
Generating and evaluating designs and plans
for microwave modules

DANA NAU,1,2 MICHAEL BALL, 2,3 JOHN BARAS,4 ABDUR CHOWDHURY,5 EDWARD LIN,2

JEFF MEYER,6 RAVI RAJAMANI, 7 JOHN SPLAIN,8 and VINAI TRICHUR 9

1Department of Computer Science, University of Maryland, College Park, MD 20742 USA
2Institute for Systems Research, University of Maryland, College Park, MD 20742 USA
3Robert H. Smith School of Business, University of Maryland, College Park, MD 20742 USA
4Electrical and Computer Engineering Department, University of Maryland, College Park, MD 20742 USA
5IITRI, Rockville, MD, USA
6GTE0BBN Technologies
7RWD Technologies
8Mitretek Systems
9i2 Technologies

(Received September 1, 1999;Accepted January 31, 2000!

Abstract

This paper describes the process planning techniques we developed for use in an Integrated Product and Process Design
~IPPD! tool for the design and manufacture of microwave transmit0receive modules. Given a collection of data about
the design of a microwave module, the IPPD tool uses a combination of AI planning and OR trade-off analysis to
produce a collection of alternative designs and alternative process plans that have Pareto optimal values for manufac-
turing and purchasing lead time, process yield, cost, and number of suppliers. The IPPD tool provides facilities to
enable the user to generate and examine these Pareto optimal alternatives in real time, in order to provide immediate
feedback on how to modify the design to improve its cost and productivity.

Keywords: AI Planning; Integer Programming; Integrated Product and Process Design~IPPD!; Process Planning;
Tradeoff Analysis

1. INTRODUCTION

AI planning technology is coming of age: it is finally be-
coming capable enough to be useful in a wide variety of
practical settings~Aarup et al., 1994; Wilkins & Desimone,
1994; Agosta, 1995; Nau et al., 1995, 1998; Smith et al.,
1996; Smith, 1998; Munoz et al., 1999a, 1999b!. However,
this very success raises several issues that have not yet been
addressed adequately by previous research:

• Planning systems for real-world planning problems will
need to have ways whereby people who are not AI plan-
ning experts can understand, modify, and maintain them.

• They will also need to have interfaces to other soft-
ware modules, so that they can operate effectively in
an embedded fashion as part of larger systems.

This paper describes our work towards the above goals, in
the domain of manufacturing planning. Our specific appli-
cation task is the development of an Integrated Product and
Process Design~IPPD! tool for the development of micro-
wave transmit-receive modules, which are complex elec-
tronic devices that operate in the 1–20 GHz range. The
system was developed as part of a contract with Northrop
Grumman Corporation’s Electronic Sensors and Systems Di-
vision~ESSD! division in Baltimore. In developing the IPPD
tool, we had the following goals:

• To give feedback to designers about how well the de-
sign meets the following design objectives: product cost
~including both the cost of the parts to be used in the
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design and the cost of the manufacturing processes!,
lead time, yield, and number of suppliers.

• To help the designer modify the design to improve the
design objectives.

To address these goals, the IPPD tool includes the follow-
ing elements:

1. ways to launch two systems that are external to the
IPPD tool: 1! a commercial design system for produc-
ing the initial design of a microwave module, and 2! a
database system containing information about the parts
to be used in the design and alternative parts suitable
for substitution into the design in place of the parts
specified by the designer;

2. a module that generates alternative process plan ele-
ments for each alternative part, and a graphic user
interface~GUI! for use in maintaining the process-
planning module’s knowledge base;

3. a module that takes the output of the process-planning
module as its input to generate alternative Pareto op-
timal designs and process plans~i.e., combinations
of parts and plan elements that produce Pareto opti-
mal values for cost, lead time, yield, and number of
suppliers!;

4. a user interface for real-time user control of each of
the above.

This paper concentrates on the AI planning functionality de-
scribed in Item 2 above. We describe how we designed a
planning architecture to provide a combination of high per-

formance, ease of understandability by manufacturing per-
sonnel, ease of maintenance, and integration with the other
elements of the IPPD tool.

2. MICROWAVE MODULES

Most commercial electronic products operate in the 10 kHz–1
GHz radio frequency spectrum. However, in the telecom-
munications arena, the range of operation frequency has been
increasing at a tremendous pace. For scientific and com-
mercial long-range defense applications—such as radar, sat-
ellite communications, and long-distance television and
telephone signal transmissions—radio frequencies prove un-
suitable, primarily because of the high noise-to-signal ratio
associated with radio frequencies. Moreover, the lower-
frequency bands have become overcrowded because of the
overuse of these bands for commercial communications ap-
plications~Trinogga et al., 1991!. Consequently, in contrast
to other commercial electronic products, most modern
telecommunications systems operate in the 1–20 GHz mi-
crowave range, and modules of such systems are calledmi-
crowave modules.

