerical experiments concerning the main result of this work. In

particular, we consider the initial data (5.16) equal to zero. The following are the results

of our simulations.

Comments 2 The Figures (5) and (7) represent a decay more slowly of the numerical

solutions when speeds of wave propagation are different (see Theorem 3.1). This case is
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Figure 5. v2
1 � v2

2 .

Figure 6. v2
1 = v2

2 .

more realistic from physical point of view. In the right hand side, Figures (6) and (8), one

has reproduced the exponential decay according with Theorem 4.5.

By comparison qualitative between Figures (5) and (7) and Figures (6) and (8), the lack

of decay exponential can be seen as a typical behaviour of polynomial decay in accordance

with the analytical results established in our mathematical analysis. For the same data of

the simulations, the graphics have changed of exponential to a curve next of a straight

line.
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Figure 7. v2
1 � v2

2 .

Figure 8. v2
1 = v2

2 .

5.3.3 Comparison between two damping cases

Here, we present a comparison between two damping cases: the full damping and the

damping on displacement function. In the figures below, we consider the relationship

between the speeds of wave propagation only in the case of an only damping (on

displacement function). On the other hand, in full damping case, we consider the speeds

are different.

Comments 3 These figures illustrate the important of the speeds of wave propagation v21
and v22 in order to obtain the exponential decay of the Reissner–Mindlin–Timoshenko by
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Figure 9. Exponential curves.

Figure 10. Exponential curves.

considering an only damping. The Figures (9)–(12) contain two exponential curves. The

exponential curve in blue colour represents the full damping case where v21 � v22 and the

curve in red colour represents the exponential decay according with relationships v21 = v22 .

Therefore, looking for our analytical results established in previous sections and also for

the several results studied on literature on stabilisation of the plates and beams, the same

exponential decay (full damping case) can be obtained by taking into consideration an only

damping and taking into account the equality v21 = v22 . All numerical results presented here

are qualitatively in agreement with the results established in infinite dimensional.
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Figure 11. Exponential curves.

Figure 12. Exponential curves.

6 Conclusions

In this work, we have addressed an important problem in mathematical analysis of beams

and plates models: the problem of determining the exponential decay by taking into

account few dissipative mechanisms.

It is well known that the speeds of wave propagation play an important role to

the dissipative Timoshenko systems in one-dimensional domain (see [2] and references

contained therein). In that direction, in all literature concerning the stability of the

Reissner–Mindlin–Timoshenko system we have not found any mention of the speeds of
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wave propagation. We have identified that the Reissner–Mindlin–Timoshenko system has

two speeds of wave propagation and we have proved that is sufficient takes into account

only one mechanism dissipation in order to obtain the exponential decay, for which a

particular relationships between these speeds must hold.

Other dissipative cases can be considered. For example, looking at Reissner–Mindlin–

Timoshenko systems in linear thermoelasticity, hypotheses such as Fourier’s or Cattaneo’s

law as well as memory terms. These and many other constitute important models to be

analysed at light of the relationships between v21 and v22 .
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[17] Muñoz Rivera, J. E. & Racke, R. (2002) Mildly dissipative nonlinear Timoshenko systems-

global existence and exponential stability. J. Math. Anal. Appl. 276(1), 248–278.
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