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Abstract

Recent studies have used Mendelian randomization (MR) to investigate the observational
association between low birth weight (BW) and increased risk of cardiometabolic outcomes,
specifically cardiovascular disease, glycemic traits, and type 2 diabetes (T2D), and inform
on the validity of the Barker hypothesis. We used simulations to assess the validity of these
previous MR studies, and to determine whether a better formulated model can be used in this
context. Genetic and phenotypic data were simulated under a model of no direct causal effect of
offspring BW on cardiometabolic outcomes and no effect of maternal genotype on offspring
cardiometabolic risk through intrauterine mechanisms; where the observational relationship
between BW and cardiometabolic risk was driven entirely by horizontal genetic pleiotropy
in the offspring (i.e. offspring genetic variants affecting both BW and cardiometabolic disease
simultaneously rather than a mechanism consistent with the Barker hypothesis). We investi-
gated the performance of four commonly used MR analysis methods (weighted allele score MR
(WAS-MR), inverse variance weighted MR (IVW-MR), weighted median MR (WM-MR), and
MR-Egger) and a new approach, which tests the association between maternal genotypes
related to offspring BW and offspring cardiometabolic risk after conditioning on offspring
genotype at the same loci. We caution against using traditional MR analyses, which do not take
into account the relationship between maternal and offspring genotypes, to assess the validity
of the Barker hypothesis, as results are biased in favor of a causal relationship. In contrast,
we recommend the aforementioned conditional analysis framework utilizing maternal and
offspring genotypes as a valid test of not only the Barker hypothesis, but also to investigate
hypotheses relating to the Developmental Origins of Health and Disease more broadly.

Introduction

There is a robust and well-documented relationship between birth weight (BW) and a higher
risk of cardiometabolic diseases like type 2 diabetes (T2D) and hypertension in later life.1–3

The Barker hypothesis,1 which posits that adverse intrauterine environments result in lower
BW and increased future risk of cardiometabolic disease through developmental compensa-
tions, may explain this observed relationship.1 Evidence in favor of this theory has primarily
come from experimental studies on animals,4 which may not generalize to humans, and obser-
vational epidemiological studies,5 which are susceptible to confounding, bias, and reverse
causality6. However, because randomized controlled trials (RCTs) cannot be performed easily
in this context, definitive proof of the hypothesis in humans has been lacking.

Mendelian randomization (MR) is an epidemiological method that uses genetic variants
robustly associated with a modifiable environmental exposure to estimate the causal relation-
ship between the exposure and a medically relevant outcome of interest.7 Mendel’s Law of
Segregation ensures that genetic variants segregate randomly and independently of environ-
mental factors, while Mendel’s Law of Independent Assortment suggests that the genetic var-
iants should also segregate independently of other traits provided certain conditions are met7.
This means that genetic variants are less susceptible to reverse causality and confounding than

1We realize that the term “Barker Hypothesis” is rarely used in the field these days. In this manuscript, we have used the term as
shorthand to refer to the specific area of the Developmental Origins of Health and Disease hypothesis concerned with linking
offspring BW to future risk of disease.
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the “traditional” variables used in observational studies. In other
words, genetic variants can be used to classify a study sample into
subgroups, which differ systematically with respect to the exposure
of interest, but not with respect to confounding factors (i.e. similar
to an RCT). If groups defined by their genotypes also show
differences in the outcome of interest, then, provided core assump-
tions are met, this provides evidence of a causal relation-
ship (Fig. 1a).

Recently, several studies have attempted to use the technique of
MR to investigate the relationship between BW and cardiometa-
bolic disease and in some cases explicitly inform on the validity
of the Barker hypothesis.1,8–10 For example, Zanetti et al. used
two-sample MR to examine the relationship between BW and a
variety of outcomes in the UK Biobank. The authors found evi-
dence for an inverse correlation between BW-associated single-
nucleotide polymorphisms (SNPs) and low-density lipoprotein
cholesterol, 2 h glucose, coronary artery disease, and T2D, and a
positive correlation between BW-associated SNPs and body mass
index. The authors interpreted their findings as evidence that lower
BW was causally associated with increased susceptibility to coro-
nary artery disease and T2D.