Figure 1 shows a typical microwave module, which in-
cludes a number ofpartsmounted on asubstrate. One fac-
tor influencing the construction of such modules is the large
effect that mechanical characteristics can have on the elec-
tronic performance of microwave devices. To achieve proper
performance, the lengths and widths of the printed wires
must be chosen carefully; and to minimize vibration, the
substrate is made of aluminum with a teflon coating to pro-
vide electrical insulation.

Fig. 1. A typical microwave transmit0receive module.
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Figure 2 illustrates the design and manufacturing cycle
for microwave modules, which is highly interdisciplinary
in nature. Electronic designers develop the detailed cir-
cuitry; mechanical designers design the device to resist shock
and vibrational loadings, and develop the assemblies, the
heat removal systems, and the housing of the device; and
manufacturing engineers apply electronic manufacturing pro-
cesses~such as lithography, soldering, cleaning, and test-
ing!, and mechanical manufacturing processes~such as
drilling and milling! to manufacture the end product.

In the design of a microwave module, designers and man-
ufacturing engineers may need to choose among a large num-
ber of parts and processes to meet system requirements, such
as cost, lead times, quality, and so forth.~Boothroyd, 1992,
Hebbar et al., 1996!. Parts could potentially be available in
many forms~e.g., a resistor could be available either with
wire leads for through-hole mounting or with tabs for sur-
face mounting!, and could be offered by a number of ven-
dors with differing cost and quality attributes. Each of these
different forms of a part could require different processes.
The choice of these manufacturing processes depends on
several factors, such as the type of dielectric material and
the degree of integration of functional elements of the design.

When designing a microwave module, designers and man-
ufacturing engineers are faced with a large number of
choices. For each part that the designer specifies for use in
the design, there may be several alternative parts that are
suitable to be substituted for that part; and some combina-
tions of alternatives may possibly produce better values for
some of the design and manufacturing criteria. Thus, to se-
lect a good combination of parts to use in the design, the
design and engineering team might need to go through a

large number of iterations between alternative designs and
process plans. The IPPD tool is intended to aid them in mak-
ing these choices.

3. RELATED RESEARCH

3.1. Prior work by others

Process planning can be defined as the act of preparing de-
tailed operating instructions that transform an engineering
design into a final part~Chang & Wysk, 1985!. Most work
on Computer-Aided Process Planning~CAPP! has focused
on the development of process plans for mechanical parts.
CAPP systems have been traditionally classified asvariant
or generative; these are described below.

Variantprocess planning~which is the basis for most com-
mercial CAPP systems! is based on the use of Group Tech-
nology ~GT! coding schemes~Chang & Wysk, 1985!. The
purpose of a GT coding scheme is to assign a fixed-lengh
alphanumeric code to each design in such a way that if two
designs receive the same GT code, they will require similar
manufacturing processes. Given a new design, the user com-
putes its GT code, and uses this code as a database index to
retrieve a process plan for some other design having the same
GT code. The user then modifies this plan by hand, to pro-
duce a process plan for the new design. Ingenerativepro-
cess planning, the process plan is developed automatically
by the computer. The development of generative systems
has been a subject of much research~for a comprehensive
review, see Shah et al.~1994!!, but because of the difficulty
of the problem, few successful commercial systems exist.

Fig. 2. The design and manufacturing cycle for microwave modules. The scope of our work includes the shaded portions of the
figure: part selection, process planning, and feedback to the designer.
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Some efforts have focused on CAPP for electronic appli-
cations~for a review, see Maria & Srihari~1992!!. The PWA
Planner~Chang & Terwilliger, 1987! is a rule-based system
that performs planning for assembly of parts on placement
machines. Sanii and Liau~1993! and others have used AI
approaches to develop plans for assembling PCBs; and Liau
and Young~1993! have developed a process planning and
concurrent engineering system for PCBs that represents pro-
cess knowledge as constraints and provides manufacturabil-
ity feedback on the design.

3.2. Our prior work

The IPPD tool described in this paper grew out of the merger
of two previous projects at the University of Maryland: the
EDAPS project~Hebbar et al., 1996, Smith et al., 1997! and
the EXTRA project~Karne et al. 1998!:

• EDAPS ~Electro-Mechanical Design And Planning
System! was an integrated design and process-planning
system for microwave modules, that incorporated in-
terfaces to electronic and commercial CAD tools,
generated process plans, and provided feedback
about manufacturability, cost, and lead time. EDAPS’s
process-planning module is a predecessor of the one
described in Section 5.1.

