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In this paper, we show that there exists a critical number that stabilises the Reissner—Mindlin—
Timoshenko system with frictional dissipation acting only on the equation for the transverse
displacement. We identify that the Reissner—-Mindlin—Timoshenko system has two speed
characteristics v? := K/p; and v} := D/p, and we show that the system is exponentially
stable if only if

2 _ 2
vy = 0.

In the general case, we prove that the system is polynomially stable with optimal decay rate.
Numerical experiments using finite differences are given to confirm our analytical results. Our
numerical results are qualitatively in agreement with the corresponding results from dynamical
in infinite dimensional.

Key words: Reissner—Mindlin-Timoshenko system; wave propagation speed; asymptotic be-
haviour; finite difference.

1 Introduction

In this work, we consider the dissipative Reissner—-Mindlin—Timoshenko system given by
p1wy; — K(p + o)y — K(@ + wy), +diow, =0, in Q x R, (1.1)

1— 1+ .
P2y — Dy — D (2“> Py, —D <2“) Pxy + K(p +0x) =0, in @ x RY, (1.2)

1— 1+ .
P20y — Do,y — D <2,u) Qxx — D <2,u) Py + K(p + wy) =0,inQ xR, (1.3)

Here p; = ph, p; = % where p is the (constant) mass per unit of surface area, h is the
(uniform) plate thickness, u is Poisson’s ratio (0 < u < 1/2), D = ﬁfﬂz) is the modulus
kEh

SiEm) is the shear modulus where E is the Young’s modulus and k
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is the shear correction. The functions w, y and ¢ depend on (x, y,t) € Q x IRT denote the
transverse displacement of the plate and the rotational angles of a filament of the plate,
respectively. Details on physical deduction of this hyperbolic system (for the undamped
case) can be found in ref. [12,13].

We consider the initial data given by

w('x7ya0) = C&)O(X,y), wt(x’yao) = C&)](X,y), in Qa (14)
W(X:y,o) =1PO(X>J’)> UJr(X:ysO) zlpl(x:y)a in Qa (15)
@(x,,0) = @o(x, ), @:i(x,,0) = @1(x,y), in 2, (1.6)

where @ < IR? is a bounded domain with boundary I' = T'; UT,. The boundary
conditions are

w=0,onl xRT, (1.7)
o f(l—u (0@ Oyp\ 0¢ Oy _ N
1,0—0,< 5 <6x+ay) 6y+ P -v=0, on I x RT, (1.8)
oy O0p 1—pu (0p Oy N
=0, =0 I'n xIR™. 1.9
¢ <6x+ oy 2 (8x+6y v=0,onlsx (1.9)

Here, we are considering Q < IR? as the rectangular configuration given by
Q :=1[0,L;] x [0,L,], with Li,L, >0,
with boundary given by

{(x,y): 0<x <Ly, y=0, Ly},
Iy ={(x,y): 0<y<Ly x=0, L},

satisfying I' :=T{UT,.

The system (1.1)—(1.9) is damped by d;w, where d; > 0 is the damping coefficient and,
in this sense, its energy is decreasing with time ¢. It is interesting to know if the energy is
controlled by an exponential or polynomial function. We therefore, focus on establishing
necessary and sufficient conditions to obtain stability of this system.

One of the questions regarding stability of hyperbolic systems modelling mechanical
deformations in beams and plates concerns the minimum dissipation needed to obtain
exponential decay. The wave propagation speed play an important role in this respect.
For one-dimensional cases of Timoshenko systems where few dissipative mechanisms act,
exponential decay occurs if and only if

kK b
P1 Pz’
where x/p; and b/p, are the speeds of wave propagation to one-dimensional case. This
is the case of the dissipative system given by

1P — K(ox + 1) =0, (1.10)
P2 — b + k(o +v) +yy, =0, (1.11)
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analysed by Muifioz Rivera and Racke [18]. There are a large number of publications
concerning the stabilisation of Timoshenko systems where several types of dissipative
mechanisms are considered [2-4,10,15,17,22,23]. In this context, we can ask what are
the speeds of wave propagation of the Reissner—Mindlin—Timoshenko. Then, keeping in
mind the system (1.1)—(1.3) and taking into account that

1— 14+
—=1-— 1.12
S -, (1.12)
we can rewrite (1.1)—(1.3) as
P10y — K(l.U + wx)x - K(QD + wy)y +dio; =0, in Q x R+, (113)
1+ 14 .
prvpu — DAY +D— S, — DT“% T K(p 4+ oy) =0, in @ x R+, (1.14)
1+ 1+ pu
p2¢u —DAg +D— R —D—F 5 By +K(p+0y) =0, in @ x IR+, (L.15)
Now, since h = ” L then we observe that = 2(111;1)%’ where the ratio between the
tension E and the densny p has dimension of speed Analogously, one also has % = _lﬂz)%
with dimension of speed. Therefore, we put
vf =K/p; and v% = D/p», (1.106)

being the speeds of wave propagation for the Reissner—Mindlin-Timoshenko system.
From the above, we ask: what happens regarding the stability of system (1.1)—(1.9)
when

v} — 03 =07 (1.17)

Some previous results concerning Reissner—Mindlin-Timoshenko systems should be
mentioned. The most well known are due to Lagnese [12]. He addressed the question
of uniform and strong stability of purely elastic plates due to boundary feedbacks. In
particular, he considered a bounded domain Q having a Lipschitz boundary I such that
I' =T yUT, where Iy and I'; are relatively open, disjoint subsets of I" with I'y & @ and
he considered the following boundary conditions

o=ypy=¢=0 inly, (1.18)

ow Ow .
K +yp ‘@) v=m inl7y, (1.19)

x "dy

oy 0op 1—p (0 Oy .
D|— — ] )v= r 1.20
(ax“‘ay 2 <6x+6y v=mp ity (120)

l—p (dp Oy O¢ oy .
D|—— = r 1.21
( 3 (ax+ay "3y tug | v=ms inly (L.21)

where v = (v1,v2) is the unit exterior normal to I' and {m;,m,, m3} signifies the linear
boundary dissipations given by

(my,ma, m3) = —F (o, @1),
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with F = [f;;] a 3 x 3 matrix of real L*(I'{) functions such that F is symmetric and
positive semi-definite on I'y. Lagnese proved that the problem (1.1)—(1.3) with d; =0 and
boundary conditions (1.18)—(1.21) is exponentially stable, without any restrictions on the
coefficients of the system.

Muiioz Rivera and Portillo Oquendo [16] considered the Reissner—Mindlin—Timoshenko
systems having boundary conditions of memory type and they proved exponential stability,
provided that the kernels have exponential behaviour, and are polynomially stable for
kernels of polynomial type. Similar dissipations have been used by Santos [21], where the
author considered a Timoshenko model in @ < IR". On the other hand, when damping
mechanisms act on the whole domain, we should note the work of Fernandes Sare [8].
He considered the Reissner—-Mindlin—Timoshenko equations with damping acting only on
the rotational angles 1y and ¢. He proved, using a resolvent criterion, that the system is
not exponentially stable independent of any relations between the coefficients, making
this case different from the analogous one-dimensional case.

In this work, we are concerned with the stability of system (1.1)—(1.9) taking into
account the wave propagation speeds (1.16). When then ask: what happens with the
decay of the energy of this system when v} = v} ?

The method that we used to determine the asymptotic behaviour is based on Gearhart—
Herbst—Priiss—Huang Theorem [9] for dissipative systems (see also [11,20]). We now give
two theorems in this direction.

Theorem 1.1 Let S(t) = e”' be a Cy-semigroup of contractions on a Hilbert space J.
Then, S(t) is exponentially stable if and only if

p(eZ) 2 {il : 1€ R} =ilR, (1.22)
and
Timco [GAL — ) ) < o0 (123)
hold, where p(</) is the resolvent set of the differential operator <.