While MR has a number of potential advantages over tradi-
tional observational epidemiological studies, we believe that pre-
vious studies that have used MR in an attempt to investigate the
Barker hypothesis8–10 contain several flaws that render them
unsuitable for valid inference in this context. First, previous MR

studies have used genetic variants in the fetal genome that are asso-
ciated with their own BWas instrumental variables.We believe this
framework is problematic because the Barker hypothesis postulates
that an adverse intrauterine environment leads to low BW and
increased risk of future cardiometabolic disease.11 This is different
from postulating that BW itself has a direct causal effect on cardi-
ometabolic disease (Fig. 1c), as did Huang et al. and Zanetti et al.8,9

We would argue that this underlying model is inappropriate
because SNPs in the fetal genome are likely to be associated with
BW through many different processes, and therefore do not nec-
essarily proxy the intrauterine environment. In other words, these
studies violate a core assumption of MR analyses, that the SNPs
used in the analysis are associated with the environmental expo-
sure of interest (in this case, the intrauterine environment – see
the first assumption in Fig. 1b).

Second, due to the transmission of alleles from mother to off-
spring, offspring, and maternal genotypes are correlated (r ≈ 0.5).
Consequently, any association between offspring genotype and off-
spring outcomes, when no adjustment has been made for maternal
genotype, could actually reflect an effect of maternal genotype on
offspring outcome, complicating interpretation of the analysis.12

In other words, these studies have violated another core
assumption of MR analyses that the SNPs used in the analysis
are not associated with potential confounders of the exposure–
outcome relationship (see the second assumption in Fig. 1b).
In this case, the maternal genotype may confound the analysis

Fig. 1. (a) Mendelian randomization (MR) studies share many similarities with randomized controlled trials (RCTs) and comparing the two study designs can be useful in under-
standing the MR method. MR uses genetic markers that are robustly associated with an exposure of interest. Mendel’s Laws of Segregation and Independent Assortment ensure
that alleles are randomly transmitted from parents to their offspring independently of known and unknown confounders (with certain exceptions – see Davey Smith and Ebrahim
2003)7 – analogous to the physical randomization that occurs in RCTs7. Provided that certain core assumptions are met (see below), any differences in outcome between groups
defined by their genotypes should therefore reflect the causal effect of the exposure on the outcome, and this causal effect can be estimated using an appropriate statistical
methodology (b) Directed acyclic graph illustrating the three core assumptions underlying MR analysis. The first assumption is that genetic variants used in the analysis should be
robustly associated with the exposure of interest. The second assumption is that the genetic variants should not be associated with any confounders of the exposure–outcome
relationship. The third assumption is that the genetic variants should only be related to the outcome through the exposure of interest (this is commonly known as the “no
horizontal pleiotropy” assumption). (c) Diagrammatic representation of how MR principles can be used to investigate the Barker hypothesis. According to the Barker hypothesis,
an adverse intrauterine environment subsequently results in decreased birth weight (BW) and increased risk of cardiometabolic disease in later life. Notably, there is no causal
effect of BW on the risk of cardiometabolic disease outcomes. Maternal genotype at genetic markers (in this case, a single-nucleotide polymorphism (SNP)) can be used to proxy
intrauterine environmental exposures that affect offspring BW. These maternal genetic markers can then be tested for association with offspring cardiometabolic outcomes, after
conditioning on offspring genetic markers at the same genetic loci. By conditioning on offspring genotype (indicated by the box) at the same loci, a potential path to offspring BW
and cardiometabolic outcomes through the offspring’s genome is blocked (dotted lines). Importantly, this same paradigm can be used to investigate hypotheses relating to the
Developmental Origins of Health and Disease hypothesis more broadly by using maternal SNPs related to specific maternal environmental exposures during pregnancy and
examining their association with offspring cardiometabolic disease conditional on offspring genotype.
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as it may be related to both offspring BW and also potentially
offspring cardiometabolic risk (through the intrauterine
environment).