• EXTRA ~EXpert T0R module Analyst! was intended
to provide an integration of enterprise-wide product
database management with a trade-off analysis optimi-
zation mechanism~Ball et al., 1995!. EXTRA’s trade-
off-analysis mechanism is a predecessor of the one
described in Section 5.2.

EDAPS’s planning module was based on the use of Hi-
erarchical Task Network~HTN! planning, an AI planning
methodology that creates plans bytask decomposition. Be-
cause the IPPD tool is based only loosely on HTN plan-

ning, a detailed discussion of HTN planning is beyond the
scope of this paper—but below we give a brief overview of
how it works.

HTN planning systems produce plans by decomposing
tasksinto smaller and smaller subtasks~see Fig. 3 for an
example!, until primitive tasks are found that can be per-
formed directly. HTN planning systems have knowledge
bases containingmethods. Each method includes a prescrip-
tion for how to decompose some task into a set of subtasks,
with various restrictions that must be satisfied for the method
to be applicable, and various constraints on the subtasks and
the relationships among them. Given a task to accomplish,
the planner chooses an applicable method, instantiates it to
decompose the task into subtasks, and then chooses and in-
stantiates other methods to decompose the subtasks even
further. If the constraints on the subtasks or the interactions
among them prevent the plan from being feasible, the plan-
ning system will backtrack and try other methods. For
descriptions of the original work on HTN planning, see Sac-
erdoti ~1977! and Tate~1977!. Russell and Norvig~1995!
give a tutorial overview, and Nau et al.~1998! describe some
recent advances in HTN planning technology.

4. THE IPPD TOOL

Our objective in developing the IPPD tool described in this
paper was to create a system to help the user perform the
following tasks~Fig. 4!, starting from the alternatives that
are available for each part in the design:

1. For each alternative part, generate alternative “plan
fragments”, that is, alternative collections of manu-
facturing processes to use on that part.

2. Find Pareto optimal designs, that is, combinations of
parts and plan fragments that produce Pareto optimal
values for the following criteria: cost, lead time, yield,
and number of suppliers.

Fig. 3. Two methods for traveling from one location to another, and their application to the task of traveling from the University of Maryland to MIT.
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3. Select a design and a process plan from among the
Pareto optimal alternatives.

The system architecture that we developed to accomplish
these tasks is shown in Figure 5. The system includes the
following elements:

• A process planning module~the “Process Planner” in
Fig. 5!. This module is capable of generating plan frag-

ments for the parts of a design. For each part, it deter-
mines~1! alternatives for each of the processes required
by this part~together with their yields, setup times, and
run times!, and~2! what processes might damage this
part ~and are thus precluded from being used on other
parts in the design!.

• A process template editor. This module is used to cre-
ate and store the domain-specific knowledge base used
by the process planning module.

Fig. 4. Tasks that the IPPD tool helps the user to perform.

Fig. 5. Overall architecture of the IPPD tool. This paper focuses on the two modules shown in boldface: the process-planning module
and the process template editor.
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• A trade-off analysis module~the “Trade-off Opti-
mizer” in Fig. 5!. This module generates alternate re-
alizations of the circuit schematic; all these realizations
are Pareto optimal with respect to the four criteria men-
tioned above. Each realization is obtained by making
specific choices among the available alternatives
for parts and processes. This module includes a GUI
whereby the user can interactively explore Pareto op-
timal alternatives, and an optimization “engine” writ-
ten in C11, which calls optimization routines supplied
by Cplex, a commercial linear and integer program-
ming solver. To obtain the process requirements and
cost estimates associated with the individual parts, the
trade-off optimizer directly interfaces with the process
planning module.

• A supervisory program. This module, written in Visual
Basic, permits the designer to smoothly interact with
the heterogeneous collection of modules described
above. It also provides an interface between those mod-
ules and tools external to the system, such as thedata
managementsoftware written by Northrop Grumman
personnel using Microsoft Access, and an electronic
CAD package such as Hewlett Packard’s Advanced De-
sign System~formerly known as EEsof Series IV!.

• Data exchange files, for exchanging information among
the above modules. The data exchange is done in a man-
ner that is transparent to the user.

The remainder of this paper concentrates primarily on the
process-planning module and the process template editor,
which are highlighted in Figure 5.