On the other hand, to show the polynomial stability we use the result due to Borichev
and Tomilov [5].

Theorem 1.2 Let S(t) be a bounded Cy-semigroup on a Hilbert space # with generator <f
such that iR < p(.</). Then

1

HE |G — ) ooy <C, VZER <= SO gw) <

C
s (1.24)

This paper is organised as follows. In Section 2 we discuss the existence, regularity and
uniqueness of global solutions of (1.1)—(1.9). To do this, we use the semigroup technique
(see [19]). In Section 3, we study the lack of exponential decay in accordance with a
nice relationship between the wave propagation speeds (1.16). In Section 4, we study the
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exponential and polynomial decay of system (1.1)—(1.9). In general, we show that the
Reissner—Mindlin—-Timoshenko systems is polynomially stable giving an optimal decay
rate. In Section 5, we show the numerical results by using finite difference method to
confirm our analytical results. Finally, in Section 6, we conclude our work with some
comments.

2 Semigroup setting

To give an accurate formulation for the Reissner—Mindlin-Timoshenko system, let Q = IR?
denote the interior of a rectangle given by

Q :=1[0,L{] x[0,L,], Li,L,>0.
For the boundary I' = 0Q of Q, we define

I ={xy): 0<x<Lyy=0, Ly},
Iy ={(x,y): 0<y<Ly x=0, Li}.

Thus, I' :=T'{ UT ,. With the above hypothesis on Q, let us consider the Hilbert space
A = Hy(Q) x L*(Q) x HI () x L}(Q) x H}(Q) x LA(Q),

where
H(Q):={weH(Q) : p=0onTi}, (i=12),

with inner product given by
(U, V) = p1 /QuzzT2 dxdy + p» /Q utv* dxdy + p; /Q ubv® dxdy
+K /Q(u3 +ul)©3 +vl) dxdy + K /Q(u5 + u})(vS + ol dxdy
+ D/ uvd dxdy + D/ uyvf, dxdy + D (I;u) /Q(uf, + ui)(m) dxdy
+D,u/ u;, 1)5 dxdy +Du/ udv3 dxdy, (2.1)
with norm given by
1UIRe =1 [ 1P dxdy+ p2 [ 1P avay
Q Q
+ p2 /Q [u®|? dxdy + K /Q u® + ul > dxdy + K /Q |u® + u}l,\2 dxdy
+ D/Q lu2|? dxdy + D/Q |u§|2 dxdy +D (1;/1) /Q Iui + 3 |* dxdy

+ D,u/ uiu? dxdy + D,u/ ufu?( dxdy, (2.2)
Q Q
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where U = (u',u?, 13, u*,u’,ub), V = (v!,0% 03, 0%, 07,0 and ’ denotes the transpose of
the vector.
Let us denote by 7~ the following Hilbert space
¥ = Hy(Q) x H} (Q) x H}.(Q).

The next lemma, which is a consequence of Korn’s inequality, provides us an equivalence
between the above norm on (2.2) and usual norm in 5 (see [12,13]).

Lemma 2.1 With the above notation we have that

(a) There exists a constant oy > 0 such that, for all (p, @) € H}l (2) x H}Z(Q),

o0 191y +1lolf] < | [Dlws + Dl
Q

1—pu _ _
=+ D <2> |1Py + (Px|2 + D,Lll/)x(py + D.“(Pylpx] dXdya

(b) Moreover, for every Ko > 0, there exists f(Kg) such that, for all K > K, and
(@, p,0) €77,

B(Ko)ll(@,w, @)l13 </Q [Klw + wy[*dxdy + K |@ + o,*dxdy + DJy|* + D|¢,|*

1— _ _
+D (2“> lpy + x> + Dy, + Dufpywx] dxdy.

Now, if we write U = (0, 0,9, y:,¢,¢,) and Ug = (wo, w1, 0,1, @o, ¢1)" then the
equations (1.1)—(1.9) can be rewritten as follows

dd—lt] =./U, fort >0, (2.3)
U(0) = Uy, (2.4)

where o7 : 9(f) « # — A is the operator defined by

0 I 0 0 0 0
Kqg -4y, X3y 0 Ka, 0
p1 P1 P1 P1
0 0 0 I, 0 0
M = 1 2 b
Ko, 0 %, 0 2(54)a o
0 0 0 0 0 I,
K D ( 1+ 2
-5, 0 2(HM)el, o %, 0
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where the operators %;(i = 1,2) are given by

=2 {?ﬁ N (1—#> ai] _K,
P2 2 P2
Difl—u\yn | K

B =—|[—== )2+ - =1,

? pz{<2>"+}] pr

Here I; denotes the identity operator, and

(/) = (H*(Q) N H}(Q)) x H)(Q) x (HX(Q) N H}(Q)) x H}.(Q) x (H*(Q) N H}(Q))
xHJ,(Q).

Our result on existence and uniqueness of solutions follows:

Theorem 2.2 The operator .o/ generates a Cy-semigroup S(t) of contraction on A . Thus, for
any initial data Uy € #, problem (1.1)~(1.9) has a unique weak solution U € C°([0, o), 7).
Moreover, if Uy € 9(o/), then U is strong solution of (1.1)~(1.9), i.e., U € C'([0,00), #) N
C°([0,0), 2()).

Proof It is easy to see that Z(./) is dense in . On the other hand, for U =
(0, W,p, W, 0, &) € D(/), a direct computation gives that

Re(AU,U)y = —d, / |W|? dxdy <0, (2.5)
Q

from which it follows that .o/ is a dissipative operator for d; > 0. Next, taking any
F =411 41, f%) € # we solve the equation

U =F. (2.6)
From (2.6), we can conclude that
W=f,L¥=p o=1. (2.7)
Substituting (2.7) into (2.6), we get
K(p + o)+ K(g +oy), = pif +dif', (2.8)
D (wxx - v+ 1 ;“wxy> —K(y + o) = pof*, (29)
D (lguwm + oy + lgﬂwxy) —K(@ + ) = paf®, (2.10)
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from where we can define the bilinear form af(-, -), with domain ¥~ x ¥, given by
a(@,0) =K /(u3 +ul)w3 +0l) dxdy + K /(uS + ui,)(v5 +v}) dxdy
Q
+D/uv3dxdy+D/ ;dxdy
D (L8 [ +ud)wd +03) dxd
—l'_ T Q(uy + ux)(vy + Ux) X y
+D,u/ u; v5 dxdy+D/1/ wv3 dxdy, (2.11)

where © = (u!,u,u’) and @ = (v!,0%,0%). It is not difficult to see that a(-,) is continuous
and coercive. Then, thanks to the Lax—Milgram theorem (see [6]), equation (2.6) admits
a unique solution U € 2(/). Therefore, we deduce that 0 € p(.&/), where p(./) is the
resolvent set of .«7. Then by the resolvent identity, for small 4 > 0, we have R(Al —o/) = H#
(see Theorem 1.2.4 in [14]). Finally, thanks to the Lumer—Phillips theorem (see [19],
Theorem 1.4.3), the operator .o/ generates a Cy-semigroup of contractions ¢ on #. []

We introduce the energy functional of equations (1.1)—(1.9). It is given by

1
B0 = 5 [ [l +palyl + palon + Kl + 0. + Ko + 0, + Dl

1—
+ Doy +D( 3

) lpy + o> + 2Duyy@,] dxdy, for t=0. (2.12)

It is immediate that the energy functional (2.12) is a monotone decreasing function of
the time t. Indeed, to see this we have the following Proposition:

Proposition 2.3 Let (w, wy, @, o, , ;) be the solution of (1.1)—(1.9). Then, the instantan-
eous rate of change of energy of the system with respect to time t is given by

;%Ea):-ul/‘mmzdmw <0, ¥t >0. (2.13)
Q

Proof As usual, we can find that if we multiply formally equations (1.1)—(1.3) by oy, y;
and ¢, respectively. Then using integration by parts, we obtain

d ‘
%dt / o dedy + / lw:|* dxdy -I- / | |* dxdy +K/ Y + 0y )y dxdy

+K /(q) + wy)wy; dxdy +K/(tp + o)y, dxdy + K /(q) + ), dxdy
Q

D /1— d
+——/wﬁw@+ /wﬁww+ Ll —/wﬁmw
2\ 2 ) a ),

1—u g
+ 5 < 2 ) /Q(wayt dxdy + 5 <2> /Ql[)y([)xt dxdy
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D /1—u\ d
+2 (=£ f/ ol dxdy+Du/ @y Wxe dxdy+Du/wxqoyt dxdy

—K/(w + ox)vioy dF—K/((p-i-wy)vzw[ dr
r r
l—p
—D i T((px+wy),<ﬂy +upx | - ve dl
1

1—
—D/ (Wx + 1oy, TM((Px + Wy)) vy dly = —dl/ \wt|2 dxdy.
2 Q
Thus, we arrive at

d
B o axdy+ 2 /w dxdy + 22 /|<p,| dxdy

+——/\w+w\|2dxdy+—d—/|(p+w}\ dxdy
1

165

Z4 2 zae 2 1—p\ d 2
+ 2Uh/lwxl dxdy+ T /Icoyl dxdy + 2( 5 )dt/9|%+‘/’x| dxdy

+ 2D,u/ Yy, dxdy — F = —d, / || dxdy.
Q Q
where % is given by

=K /(lp + oo, dIl + K /(q) + wy)va0, dI’

r r

l—p
+D : Wx + 1y, ——(@x +wy) | -viprdls
2

l—u
+D/ (2(¢x+wy),¢y+uwx> v dly.
Iy

Therefore, from boundary conditions (1.7)—(1.9), we obtain that # = 0 and then

d

—E(t) := —d; / || dxdy <0, Yt >0,
dt 0

since d; > 0. Hence, we obtain the energy dissipation law
E(t) < E(0), VvVt=0.
It is clear that if d; = 0, we obtain the energy conservation law

E(t) = E(0), Vt>0.

(2.14)

(2.15)

(2.16)

O

Remark 1 An important physical property of the energy of the hyperbolic systems says
respect to the positivity of the energy. In that direction, we note that E(t) = 0 for 0 < u < 1.
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Indeed, we have:

1
EU%=/{mmﬂ+ﬁmm”+mWﬁ+KWH%wF+KW+wﬁ
Q

2
l—p

+DuM2+Dwy”+D<2)WW+w#+2Dwu%

+Dqu”+D¢y”—meg?—D¢ﬂﬂdm@

1

= E/Q [p1|wt|2+P2|1Pt|2+,02|901|2+1<|1p—|—wx2+K|(p+wy|2
2 2 1_,“ 5

+ D(1 — w)(|wx|” + l@y|7) + D —+ vy + ol

'*D#wx+¢ﬂﬂ¢kdy>o, vVt > 0.

However, u is the Poisson’s ratio and then we take 0 < u < 1/2.

3 Lack of exponential decay

Our starting point is to show that the semigroup associated with the Reissner—-Mindlin—
Timoshenko system (1.1)—(1.9) is not exponentially stable if v} # v3 where v{ and v3 are

defined in (1.16).

To do this we will argue by contradiction, that is, we will show that there exists a
Sequence Of Values (;L'n) < IR With hmn"% |;L;1| = and Ul‘l = (wn’ VI/I‘!! Y, llln’ ()Dn’ ¢n), <
@(&/) for Fn = (fln’onsf3mf4n:f5n»f6n), < A such that

(Mnl - %)Un = Fy,

(3.1)

where F, is bounded in & but |U,| » tends to infinity. Rewriting the spectral equation
in terms of its components, we have

., D l—u 1+u K 4
l/Lann - nxx + <> ny + () nx, :| + - n + Wypyx) = ne
p2 LP 5 ) Wy 5 ) Py pzﬁp )

. 1
l/lnwil - Wn = fna

K
(Wn + CUnx)x -

i/ln VVn -
P1

K dq
(on + wny)y + EWn = frzw

o1
iﬂvnl,Un - gln = erH

M~n(pn - q)n = fs»

) D 1—pu 1+u K
17 @y — E |:<2> Pnxx T Quyy + (2> any:| + E(@n + wny) = r?

Now we are in a position to establish the principal result of this section.
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Theorem 3.1 Let us suppose that
vl —v3 0. (3.8)
Then, the semigroup associated with the system (1.1)—(1.9) is not exponentially stable.

Proof Let us take F, = (0, 2,0, 14,0, f8) with

’% = F? sin(d A1x) sin(d4,y),

4= F*cos(8,x)sin(812y),
f8 := F®sin(641x) cos(d72)),

n

where

nm . . P2
5L Jj=12, (nelN),

/1j=/1j,n = D

Here F?, F* and F° are constants that will be chosen suitably. Now, we define

I = \[22 4 22 (3.9)

Taking into account the above, the equations (3.2)—(3.7) can be rewritten as

_/lipla)n - K(Wn + wn‘c x §0n + wny)y + l/lndlwn = Plfn, (310)

1—
_}%.021%1 —D [wnxx + (2ﬂ> Ynyy + ( > @nx}} + K (pn + onx) = p2f33 (3.11)

, 1—
_/Lﬁpﬂ/)n —-D |:<2‘u> Puxx T Puyy + ( ) U)n‘cy:| + K (Pn + COny) pi;? (312)

Now, we choose

wn(x,y) = Asin(dA1x) sin(d 4, y),
Pu(x,y) = Bcos(d1x)sin(d4,y),
@n(x,y) := Csin(dA;x) cos(d4ry),

where A, B and C depend on 4, and will be determined explicitly in what follows. Note
that this choice is just compatible with boundary conditions (1.7)—(1.9). Therefore, the
solutions of system (3.10)—(3.12) is equivalent to finding 4, B and C such that

(=321 + K 6% (3 + 23) + iduds ] A+ K81 B +K8,C = py F2, (3.13)
KolA + {—iﬁpz—l—Dézﬁ—i-Dézi%—D <1;“) 623 ]B
1
+D ( ;“) 523175C = poF*, (3.14)
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1+p\ o, 2 22 22
KéAA+D — 0°2B+ | — A;p2+ DA + D" A

D (1 ;“) 8222 +K} C = p,FS. (3.15)

Choosing F?> = 0, F* = F® = 1 and taking account the definition of A, given by (3.9)
and ¢, we get

[—Ag (p1 —K%) + izndl} A+ KB +Kd),C =0, (3.16)
1 1
KoMA+ [—D < ;“) 5212 + } B+D ( ;”‘) 52312C = pa, (3.17)
1 1
K6JaA + D ( ;”‘) 5271/2B + {—D (;“) 522 +K] C=py  (3.18)