Finally, many of the genetic variants robustly associated with
BW are known to exert pleiotropic effects on cardiometabolic
phenotypes.12,13 This means that the SNPs used in the analyses
may violate the “no horizontal pleiotropy assumption” underlying
MR – the assumption that SNPs that show a relationship with the
outcome of interest (cardiometabolic disease), only do so through
the exposure under study, and not via any other biological path-
ways (see the third assumption in Fig. 1b).14 Additionally, variants
most strongly related to BW are also likely to have the strongest
pleiotropic associations with cardiometabolic phenotypes. This
violates an assumption underlying MR-Egger regression, a special
type of MR analysis that is thought to be more robust to horizontal
pleiotropy than traditional MR methods15. Violation of the
assumption means that analyses using MR-Egger regression will
also likely yield biased estimates of the causal effect.

Our aim was to use simulation and two contrived examples to
show that MR using BW-associated SNPs in the offspring genome
to examine the Barker hypothesis can provide spurious evidence of
a causal effect of BW on future cardiometabolic risk, when no such
relationship exists. We also examined if testing whether maternal
genetic variants associated with decreased offspring BW were also
associated with increased offspring cardiometabolic risk (after con-
ditioning on offspring genotypes at the same loci) was a valid
method for testing the validity of the Barker hypothesis (Fig. 1c).16

Methods

Simulations

We simulated data where the correlation between offspring BW
and future cardiometabolic traits was generated by a combination
of genetic pleiotropy (i.e. the genetic variants in the offspring had
direct effects on offspring cardiometabolic outcomes not through
BW) andmaternal and offspring genetic effects on BW.We did not
include a direct causal path between maternal genotypes and
offspring cardiometabolic outcomes or a direct causal effect of
BWon cardiometabolic risk (Fig. 2).We simulate twomodels, both
of which represent plausible explanations for the empirical nega-
tive genetic correlation between BW and cardiometabolic pheno-
types and have support from large-scale genetic studies.13,16–18

Scenario 1 represents a possible model for blood pressure-
related SNPs. We have previously shown evidence that SNPs that
increase maternal systolic blood pressure causally lower offspring
BW through intrauterine mechanisms, and those alleles are then
transmitted from mother to offspring increasing offspring blood
pressure in later life.13,17 Scenario 2 is similar to themodel espoused
under the Fetal Insulin Hypothesis in which T2D-associated var-
iants in mothers lead to increased maternal glucose levels during
pregnancy (promoting increased fetal growth), but may also
decrease insulin sensitivity (and fetal growth) when transmitted
to offspring, and subsequently increase risk of offspring T2D in
later life.19

Following Fig. 2, we simulated maternal and offspring geno-
types, the offspring’s BW (X) and cardiometabolic outcomes
(Y), for each family i, using the following equations:

Xi ¼
Xn

j¼1

βmj
Gmij

þ
Xn

j¼1

βOj
GOij

þ "1i, (1)

Yi ¼
Xn

j¼1

�jGOij
þ "2i, (2)

where GOij
and Gmij

refers to the offspring and maternal genotype
dosage (0, 1, 2), respectively, for family i at locus j. The offspring
and maternal effects of SNPj on BW are quantified by βOj

and βmj
,

respectively, γj reflects the pleiotropic effect of the offspring SNPj
on the cardiometabolic outcome Y, and ε1 and ε2 are residual terms
affecting offspring BW and cardiometabolic phenotype, respec-
tively, (with covariance ρ). Consistent with the absence of intra-
uterine mechanisms, we assume that there are no effects of
maternal genotypes on the offspring cardiometabolic outcome Y
(either directly or mediated by offspring BW), and no causal effect
of offspring BW on offspring cardiometabolic outcome Y. Allele
frequencies were drawn from a uniform distribution between
0.1 and 0.9, and for each replicate, we sampled maternal (Gm)
and paternal dosages at each locus (0, 1, or 2) assuming Hardy–
Weinberg equilibrium. We simulated the transmission of geno-
types to offspring assuming autosomal Mendelian inheritance.