5. PROCESS PLANNING IN THE IPPD TOOL

The IPPD tool’s process-planning module is based loosely
upon the approach used in EDAPS’s process-planning mod-
ule ~see Section 3!. However, the IPPD tool’s process-
planning module differs from EDAPS’s process-planning
module in several significant respects, for the following
reasons:

• Functionality. The IPPD tool needs to evaluate trade-
offs among competing objectives~some of which are
process dependent!, in order to find Pareto optimal de-
signs. Thus, a portion of its process-planning activity
needs to occur in its trade-off-analysis module~see Sec-
tion 5.2! rather than in the process-planning module.
Consequently, unlike EDAPS’s process-planning mod-
ule ~which generated and evaluated complete plans for
complete designs!, the IPPD tool’s process-planning
module does not need to generate complete process
plans for the entire design. Instead, for each part, it
needs to generate a plan fragment that describes the
processes to be performed on that part. Typically, al-
ternatives are available for each process to be per-
formed on the part; thus, associated with each part, we
might have many alternative plan fragments. This in-

formation is fed into the trade-off analysis module,
which then determines combinations of parts~and
plan fragments for those parts! that lead to Pareto op-
timal values for cost, lead time, yield, and number of
suppliers.

• Understandability and maintainability. EDAPS’s
process-planning module performed quite efficiently
~it could create process plans in just a few seconds!.
However, its knowledge base of HTN methods, which
was written directly in C11, was rather complicated
for nonexperts to understand. For the IPPD project, we
wanted to remove the necessity of having a software
engineer maintain the system after delivery, and, hence,
needed to represent the process-planning knowledge in
a way that would be easy for product designers and
process engineers to understand and maintain.

To meet the above objectives, the IPPD tool’s process-
planning module uses a planning technique that could pos-
sibly be described asnonhierarchicaltask-network planning.
The technique is based on the use of aprocess templatethat
describes all of the various processes that might need to be
performed to manufacture the product. For each part that is
a possible candidate for use in the finished product, the
process-planning module uses the process template to pro-
duce the following information:

• which manufacturing processes are applicable to the
part;

• how much time it will take to run those processes, and
what the yield will be;

• which processes will be precluded if this part is used
in the product.

For example, in Step 2 of Figure 4, the process-planning
module would produce the above information once for each
of the alternativesA1, A2, A3, . . . ,An. The following section
describes the process-planning module in greater detail.

As shown in Step 3 of Figure 4, all of the above infor-
mation ~along with each part’s cost, defect rate, and sup-
plier data! is fed into the trade-off-analysis module. The
purpose of the trade-off optimizer is to aid the user in se-
lecting ~from among the possible candidates for each part
in the product! a combination of parts that provides Pareto
optimal values for the overall delivery lead time, the total
cost, the total yield, and the total number of suppliers. The
trade-off optimizer employs interactive multiobjective in-
teger programming techniques, and is summarized in Sec-
tion 5.2.

5.1. Generation of plan fragments

The IPPD tool’s process-planning module uses a planning
architecture that could perhaps be described as nonhierar-
chical task-network planning. The system is based on the
use of process templates that describe the various processes
that each part would need to go through to be placed on a
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circuit board. In general, a template should contain infor-
mation about all of the possible processes that might need
to be performed on any of the parts of a design to affix it to
the board. This information is needed so that~as described
later!, the process planner can take the description of each
part and run it through the template to see which processes
are applicable.

Figure 6 gives a simple example of what a process tem-
plate might look like. As shown in the figure, each level of
the template represents a task that might need to be done on
a part to incorporate it into a microwave module. Each of
the processes at that level is an alternate way to perform
that task. For example, consider the task of applying solder
paste, shown at level 2 of the process template. According
to the process template, there are three possible ways to ap-
ply solder paste: Solder_paste_on_screen, Manual_solder
_paste, and Automatic_solder_paste.

Associated with each process will be formulas for com-
puting the following information:

• Applicability conditions, which must be met for the pro-
cess to be applicable to a part. These conditions will
depend on various characteristics of the part, such as
the number of pins, the size of the part, and so forth.

• Formulas for the process’ssetup timeandrun time. The
setup time and run time will be used later on~in the
trade-off analysis module! to compute the total time
for each process plan. The difference between them is
that in a process plan, the setup time will be incurred
oncefor running the process~regardless of the number
of parts on which the process is used! and the run time
will be incurred repeatedly, once for each part on which
the process is used.

• A formula for the process’syield. This represents the
basic effectiveness of the process to accurately per-
form or complete its job, and can be thought of as the
“probability of success” associated with the process.

• Preclusion conditions, which are conditions under which
the processcannotbe used on the board~regardless of
whether any parts satisfy its applicability conditions!.
For example, the “immerse in liquid solvent” process
of Figure 6 should not be used on a circuit board if the
board has any nonimmersible parts mounted on it, be-
cause those parts would be damaged by the immersion
process.