Solving (3.16), we obtain that A is

K6\ B+ KoiC

A=— . 3.19
=32 (p1 — K &) + idnd (3.19)
Substituting (3.19) into (3.17) and (3.18), respectively, we arrive at
1
[(-D (;’“) 5212 +K) (—/lﬁ (p1 —K%) + iindl) —Kzéz/ﬂ B
1
+ [(D (;“) 52;@2) (—/1,3 (p1 —K%) + i/lndl) —K%szmz] c
_ 2 P2 .
= p2 [ (o1 —K22) + ] (320)
and
p (18 520, (=72 (1 = K22) +i20ds) — K324 | B
2 " D "
B T+u\ o0 2 P2 . 25292
+{< D( : )M +K) (=2 (m KD)—HA,,dl) K26%22| C
o =2 — kP2 1
_pz[ )2 (p1 KD) +1)V,,d1}. (3.21)
Note that the system (3.20)—(3.21) can be rewritten as
pB+yC =, (3.22)
yB+0C =, (3.23)
such that its solutions is given by
rf—v) c_"B—v) (324)

T po—y T BO—y7
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where
B = ( D <1+“> 2/1§+K) (=7 (1 —K2) + 200 —Kzazxﬂ,
0= ( D (1 ;“) 2/1%+K> (=72 (o1 —K2) +idaar) —szg} ,
)= (D (1 er“) 5241) ) (=72 (01 —K22) + i) —Kzazmz} ,
r=p |7 (o1 —K2Z) +itud |

Thus, we have for B and C the following explicit expressions

L (=D (552) 822 + K) (=22 (o1 = K'3) + izadh) — K26°73
K (=p173 + i2ady) (=D (Tﬂ) 623 +K)

p2 (=D (552) 822100 ) (=22 (p1 = K§) + idaddy) — K202 |
- , (325

( p1)n + l/“ndl (_ %) 52/b2 +K>

and
L (=D (52) 23+ K) (=22 (o1 = K'3) + i2adh) — K26°3]
K (=p173 + i2ady) (=D (Tﬂ) 623 +K)

[( (151) 822102 ) (=72 (o1 = K1) + idudr) — K262 7a) |
(326

K (=17 + izadr) (=D (52) 0222+ K)

Substituting B and C given by (3.25) and (3.26) into (3.19), we get
0p2 (A4 + 42)
A=A 3.27
(—p1/2 + iddy) (3.27)
From (3.25)—(3.27), we can conclude that
A0, (3.28)
LiL,+ L3\ p2 (p1 p2
B (m v ) o (x-5) (3.29)
LiLy+Li\ p2 (1 p2

C - (L% v > - (f - B) , (3.30)

when n — oo, where L; is the length of interval [0, L;], for j = 1,2. Since

an = i/anJna
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then using the definition of ||U,||» and hypothesis (3.8), we have
1Vl > p2 [ 12 Pavdy
= o [ Vi dxdy
Q

= p> / |4nB cos(841x) sin(872y)[* dxdy
Q

L,L,

= p2 7Bl i

— 00 asn— 0. (3.31)

Therefore, applying the Theorem 1.1 we conclude that the semigroup S(t) associated
with the system (1.1)—(1.9) has lack of exponential decay. O

4 Asymptotic stability

In this section, we will show exponential decay as well as polynomial decay using the
semigroup associated with the Reissner—Mindlin-Timoshenko system (1.1)—(1.9) according
to a dependency between the speeds of wave propagation.

In order to show exponential decay from semigroup associated with the Reissner—
Mindlin-Timoshenko system (1.1)—(1.9), first let us consider the product in J# of U =
(0, W,p,¥,0,®) € 9() with the resolvent equation of .7, that is

i2|U[)% — (U, U)y = (F,U)y.

Then, taking the real part and using inequality (2.5), we obtain
& [ WP dxdy < |[UlLrl1FlLr. (4.1)
Q

We will show that the resolvent is uniformly bounded over the imaginary axis. Thus,
we state the following lemma.

Lemma 4.1 With the above notation, we have
iR = p(F).
Proof Since (I —.«/)~! is compact in #, to check that iIR < p(.«7) it is sufficient to check

that ./ has no purely imaginary eigenvalue. Suppose that there exists /o € IR* such that
iZ9 is an eigenvalue and U = (w, W,yp, ¥, ¢, ®) is a normalised eigenvector, that is

LU =ilU.
Thus, we get

ilow — W =0, (4.2)
ilop1tW — K(p + oy)x — K(¢ + wy), +diW =0, 4.3)
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iop — ¥ =0, (4.4)
ilop2¥ — D (wxx + 1_T“wyy + lerHq)xy) +K(p + o) =0, (4.5)
ilop — P =0, (4.6)
a0 =0 (Frout o+ 3 0y ) tKlo T o) =0 @)

Therefore, from (4.1) with F = 0 we conclude that W = 0. Then, from (4.2) we get
o = 0. Now, from (4.3), (4.5) and (4.7) and using Korn’s and Poincaré’s inequalities we
can conclude that y = ¢ = 0. Finally, using (4.4) and (4.6) we have that ¥ = & = 0. This
implies that U = 0. But this is a contradiction, therefore there is no purely imaginary
eigenvalues. ]

In particular this result implies that the semigroup is strongly stable, that is
S(t)Up — 0,
where S(t) := ¢! is the Cp-semigroup of contractions on Hilbert space # and Uy is the

initial data.

4.1 Exponential decay

Here, we will prove that the Cy-semigroup associated with the Reissner—Mindlin—
Timoshenko system (1.1)—(1.9) is exponential stability if and only if

v} =103,
where v} and v} are given in (1.16). To do this, let us consider the resolvent equation

iWU—oU=F in#, (4.8)

which can be rewritten in terms of its components as

ifo—W = fl, (4.9)
iiplW_K(IP'f’wx)x_K((P'*'wy)y+d1W:f2, (4.10)
iy —¥ =f3, (4.11)
By 1— 1+

l/bpzlll —D <wxx + T’uwyy + 2’“{ny> +K(w + wx) = f4y (412)
ilp—®=f>, (4.13)

) l—u L+ p 6
ilpy® —D T@xx‘}'(/’yy‘i‘TIny ‘I‘K((P‘l‘wy):f 5 (4.14)

where F = (f1, 1% 3,4 . % € # and U = (0, W,p, ¥, 0, ®) € Z(</). Note that for
simplicity in our calculations we put pif> = f2, pof* = f* and p,f® = f9.
We will use a series of lemmas aiming to reached the exponential decay.
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Lemma 4.2 There exists a positive constant M such that any strong solution of system
(1.1)—(1.9) satisfies

K K
—/\w+wx\2 dxdy+—/|<p+wy|2 dxdy < Cy /w dxdy
2 Q 2 Q Q

1 _
+ / o, dxdy + (“) / oy + oxl? dxdy
Q 2 Q

+ [ woydsay + [ wpap, dxds] + MU, (4.15)
Q Q
where Cy is a positive constant.

Proof Multiplying equation (4.10) by @ and integrating on Q, we get

i2p1 / W@ dxdy —K /(w + wy)x® dxdy — K /(qo + w,), o dxdy
Q Q Q
—_————
Z=11

+d, / W@ dxdy = / @ dxdy.
Q Q

Substituting w given by (4.9) into I; and integrating by parts, we get

—p1 / W(f! 4+ W) dxdy + K /(1,0 + o)y dxdy
Q Q

+K /((p + wy)o, dxdy — K / (v + wy)ovy dIl
Q r

—K/((p—i—wy)avz ar +d1/ W@dxdy=/f26dxdy,
r Q Q

from where it follows using the boundary conditions (1.7)—(1.9) that

K/hp—f—a)x\z d>cdy—|—K/|(p—}-cuy|2 d><cly=p1/|W\2 dxdy
Q Q Q

+K/(w+wx)¢dxdy+l</(<p+a)y)¢dxdy+p1/ Wl dxdy
Q Q Q

Z=12
—d / W@ dxdy + / @ dxdy. (4.16)
Q Q
N ——

2=13
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Using Lemma 2.1, we have that
K K K K
Izs—/|w+wx|2 dxdy+—/\w\2 dxdy+—/\<p+wy|2 dxdy+—/|<p\2 dxdy
2 Jo 2 Jo 2 Jo 2 Jgo
K K
s—/|w+wx|2 dxdy—l——/\qo—i—wy\z dxdy
2 Jo 2 Jo
C 2 2y (L=n 2 T @, dxd 4.17
+ C Q\wxl +loyl” + 5 [y + @xl” + 1py Py + wps@, dxdy|. (4.17)