As an example, Table 1 shows what the above formulas might
look like for the Solder_paste_on_screen process of Figure 6.

For each partP that might possibly be used in the micro-
wave module, the process planner takes as input a descrip-
tion of P’s attributes. Then, for each processR in the
template, it evaluatesR’s applicability formulas and preclu-
sion formulas usingP’s attributes, to determine whetherR

Fig. 6. A simple example of a process template.

Table 1. Formulas associated with the Solder_ paste_on_screen
process of Figure 6

Process name: Solder_paste_on_screen
Setup time: 60.0
Run time: num_pins* 1.5
Yield: 0.99
Applicability conditions: num_pins. 10;

length* width . 20;
Preclusion conditions: num_pins55 0;
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is applicable toP and whetherR is precluded byP. For each
processR that is applicable toP, the process planner com-
putesR’s setup time,R’s yield, andR’s run time onP.

As a simple example, suppose that there are two different
candidate parts P2 and P4, and that their attributes are as
shown in Table 2. Then each of the formulas in Table 1 would
be evaluated twice~once for each part!, to produce the fol-
lowing information for each partP and processR:

• Whether or not the processR is applicable to the part
P. In this example, Solder_paste_on_screen is applica-
ble to P2, but it is not applicable to P4 because P4 does
not have enough pins.

• Whether or not the presence of the partP will preclude
using the processR in manufacturing the product. In
this example, neither of the parts precludes the use of
the Solder_paste_on_screen process.

• The setup time for the processR. In this example, the
setup time for Solder_paste_on_screen is 60.0.

• The processR’s run time on the partP. In this exam-
ple, the run time of Solder_paste_on_screen on P2 is
18.0.

• The processR’s yield. In this example, the yield of Sol-
der_paste_on_screen is 0.99.

For each partP, the above computation produces a set of
alternative processes for the first task to be performed onP,
a set of alternative processes for the second task to be per-
formed onP, and so forth. Conceptually, a plan fragment
~as described earlier! for the part would consist of one of
the alternatives for task 1, followed by one of the alterna-
tives for task 2, and so forth. However, we do not want to
represent each plan fragment explicitly, because the total
number of plan fragments for a part could be exponentially
large. Instead, we take advantage of the fact that the pro-
cesses for each task are largely independent of the pro-
cesses for any other task. Thus, to represent the collection
of all plan fragments forP, the process planning module
produces a list of all of the alternatives for task 1, followed
by all of the alternatives for task 2, and so forth.

Figure 7 gives an example. For the partA2, the alterna-
tives for the first process to be performed are$S21i : i 5
1,2, . . .%; the alternatives for the second process to be per-
formed are$S22i : i 5 1,2, . . .%; and so forth. Thus, a plan

fragment forA2 would consist of one of theS21i tasks, one
of theS22i tasks, and so forth. Section 6 gives an example
of the specific information that the process planning mod-
ule computes for each process.

5.2. Trade-off optimization

All of the above information is fed into the trade-off opti-
mizer. As shown in Figure 7, the purpose of the trade-off
optimizer is to help the user select 1! which parts to use in
the design, and 2! for each part, which manufacturing pro-
cesses to use on that part. A detailed discussion of the trade-
off optimizer is beyond the scope of this paper, but we briefly
summarize it below. For further details on its operation, see
Trichur and Ball~1998!.

The trade-off optimizer expects to receive as input a list
of parts, a list of alternatives for those parts, a list of all the
applicable processes for each part, and a list of processes
precluded by each part. Key attributes such as material costs
and defect rates, setup times, yields, and run times are as-
sumed to be known for parts, processes, and part–process
combinations. Additionally, the delivery lead time of the sup-
plier associated with each part is assumed to be known. Using
this input, the trade-off optimizer selects combinations of
parts and processes to generate alternative designs and pro-
cess plans. Each design and plan generated by the trade-off
optimizer isPareto optimalwith respect to the total cost of
the parts, the total delivery lead time, the total manufactur-
ing yield, and the total number of suppliers used.

Because the concept of Pareto optimality may be new to
some readers, we briefly review it here~for a more detailed
description, see Gass~1985!!. Suppose we have an optimi-
zation problem~such as the problem of finding an optimal
design for a microwave module! in which there are several
heterogeneous optimization criteria~such as cost, time, yield,

Table 2. Attributes of two example parts

Attributes of P2 Attributes of P4

immersible5 1 immersible5 1
length5 10 length5 18
width 5 15 width5 24
num_pins5 12 num_pins5 2
preformed5 0 preformed5 1
adhered5 1 adhered5 0

Fig. 7. The process-planning module’s output consists of information about
the alternatives for each part in the design, and the alternatives for each
process to be performed on each part. Using this information as input, the
tradeoff optimizer selects Pareto optimal combinations of parts and pro-
cesses, such as the ones that are highlighted in this figure.
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and number of suppliers!. Then, in general, there may not
exist a solution~i.e., a design! that optimizes all of these
criteria simultaneously. However, there will always be one
or more Pareto optimal solutions. A solutionS is Pareto op-
timal if there is no other solutionS' that is at least as good
asSalong all of the optimization criteria, and that is strictly
better thanSalong at least one optimization criterion.