In addition, we have

di

Iy < = [ IW|IW + f!] dxdy
141 Jo
< 4 |W | dxd d 1
< y + \WIfY| dxdy. (4.18)
121 Jo [4] Jao

Substituting I, and I3 into (4.16), we get

K K d
5 Lwrotad S [ovolad< (oo ) [y
2 Ja 2 Jo 141 ) Ja
2 2 1—u 2 _ _
+Ci Q\wxl oyl + { =5 ) vy + oxl” + 1oy + 1ps, dxdy

+d71 |W\|fl\dxdy+/fzwdxdy.
4] Jo Q

From the above inequality and from (4.1), we conclude that there exists a positive
constant M such that

K K
f/lw—i-wxlz dxdy—%——/lgo—}-wy\z dxdy
2 Jo 2 Jo

1—u _ _
<C [/Q el + oy + (2) Wy + @xl* + 1oy P, + 1ps®, dxdy

+ MI|U|l||Fll,
from where our conclusion follows. The proof is now complete. O

Lemma 4.3 There exists a positive constant M such that any strong solution of system
(1.1)—~(1.9) satisfies

. / P2 dxdy + ps / 2 dXdJ’<C2{ / pal? dxdy
Q Q Q

1_
+D/ @7 dxdy + D <”> / py + x| dxdy
Q 2 Q
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K
+Du/ Py Py dxdy+Du/ [INGR dxdy] + 3/ [y + o|* dxdy
Q Q Q

K
+%5 [0+ 0, dxdy+ MUl IFlLr. (419)
Q
where C, is a positive constant.

Proof Multiplying equation (4.12) by i and integrating on Q, we get

Mpz/ Yy dxdy —D/ Yo dxdy — D (1—;1) / Yy, P dxdy
Q Q 2 Q
[ S ——

Z=[4

1—
—D <2ﬂ> / PP dxdy _D.u/ PP dxdy
Q Q

+K / (p + ) dxdy = / 4 dxdy.
Q Q

Substituting y given by (4.11) into I and integrating by parts, we get

—Pz/ Y’(f3+‘1’)dxdy+D/ lpl? dxdy
Q Q

1— -
+D (“)/wz dxdy—f-D(’u)/(pxwy dxdy
2 Q 2 Q

+D,u/ QP dxdy—l—K/(lp + Wy )P dxdy
Q Q
1—u _
-D ’ wx+uqoy,T(qox+wy) vip dl;
2

- / £ dxdy,
Q

from where it follows using the boundary conditions (1.8)—(1.9) that

o / ¥ P dxdy = D / sl dxdy
Q Q

1— 1—
+D K / \wy\z dxdy + D K / ¢x P, dxdy
2 Q 2 Q

i [ o, dvdy +K [ (0407 dsdy
Q Q

—ps / V3 dxdy — / 4 dxdy. (4.20)
Q Q

On the other hand, multiplying equation (4.14) by @, integrating by parts on Q, using
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(4.13) and finally using the boundary conditions (1.8)—(1.9), we get

Pz/ |®|* dxdy = D/ |oy|* dxdy
Q Q
1— 1—
+D <M> / |ox|* dxdy + D (“) / Yy @y dxdy
2 0 2 0
+Du/ Y@, dxdy + K /((p—i—wy)@ dxdy
Q Q
—p2/ of3s dxdy—/fﬁa dxdy. (4.21)
Q Q
Summing the equalities (4.20) and (4.21), we arrive at
pr |10 dxdy+pa [ 0P dvdy =D [ i avay
Q Q Q
1—
+D/ |y [* dxdy + D (”) / ) + ¢xl* dxdy
Q 2 Q
+ Du/ ¢y, dxdy +Du/ Py, dxdy + K /(lp + wy )P dxdy
Q Q Q
+K/(qo+wy)¢ dxdy—pz/ P 3 dxdy—/f‘*w dxdy
Q Q Q

— P2 / OfS dxdy — / 1@ dxdy. (4.22)
Q Q
Substituting (4.17) into (4.22), we get

o2 [19F axdy+ps [ o7 dxdyscz[ [ ol s
Q Q Q
1 _
+D/ @y |? dxdy + D (’“‘) / 1, + @y dxdy
Q 2 Q
_ _ K 5
+Du | @y, dxdy +Dp [ @, dxdy| + ) [ + wy|” dxdy
Q Q Q
K 2 dxd 3 dxd v dxd
t5 lp +wyl”dxdy —py | Wfdxdy— [ f"p dxdy
Q Q Q
—p / ®fS dxdy — / 1% dxdy,
Q Q
from where we can conclude that
oo [197 asdy+ps [ o7 dxdy<cz[ [ ol asas
Q Q Q

1_
+D/ gy |? dxdy + D (“) / lpy + @ dxdy
Q 2 Q

https://doi.org/10.1017/50956792515000467 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792515000467

176 A. D. S. Campelo et al.

K
+ Du/ ¢y dxdy + Du/ [INGH dxdy} + 3/ lyp + oyf* dxdy
Q Q Q
K 2
+ 5 | 1o+ oy"dxdy + M||[U|L#|IFlle-
Q
The proof is now complete. ]
The next lemma gives the important relation between the coefficients of the Reissner—
Mindlin-Timoshenko for obtaining the necessary and sufficient condition for exponential

stability of system (1.1)—(1.9).

Lemma 4.4 There exists a positive constant M such that any strong solution of system
(1.1)—(1.9) satisfies

1_
D{ / ol dxdy + / oy dxdy + (”) / 1y + oxl? dxdy
Q Q 2 Q

+ ,u/g P, dxdy + /Q Yxo, dxdy}

Dpy
< |4 ’K —p2

/Q (W | [wx + @y| dxdy + M|[U||L¢||Fl|.¢. (4.23)

Proof Multiplying equation (4.12) by oy, integrating by parts on Q and using (4.11), we
have

iipz/ Yoy dxdy +D/ Py Wy dxdy
Q Q
1— 1—
+D <ﬂ> / P, Oy, dxdy + D (,u) / QxDyy dxdy
2 Q 2 Q
+ D.u/ ¢yOx dxdy + K /(w + Wy )0y dxdy
Q Q
1—u _
—D ; R (px +vy) ) -voo, dI
= / 4o, dxdy. (4.24)
Q

On the other hand, multiplying equation (4.14) by @,, integrating by parts on © and
using equation (4.13), we obtain

1—
iipz/ Pw, dxdy + D (,u) / OOy dxdy
Q 2 Q

1—
+ D/ @y, dxdy + D 4k / Py Wy dxdy
Q 2 Q

+ D,u/ Py 0y, dxdy + K /(q) + wy)o, dxdy
Q Q
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1—u _
—D g T((px + ), 0y + ppx | v, dIl

= / fS@, dxdy. (4.25)
Q

Summing up the results and taking into account the boundary conditions (1.7)—(1.9), it
follows that

i)upz/ Yo, dxdy-}-iipz/ Pw, dxdy
Q Q

+D/ PxDxx dXdy +D/ (wayy dxdy
Q Q

:=14

1— 1-
+2D bl / Py Wxy dxdy +2D R / PxDxy dXdy
2 Q 2 Q )

+ D:u/ @y Dxx dXd_V + D,U/ Px®Dyy dxdy
Q Q
K [+ oo sty +K [0+ 0,0, dxdy
Q Q
= / 4o, dxdy + / féwy dxdy. (4.26)
Q Q

On the other hand, from (4.10) we have

iy /Q Wy + ¢,) dxdy — K /Q (FF B dxdy
K [ GF @, dvdy =K [ @F o), dxdy
—K /Q(m)yq)y dxdy + d; /QW(IPx + ¢y) dxdy
- /Q P+ 0y) dxdy,
from where it follows that
K / POy dxdy + K / @0,y dxdy
Q Q
——itp1 [ Wipo+ o) dsdy =K [ . dxdy
K [ I dxdy =K | @G0, dxdy
K [ @F @) v dsdy+d | Wi+ ,) ddy

— /Q A(px + o)) dxdy. (4.27)
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Substituting (4.27) into I4, we can rewrite (4.26) as follow
iipz/ Yo, dxdy + i)»pg/ Pw, dxdy
Q Q
D, — 2
— = |itp1 | W(px+ @y)dxdy + K [ [y« dxdy
K Q Q
+K/ |¢,y|2 dxdy + K /(w + wy )@y dxdy
Q Q
+K [(@Fo) e dsdy—dy [ Wiy, + ) dxdy
Q Q
_ 1—
+ / s + o)) dxdy} +2D (2M> / P, @y dxdy
Q Q
1—pu _ _
+2D | —— QxOyy dxdy + Dy | @ @y dxdy
2 Q Q
+ D,u/ Px0yy dxdy + K /(w + wy)oy dxdy
Q Q
+K /(go + wy)o, dxdy = / Yo, dxdy + / fb@, dxdy,
Q Q Q

from where it follows that

iipz/ Yo, dxdy—l—iipz/ Pw, dxdy
Q Q

=I5 =lg

D _
—izﬂ/ W(wx+<,0y)dxdy—D/ lpl? dxdy
K Q Q
—D/ oyl dXdy_D/(UJ"'wx)x(Py dxdy
Q 0
- 1—
—D/Q((p + wy),px dxdy + 2D (2H) /Qtpywxy dxdy
1 —
+ 2D _k /q)xwxy dxdy—l—D,u/qoywxx dxdy
2 Q 0
—|—D,u/ Py Dy dxdy+K/(1p+wx)6x dxdy
Q Q

diD [ —
K [ (oo, ddy+ 52 [ Wip,+0,) dxdy
Q Q

= B/F(wwr(py) dxdy+/f4ax dxdy+/f66y dxdy.
K Jo o o

Substituting @ given by (4.9) into Is and I, we have

Is +I6=p2/W'Px dxdy+p2/W@y dxdy
Q Q

I:I7 Z:Iz;

+ pz/ ¥, dxdy + p> / F@y dxdy.
Q Q
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Substituting ¥ given by (4.11) and @ given by (4.13) into I7 and Ig, respectively, we get
Is+1g = ilp> / W(px + @) dxdy — p; / w(f? —i—ff,) dxdy
Q
— pz/ Iy dxdy — pz/ le,@ dxdy. (4.29)
Substituting (4.29) into (4.28) and after simplifications, we get
D/ lp|? dxdy + D/ lpy|? dxdy + D/ P, ¢x dxdy + D/ .y dxdy
Q
=il <p2 - ) / W(py + ¢@y) dxdy —i—K/ Y + wy)oy dxdy
+K / (¢ + wy)o, dxdy + — / W(py + ¢@y) dxdy
Q K Q
D [ —
2 [Pt o axiy— [ o asay = [ fw, axiy
—ox [ W+ 1) dxdy—pa [ 71 dsdy—pa [ i sy, (430)
from where it follows that
1—
D [t dxdy+D [ 1o axdy+D (<5) [, + ol dxdy
Q Q 2 Q
+Dp / PPy dxdy + Dp / Yy @, dxdy
Q

1—
=i (p2= 22 ) [0+ o avdy 40 (51 [, = o dxty

+K / (v + ooy dxdy + K / (@ + @)@, dxdy
Q Q

:=Ig

aiD [ D [ —

+ 17/ W(wx + ¢y) dxdy — X / f2(px + @y) dxdy
Q Q
— / Yo, dxdy — / f66y dxdy
—ox [ WU+ 1) dsdy—pa [ 71 dsay—ps [ T dxay. (431)
Noting that
Iy = pl/ |W ? dxdy+d1/ 140} dxdy+p1/ Wt dxdy—i—/fzw dxdy
Q

<p1+|) )/W dxdy+/f2wdxdy+<pl+;|)/|W|f | dxdy,

and using Lemma 2.1, our conclusion follows. Therefore, the proof is now complete. []

Now we are in the position to prove the main result of this paper.
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Theorem 4.5 The semigroup associated with the Reissner—Mindlin—Timoshenko system
(1.1)~(1.9) is exponentially stable if and only if v} = v3.

Proof From Lemmas 4.2-4.4, we can conclude that

1UII3% < MIIU|l|IFllx YU € 2(),

from where we obtain
|U|l» < M, YU € 2(A).

Using Priiss’s result [20], the conclusion of the theorem follows. |

4.2 Polynomial decay
In this section, we will show that in general the Reissner—Mindlin-Timoshenko system

(1.1)—(1.9) goes to zero polynomially as 1/\/3

Theorem 4.6 Let us suppose that v} — v3 # 0. Then, the semigroup associated with the
system(1.1)—(1.9) is polynomially stable and
1
1S Uollr < TﬁlonH@(.ﬂ/)- (4.32)

Moreover, this rate of decay is optimal, in the sense that decay must be slower than =
for any € > 0.
Proof We note that, by using Young’s inequality, the following inequality holds

1
2]

yi
/Q W[y + ¢y dxdy < %/ﬂ |W|? dxdy + /Q [y + @, |* dxdy, (4.33)

for |4| > 0. On the other hand, from Lemma 4.4, we get

D
[ ot o, sy <121 2= pa| [ Wi+ 0,1 ddy + CullUILe Lo
AP D 2 1
< ‘2| Kpl—pz‘ /IW\zdxdy+§/|wx+wy\2dxdy
Q Q

+ Col[Ul[1F s

which implies that
1
3 [es ko dxdy < QR [ IWE dsdy+ CIUILAFILe @34
Q Q

where C;, C, are positive constants. Substituting (4.34) into (4.33), we obtain

A C
L Wity -+ oyt dxdy < 5 [ 1w asay+ cula [ 1w dsdy+ 2V I
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Then, using (4.1) we have that

G

|MIIU\I%IIF\IM- (4.35)

/Q Wilp + ¢y dxdy < CalAlI[UL#lIFllx +

Combining the Lemmas 4.2-4.4, we obtain that there exists a positive constant M; such
that

U113 < Mil2P1UL#|[FLr,

for |A| > 0 large enough. Therefore, we get

1

WZHUHJ// < Mi||F||,

which is equivalent to
(AL — )M o) < My 217
Then using Theorem 2.4 in [5], we obtain
My
N

Since 0 € p(«7), it follows that .o/ is onto #, then taking /U, = F, we get

1S/ Nl o) = OC?) = 1S | o) <

M,
[[S(H)Uollw < jﬂUng(M/),
completing the first assertion of this theorem. To prove that the rate of decay is optimal,
we will argue by contradiction. Suppose that the rate t~/2 can be improved. That is to
say, that the rate is ~7= for some 0 < € < 2. From Theorem 5.3 in [7] the operator

A5 — ) 20

should be limited, but this does not happen. For this, let us suppose that there exists a
sequence (4,) < IR with lim,_, |4,] = o0 and (U,) < 9(«Z) for (F,) < # such that

('] — /)U, = F,.
Then, we can consider
F, = (0, F?sin(8;x) sin( 22y), 0, F* cos(d 21x) sin(842)), 0, FO sin(d 21x) cos(d22y))

for each n € IN, with F2 % 0, F* £ 0, F® % 0 constants, where 1; = b =40 = B
and U, = (wn, Wy, Yy, Y, @n, ). Moreover, we choose

wy = Asin (041x)sin (04,y),
P, = Bcos(dA1x)sin (04,),
¢@n = Csin(d41x)cos (042)).
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A=A, = \/)L%—i—)%:(ﬂ(n), Vn € IN,

and proceeding as in the proof of Theorem 3.1, we can conclude that

So, choosing

_ote .
| Anl +2||UnHJf =0 (nz) — 0,

as n — oo. Therefore, the rate cannot be improved and the proof is now complete. O

5 Numerical approach

In this section, we consider a numerical scheme using finite difference and we reproduce
numerically the analytical results established on exponential decay for the Reissner—
Mindlin-Timoshenko system. We present a numerical method consistent of second order
in all mesh parameters and ensuring naturally decay of energy like obtained in the
previous sections.