As an example, suppose we are trying to minimize two
variablesx andy, and suppose there are four solutionsS1,
S2, S3, andS4 as shown in Figure 8. Then the solutionS4 is
not Pareto optimal, becauseS2 has better values for bothx
andy, but the solutionsS1, Ss, andS3 all are Pareto optimal.

For a complex design problem with many alternative parts
and process options, there may potentially be hundreds of
Pareto optimal solutions, and the problem is to find one that
is satisfactory to the designer. Obviously, it would not be
feasible to compute all such solutions and display them—
this would overload the designer with too much informa-
tion. Thus, the IPPD tool provides a GUI to help designers
zero in on the particular Pareto optimal solutions that are of
interest, by enabling them to control the search direction
via an interactive optimization procedure.

Given the entire universe of possible parts and processes,
and their associated attributes, the problem of selecting a
subset of the parts~and implicitly, processes! can be formu-
lated as an integer program~IP!. The logical structure of
the design~such as inclusion and preclusion conditionals
for processes, etc.! gives rise to the constraints of the IP.
Because we are interested in optimizing the values of four
objectives, we must consider a multiobjective IP. While ar-
bitrary integer programs can be difficult to solve~integer
programming is NP-hard!, the underlying structure the IP
formulation of the microwave module design problem lends
itself to relative fast solution by commercial off-the-shelf
IP solvers. The trade-off optimizer includes two alternative
solution procedures. Trichur and Ball~1998! gives details
on the procedures. They also provide the results of compu-
tational experiments. Several problem test sets were gener-
ated. The number of parts ranged between 25 and 100 with
4 to 6 alternatives per part. Using a Sun Sparc 10 worksta-
tion and Cplex 4.0 as the IP solver, the time required to find

an individual efficient solution ranged from a few seconds
to slightly over 2 min. As, for our application, these prob-
lems are of realistic size, we feel this indicates that our IP
approach provides a practical problem solving tool.

Figure 9 gives an example of the trade-off optimizer in
action. When it starts up, the first thing that it does is to find
six Pareto optimal solutions0designs~represented by the six
columns in the left and top right graphs shown in Fig. 9!.
The first two designs use the original set of parts specified
by the designer, but with alternative process plans that op-
timize cost and yield, respectively. For the third, fourth, fifth,
and sixth alternatives, the system chooses alternatives for
the parts specified by the designer, and alternative pro-
cesses for those parts, to find the best possible values for
the four objectives being optimized~cost, yield, lead time,
and number of suppliers!. In the left-hand pane of Fig. 9,
the optimizer is currently displaying the cost associated with
each of these six solutions, but the user can click on the tabs
to display the values for yield, lead time, and number of
suppliers. In the right-hand panes, the system has normal-
ized all four of the criteria to the interval@0,1# , so that the
user can compare them simultaneously.

In the boxes near the lower right-hand corner of the fig-
ure, the user can enter lower and upper bounds on the ac-
ceptable values of the objectives, and the system will produce
additional Pareto optimal solutions~if any! that lie within
these bounds. This provides a way for the user to zero in on
solutions that provide the best balance of lead time, cost,
yield, and number of suppliers.

6. IMPLEMENTATION AND USAGE

The architecture for the IPPD system is shown in Figure 5.
Most of the modules run on a PC under Windows NT. How-
ever, the process-planning module runs as a server on a Sun
workstation, and the rest of the system communicates with
this module by exchanging files and commands over an
ethernet connection.

6.1. Input to the system

As input, the IPPD system needs a list of the parts that the
designer has chosen to use in a proposed design for a mi-
crowave transmit0receive module. It also needs informa-
tion about the attributes of each part, including its physical
attributes~dimensions, etc.!, cost, defect rate, supplier in-
formation, and other parts that might be suitable to be sub-
stituted for this part. Normally, the parts list would come
from a commercial CAD tool~such as Hewlett Packard’s
EEsof Advanced Design System, which we used during our
project!, and the information about the part attributes would
come from a parts database~such as the one shown in Fig. 10,
which was developed by our colleagues at Northrop Grum-
man!. However, rather than tying the IPPD tool to any par-
ticular design tool or database tool, we wanted it to be
compatible with a wide variety of design tools and database

Fig. 8. An example of what Pareto optimality means. If our goal is to find
a solution that minimizes bothx andy, thenS1, S2, andS3 are Pareto op-
timal butS4 is not.
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tools. For this reason, the IPPD tool reads its input from flat
files rather than querying the CAD tool and database tool
directly, and it is the user’s responsibility to export the part
information into the flat files from the CAD tool and the
database tool. Once the user has done this, the IPPD tool
sends this information to its process-planning module, so
that the process-planning module can run the information
about each part through the process template to determine
which processes may be applicable and what their param-
eters are.

6.2. Process template editor

To provide an easy way for design and manufacturing en-
gineers to create and maintain process templates, we used
Microsoft Foundation Class~MFC! to develop a user-
friendly GUI running under Windows NT. This GUI allows
the user to update the planner’s knowledge base without hav-
ing to modify any source code~as was necessary in EDAPS’s
process-planning module!. Using the GUI, the user can cre-

ate each of the levels of the template~corresponding to tasks
to be performed!, create alternative processes at each level,
and create the formulas for computing the process param-
eters~the applicability conditions, setup time, run time, yield,
and preclusion conditions!. After the user has created the
process template, the template can be installed into the IPPD
system, and used on subsequent runs of microwave module
designs.

As an example, Figure 11 is a screen shot of the GUI
being used to edit the process template of Figure 6. In this
screen shot, the user is editing the “solder paste on screen”
process, which is one of the alternatives for the “solder paste”
step at level 2 of the process template. By selecting the ap-
propriate tab of the dialog box shown in Figure 11, the user
can enter each of the formulas shown in Table 1.

6.3. Process-planning module

The code for the process-planning module runs as a server
on a Sun Sparc workstation—thus, after the template has

Fig. 9. An example of the tradeoff optimizer in action.

298 D. Nau et al.

https://doi.org/10.1017/S0890060400144026 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400144026


been created on the PC, the user needs to install the tem-
plate on the Sun server for use as the process-planning mod-
ule’s knowledge base. To accomplish this, the GUI contains
commands for creating a connection to the server, and send-
ing the template to it. Once the template has been sent to the
server, the process-planning module will validate it and then
store it in a compact form. Any list of parts can then be run
against that template to generate a list of alternative pro-
cesses applicable to those parts.

The process planning module determines which pro-
cesses are applicable to each part by evaluating each pro-
cess’s applicability conditions against the list of part
attributes and their values. For each process that is applica-
ble to a part, the planner instantiates the formula for the
process’s run time, to compute how much time the process
will take on that part. The planner then determines which
~if any! processes are precluded by this part~based upon
the process’s preclusion conditions!. It then places these re-
sults in a file that is eventually passed to the trade-off analy-
sis module. Figure 12~a! shows an example of such a file.

Next, the process-planning module creates a file that con-
tains the entire list of possible processes, together with their
respective setup times and yields. Figure 12~b! shows an
example of such a file. Since the setup times and yields are
not part specific, they are placed in a separate file to reduce
space overhead, and speed up the preprocessing for the trade-
off-analysis module. Both of these files are sent back to the
PC~where the original run time calls came through the front-
end software!. The front-end interface forwards the files to
the trade-off optimizer.

6.4. Trade-off optimizer

The trade-off optimizer first generates a file that contains
the integer programming formulation of the multiobjective
design problem. Next it calls optimization routines sup-
plied by Cplex to solve the problem and generate a set of
six Pareto optimal solutions, as described above. The user
generates successive Pareto optimal solutions in an inter-
active fashion by controlling the search direction via a GUI,

Fig. 10. A portion of a part database created by Northrop Grumman personnel using Microsoft Access. Each part corresponds to a
record in the database, and the record contains a field for each attribute that might be relevant for design and manufacturing purposes.
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as described earlier. This GUI displays all the solutions gen-
erated during the optimization session, and enables the de-
signer to keep track of the process. When the designer is
satisfied with one or more solutions, the GUI recovers the
relevant data~selected parts, processes, and suppliers, to-
gether with the associated values for the four objectives!
corresponding to the chosen solution~s! and saves it in a
file that is then passed back to the supervisory GUI of the
IPPD tool.

7. SAMPLE RUNS OF THE
PROCESS-PLANNING MODULE

This section describes sample runs of the process-planning
module on two sets of parts, using a more detailed version
of the template shown in Figure 6. Figure 11 shows a snap-
shot of the creation of this template using the GUI on a PC.
After creating this template, the user needs to install it on
the Sun server. The GUI contains commands for doing this.
Once the template is stored on the server, the process-
planning module will validate it and then store it in a com-

pact form. Any list of parts can then be run against that
template to generate a list of alternative processes applica-
ble to those parts.