We are concerned mainly with the lack of exponential decay according with the speeds
of wave propagation v? and v3. More precisely, if (3.8) holds, then the dissipative system
of Reissner-Mindlin-Timoshenko treated here is not exponentially stable. Otherwise, we
get the exponential decay of solutions.

5.1 Fully-discrete scheme in finite differences and properties

Given I,J,N € IN we set Ax = Ay = 1 and At = {77 and we introduce the nets

1+1’ W
Xo=0<x;=Ax < - <xy=14Ax<xj41 = + 1)4x = Ly, (5.1)
=0<y=dy<---<y;=JAy <x;41 = + )4y = Ly, (5.2)
to=0<t;=At<---<ty=NAt<tyy1 =N+ 14t =T, (5.3)

with x; = idx, y; = jdy and t, = ndt for i =0,1,2,...,1 +1, j=0,1,2,...,J 4+ 1 and
n=0,1,2,....,N+ L

Taking an explicit scheme using finite differences, our problem consists of finding
(o], i @7 ;) satistying the following numerical scheme:

piadty = Kaa0l + K O 0 1 k30,00 + k0 F D gn 0, 0 0 (s4)
P80t = DBDY, +D1 10,0+ D JZ”‘ (ay er@ a“;a") 3

— %(wﬁu/z,j + i Ve T W) — K O ;éx o} (5.5)
p20.0:9}; = D3,0,¢]; + Dl_Tﬂéxaxq)ﬁj +p? er K (a"’ ;éx O szay> n

B g(“”?ﬂ/z,j T @il T i T Qi) —K % ';Ey D js (5.6)
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for all i = 1,2,...,1 j = 1,2,...,J and n = 1,2,...,N. To simplicity our numerical
calculations, we consider the homogeneous boundary conditions given by

wh; = of = U=l =0, Yn=12,..,N, (5.7)
Vo =i, = W=l =0, ¥Yn=12__N, (5.8)
qo&_i=qo;’+1’j=go}“70=go;f”1 =0, VYn=12,...,N, (5.9)

and initial conditions given by

of; = 0(x1,y;,0), 0 = o) + dtw(x;,y;,0), Vi=1,...1j=1,...J, (5.10)

wl = p(xuyin0) wl =l + Atp(xi,5,0), Vi=1...1j=1..1J, (5.11)
(P?,J = QD(xianaO)a (pzl,j = (ng +At(pl(xiayj70)n Vi= 19"'919j = 15"'5‘]' (512)

The numerical operators used in (5.4)—(5.6) are given by

ol —ot ol'. — ", . ol . — ot _
e, = i+1,j oF on = i—1,j Sl = i,j+1 i,j n
ol =—2 2§ =—2"> do =" 35w
Wi Ax Wi Ax y@ij Ay yDij
n n n+1 n n n—1
i T Dij no_ Qij T @i =, i @i
o: 7, a[wii — 7’ atwl‘i — 7,
Ay > At > At
" n n ~ n n A
Ox + 0y , Wi —Wi_; 0, +0, , Wiy — Wi 0, +0 ,
o = , o = , o}
2 ’ 24x 2 ’ 24y 2 i
n+1 n—1 n n n
O T p L Ohg 20l ol o "
At » UxUxWij - Ax2 > YYEYHL]
n n n n+1 n n—1
Opj — 2005 o 0 — 200+ of
= a a ;. =
. Ay2 s Vil i,j Atz >

with the same approximations to the functions p and ¢ on the mesh. Here, we are
denoting by o7}, ¢}; and y}; the numerical approximations of the exact solutions , ¢ and
y, respectively, evaluated on the mesh. More precisely, we have w}; ~ a(x;, yj, tn), wi; =
Y(xi, yj, ta) and @}; = @(xi, yj, tn). Also W—uz,j and ‘Pz"1+1/2,j denote the average of y}; at
the points (Xi_1, Y, tn), (Xi, Vj, tn) and (Xit1, y;j, ta), (Xi, j, tn), respectively. Similar meanings
hold for Viisin and Yiie1a

The numerical scheme presented here is explicit and its computational implementation
requires knowledge of the approximations at time level t, and ¢, in order to approximate
the numerical solutions at time level ¢,,1. We note that the proposed scheme (5.4)—(5.12) is
consistent with the problem studied. In particular, the stability criterion in one-dimensional
case obeys a relation between the time step At and the thickness h (see [24,25]). It is
expected that for the two-dimensional case a similar relation prevails but the proof is still
to be done. However, for the purposes of numerical convergence, we fix the thickness h
and we choose At < Ax for Ax = Ay.
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5.2 Discrete energy

In this section, we prove that the numerical scheme (5.4)—(5.12) has a property of numerical
consistency that preserves the instantaneous rate of change of energy according with
Proposition 2.3. With this aim in mind, we present a first property concerning the total
energy of discrete system (5.4)—(5.12).

The total energy to the numerical equations (5.4)—(5.12) at the time step ¢, will be
computed using the expression

1 J n+1 n 2 n+1 n 2 n+1 n 2
AxAy ©ij i Wij Wi Pij P
En :: 2 3, 5 g2 3, o,
2 ZZ[’”( At Nz At Nz At

i=0 j=0

n+1 _ n+1 n N | n+1 _ n+1 n o
Vit = Wiy Wik TV D(l—#) Vi1 ~ Wi Wijr1 — Vi

D
+ Ax Ax 2 Ay Ay

n+1 n+1 n n n+1 n+l n n
L= p\ Pirj = Pij Pivrj = Pij | Pt = Pij Pijrt — P
+ D +D
2 Ax Ax Ay Ay
n+1 n+1 n+1 n+1 n n n n
Wiy @i Wi T Wi Wit — @Oy, Vi, T Wi
+K + +
Ax 2 Ax 2

n+1 n+l  n n
Vijr1 T Wi Vij + Wi
2 2
n+l _ _n+l n+1 n+1 n n n n
+K (wi,j-lrl Pij_ Pijer TP ) (wi,j+1 — oy Pyn t ‘Pi,j>

J
Ay 2 Ay + 2

+K

n+1 n+1 n n
Pivr; T @i Piv1;t+ Qi

2 2
n+1 __ it n ol ntl __ . ontl pn _.n
4D (1 + H) (wi+1,j+1 Yij Qitrj+1 — Pij n Vij+1 — Vitrj Piv1; — Pijm

+K

2 24x 24y 24x 24y

n+1 _ ol on __aph n+l _ ontl oon __aph
4 Pt iy Vit TV Qi — iy Yiv ‘PiJHN

24x 24y 24x 24y (513)

We note that E" is the discrete version of the continuous energy (2.12). This total energy
built from discrete system (5.4)—(5.12) is free from any over-estimation on the mesh size
Ax and Ay. In that direction, our discrete system avoids a numerical anomaly known as
locking phenomenon on shear force. To guidance of the reader, see Almeida Junior [1]
and references contained therein.