For the first example run, we gave the process-planning
module the list of parts shown in Table 2. In response, the
module created the two output files shown in Figure 12. The
output file in Figure 12~a! contains the following informa-
tion for each part in the design:

1. The name of the part, how many tasks to perform on
it, and how many processes are precluded by it.

2. The following information for each task to be per-
formed on the part:

• how many alternative processes are applicable for
this task on this part;

• for each process, its name and its run time on this
part.

3. The names of any processes that are precluded by this
part.

Fig. 11. The GUI for process template creation.
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For example, the second task listed for P2 in Figure 12~a! is
the “solder paste” task of Figure 6. For this task, the fol-
lowing three processes are applicable to P2:

• Solder_paste_on_screen, with a run time of 18,

• Manual_solder_paste, with a run time of 0.5;

• Automatic_solder_paste, with a run time of 0.083.

The second output file, shown in Figure 12~b!, tells what
each process’s setup time and yield are. For example, the
setup time for Solder_paste_on_screen is 60, and its yield
is 0.99.

For the second example run, we modified the input part
file shown in Table 2, by decreasing P2’s num_pins field
from 12 to 8, and making the part P4 nonimmersible. The
results of the second run are shown in Figure 13.

In Figure 13~a!, the process Solder_paste_on_screen is
no longer listed as an option for the Solder_paste task on
part P2, because P2 has too few pins. For the part P4, only
one process is applicable for the Flux_cleaning task: Brush_
flux_cleaning. Because P4 is nonimmersible, the processes
Immersion_in_liquid_solvent_flux and Wash_in_alcohol_

flux_cleaning appear in P4’s list of precluded processes. In
Figure 13~b!, the file with the process names and their setup
times and yields is identical to that of Figure 12~b!. It does
not change unless the process template is modified.

These two examples show how different process alterna-
tives can be selected because of different part attributes.

8. CONCLUSIONS

AI planning is becoming increasingly useful in practical
planning problems—but the techniques that work well in
practice can significantly different from the ones used in
traditional AI planning systems. For example, the process-
planning module described in this paper differs from tradi-
tional approaches in several significant ways:

• The idea of process templates was inspired by HTN
planning. However, by getting rid of the HTN hierar-
chy, we made the system significantly easier for non-
researchers to understand and maintain, while retaining
sufficient planning power for the problem at hand.

Fig. 12. Output of the first example run.
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• Our process-planning module evaluates the elements
of its process template in a forward manner, by evalu-
ating their preconditions against the design data, and
instantiating the effects accordingly. This makes it
straightforward for the elements of the process tem-
plate to incorporate the mixed symbolic0numeric com-
putations necessary for real-world process planning. In
contrast, most AI planning systems evaluate their plan-
ning operators in a backward manner, by unifying their
effects with the goals to be achieved, and instantiating
the preconditions accordingly. Such an approach would
have made it very difficult to get the expressive power
we needed.

• For each part~or alternative part! in the design, the
process-planning module produces a collection of
alternatives for each process to be performed on the
part. This makes it possible to generate Pareto optimal
combinations of parts and process plans, by feeding
the process-planning module’s output into a trade-off
optimizer.

This project illustrates some of the benefits that can be
obtained by an interdisciplinary team of researchers. Our

work combined the expertise of researchers from computer
science, business, systems engineering, and mechanical
engineering.

Furthermore, this project shows the benefits of doing re-
search on topics motivated by complex real-world prob-
lems. The ideas described in this paper were motivated by
the requirements of the practical problem at hand, but our
subsequent ongoing work on ideas is leading to significant
advances in the theory of planning, as described below:

• By extending our “forward evaluation” HTN planning
technique we have developed a domain-independent
planning shell that is capable of running orders of mag-
nitude faster than other domain-independent planning
systems~Nau et al., 1999!, yet has sufficient expres-
sive power for use in complex problems such as evac-
uation planning~Munoz et al., 1999b!.

• By extending our work on combining AI planning and
OR optimization, we have made significant progress
on the use of Integer Programming to solve AI plan-
ning problems~Vossen et al., 1999!, which was one of
the challenges proposed in a prominent IJCAI-97 “chal-
lenge paper”~Selman et al., 1997!.

Fig. 13. Output of the second example run.
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For future work, we are continuing to make progress in the
two above areas. We are also doing work on extending IPPD
into earlier stages of design~i.e., conceptual design!, where
the decisions made during the design process can have an
even bigger impact. That work is the subject of an ongoing
contract with Northrop Grumman corporation.
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