Moreover, one can show that E" decreases for d; > 0 and that it is constant for d; = 0.
Instead of computing the time derivative of the energy we can use the summation by
parts.

Next, we establish the discrete counterpart of the Proposition 2.3.

Theorem 5.1 (Discrete energy) Let (o}, @i, yi;) be a solution of the finite difference
scheme (5.4)—(5.12) with dy > 0. Then for all At, Ax and Ay, the discrete rate of change of
energy of the numerical scheme (5.4)—(5.12) at the instant of time t, is given by
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En _ gr1 I n+1 CUn 1\ 2
:_dlzz( 2) <o (5.14)

i=1 j=1
foralln=1,...,N,N + 1.

Proof The proof is too long and we omit it here. Analogously to continuous case, we
use the multipliers at discrete level given by (4% sk op), (ot era‘ (p”) and (a‘;”af y};) and we
organise the results in order to make up the d1ﬂerence E" — E"! O

5.3 Numerical simulations

In this section, we focus on the numerical scheme (5.4)—(5.12) and its energy E" to
illustrate by means of the numerical experiments the analytical results established in
previous sections. We emphasise that we are not concerned with issues of numerical
convergence between exact solution and numerical solution and the respective rate of
convergence.

Taking into account several numerical experiments by using the discrete energy E”,
we get the exponential decay as well as the lack of exponential decay according with
the relationship between speeds of wave propagation vi and v3. In that direction,
a measure of the numerical consistence of the numerical scheme (5.4)—(5.12) can be
seen through the energy conservation law. Indeed, for d; = 0 in (5.14) we obtain that
E'=E% n=1,....N+1.

In our numerical experiments, we use the following data: Ly = L, = 1, T = 4 and
thickness h = 0.015. In the initial conditions, we assume that

o(xi, ¥j,0) = p(xi, ¥, 0) = @(x1,;,0) = 0, (5.15)

0i(x;,y;,0)=0, Vv elN, (5.106)

yi(xi,,0) = cos vE sin vw , VvelN, (5.17)
Ly L,

(i, 1), 0) =sin (v ) cos (v22), Wy e IN. (5.18)
L, L,

In the computational mesh, we use 4x = Ay = 0.03125 and 4t = 0.00195 such that
At/ Ax = 0.0624.

5.3.1 Undamped and full damped cases

Here, we consider the Reissner—-Mindlin-Timoshenko system (1.1)—(1.9) in two physical
situations: undamped and full damped cases. For the full damped case, we consider three
frictional internal dissipations into the system, this is, we introduced the terms djw;, d,y,
and d3@,, for di, d, and d3 to be positive constants.

In both cases, we have used different speeds of wave propagation.

Comments 1 For a better comparison between the results of decay, we normalise the nu-
merical energy by the initial energy, i.e., we define E" :== E"/E°.

https://doi.org/10.1017/50956792515000467 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792515000467

186 A. D. S. Campelo et al.
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FiGUure 1. Undamped case.
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FIGURE 2. Undamped case.

We can see from Figures (1)—(2) that the discrete energy E" is constant for all discrete
time t, and this numerical behaviour is a measure of the precision of our numerical scheme
(5.4)—(5.12). That is to say, the energy conservation law (2.16) and its discrete counterpart
are qualitatively in agreement. On the other hand, Figures (3)—(4) show that the energy E"
is like an exponential function e~ for w > 0, i.e., in the full damping case the discrete
counterpart of the Reissner—Mindlin—Timoshenko system is exponentially stable independent
from relationship between vi and v3. The similar result in infinite dimensional was not in-
cluded in our analysis, but it is not difficult to obtain this result by using for example the
energy method.
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Behaviour of energy: v=20

1 T T T T T T T
Full damping

FiGure 3. Full damped case.

Behaviour of energy: v=30
1 T T T T

Full damping

FIGURE 4. Full damped case.

5.3.2 Damping only on transverse displacement

Here, we show the numerical experiments concerning the main result of this work. In
particular, we consider the initial data (5.16) equal to zero. The following are the results
of our simulations.

Comments 2 The Figures (5) and (7) represent a decay more slowly of the numerical
solutions when speeds of wave propagation are different (see Theorem 3.1). This case is
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Behaviour of energy: v=20
1 T T T
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FIGURE 5. v? # v3.

Behaviour of energy: v=20
1 T T T

0.9 |
08} ;
o7l . : : , , |
n

Eost 1

0.4} .

0.2 i

0.1

FIGURE 6. v? = v3.

more realistic from physical point of view. In the right hand side, Figures (6) and (8), one
has reproduced the exponential decay according with Theorem 4.5.

By comparison qualitative between Figures (5) and (7) and Figures (6) and (8), the lack
of decay exponential can be seen as a typical behaviour of polynomial decay in accordance
with the analytical results established in our mathematical analysis. For the same data of
the simulations, the graphics have changed of exponential to a curve next of a straight
line.
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Behaviour of energy: v=30
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FIGURE 7. v} # v3.

Behaviour of energy: v=30
1 T T T

25 3 3.5 4

FIGURE 8. v? = v3.

5.3.3 Comparison between two damping cases

Here, we present a comparison between two damping cases: the full damping and the
damping on displacement function. In the figures below, we consider the relationship
between the speeds of wave propagation only in the case of an only damping (on
displacement function). On the other hand, in full damping case, we consider the speeds
are different.

Comments 3 These figures illustrate the important of the speeds of wave propagation v?
and v3 in order to obtain the exponential decay of the Reissner—Mindlin-Timoshenko by
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Behaviour of energy: v=20
1 T T T T T T

Full damping
d,>0 R

FIGURE 9. Exponential curves.

Behaviour of energy: v=25
1 T T T T T T

Full damping
0.9 d,;>0 R
0.8 ]
3 3.5 4

Figure 10. Exponential curves.

considering an only damping. The Figures (9)—(12) contain two exponential curves. The
exponential curve in blue colour represents the full damping case where v} + v3 and the
curve in red colour represents the exponential decay according with relationships v} = v3.
Therefore, looking for our analytical results established in previous sections and also for
the several results studied on literature on stabilisation of the plates and beams, the same
exponential decay (full damping case) can be obtained by taking into consideration an only
damping and taking into account the equality v} = v3. All numerical results presented here

are qualitatively in agreement with the results established in infinite dimensional.
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Behaviour of energy: v=30
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Full damping
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FiGure 11. Exponential curves.
Behaviour of energy: v=35
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Full damping
d.>0 E
1
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FiGure 12. Exponential curves.

6 Conclusions

In this work, we have addressed an important problem in mathematical analysis of beams
and plates models: the problem of determining the exponential decay by taking into
account few dissipative mechanisms.

It is well known that the speeds of wave propagation play an important role to
the dissipative Timoshenko systems in one-dimensional domain (see [2] and references
contained therein). In that direction, in all literature concerning the stability of the
Reissner—-Mindlin—Timoshenko system we have not found any mention of the speeds of
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wave propagation. We have identified that the Reissner—Mindlin—Timoshenko system has
two speeds of wave propagation and we have proved that is sufficient takes into account
only one mechanism dissipation in order to obtain the exponential decay, for which a
particular relationships between these speeds must hold.

Other dissipative cases can be considered. For example, looking at Reissner—Mindlin—
Timoshenko systems in linear thermoelasticity, hypotheses such as Fourier’s or Cattaneo’s
law as well as memory terms. These and many other constitute important models to be
analysed at light of the relationships between v} and v3.
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