For each scenario, we performed 10,000 replicates using 50,000
mother–offspring pairs, 20 SNPs, and a moderate covariance
between the residuals (ρ= −0.3). In Scenario 1, all βOj

were set
to zero (i.e. no effect of offspring SNPs on offspring BW), while
negative βMj

were drawn from a uniform distribution (between
−0.05 and −0.01). The pleiotropic effect γj was induced to have

Fig. 2. Diagrams illustrating the twomodels underlying the relationship between BW
and cardiometabolic phenotypes that were simulated in this manuscript. In Scenario
1, maternal SNPs negatively (−ve) affect offspring BW via intrauterine mechanisms.
When alleles at these loci are transmitted from mothers to their children, they also
exert positive (þve) pleiotropic effects on hypertension as manifested by increased
systolic blood pressure in later life. In Scenario 2, the SNPs used as instrumental
variables are associated with increased offspring BW when present in the mother
and also exert direct effects on lowering offspring BW through the fetal genome.
These genotypes are associated with later life type 2 diabetes (T2D) (measured by
fasting blood sugar levels). In both scenarios, the correlation between BW and cardi-
ometabolic phenotypes is due solely to genetic pleiotropy (i.e. not developmental
mechanisms).
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a negative correlation with βMj
by multiplying βMj

by −1.1 and
adding independently drawn error terms (drawn from a uniform
distribution between −0.03 and 0.03). In Scenario 2, values for βOj

were drawn from a uniform distribution (between −0.05 and
−0.01). Values for βMj

were drawn from a uniform distribution
between 0.01 and 0.05, while values for γjwere calculated by multi-
plying βMj

by 1.1 and adding error terms (drawn from a uniform
distribution between −0.03 and 0.03). These procedures induced
positive or negative effects of the genotypes on the exposures
and outcomes according to Fig. 2.

Mendelian randomization and conditional analyses

We investigated the performance of several types ofMR analysis on
the simulated data including MR using an allele score of offspring
BW-associated SNPs weighted by the (offspring) effect size on BW
(WAS-MR),20 inverse variance weightedMR (IVW-MR),21 weighted
median MR (WM-MR),22 and MR-Egger regression.15 These meth-
ods all use BW-associated SNPs in the offspring to perform MR
analysis, similar to what has been done by previous authors investi-
gating the Barker hypothesis8–10. Our performancemeasures of inter-
est are estimates of the causal effect of BW on cardiometabolic
phenotypes (i.e. these estimates should be zero since no causal rela-
tionship is simulated) and type 1 error rates.

We compared these methods to the procedure that we recom-
mend, which involves regressing offspring cardiometabolic out-
come on an allele score of maternal SNPs that are associated
with offspring BW, while conditioning on offspring genotypes at
the same loci.16 We note that while our procedure uses MR prin-
ciples to increase its robustness to confounding and reverse causal-
ity, it does not yield estimates of a causal effect. This is because we
do not believe that BW causally influences future cardiometabolic
phenotypes, but rather is only an imperfect marker of the rate of
intrauterine growth, and so estimating causal effect sizes in this
context is inappropriate.

First, we regressed the simulated offspring cardiometabolic out-
come on an unweighted maternal allele score (i.e. a simple count of
the number of BW increasing alleles in each individual) while con-
ditioning on an unweighted offspring allele score of the same SNPs.
Second, we regressed offspring outcome on a weighted maternal
allele score of BW-associated SNPs, controlling for each of the
20 SNPs (as separate terms) in the offspring. Our performance
measures of interest were the regression coefficient of offspring
cardiometabolic phenotype on maternal allele score (which should
be zero since no causal relationship is simulated) and type 1 error
rate. The R code used for performing the simulations used the two-
sample MR package for many of the analyses23 and is available in
the Supplementary Material.

Results

The average causal effect estimate of BW on the outcome and type
1 error rate (α= 0.05) across 10,000 replicates for each of the tradi-
tional MR approaches is presented in Table 1. Under both scenar-
ios, WAS-MR, IVW-MR, WM-MR, and MR-Egger regression
produced nonzero estimates of the mean causal effect and inflated
type 1 error rates. In contrast, the mean effects from the condi-
tional analyses were centered on zero (i.e. no causal effect) and
had appropriate type 1 error rates.

Discussion

All “standard” MR methods, which didn’t take into account the
relationship between maternal and offspring genotypes, produced
inflated type 1 error rates and biased estimates of the causal effect
of BW on the outcome under Scenario 1 and Scenario 2 (Table 1).
Therefore, investigators naively using these methods would likely
come to the incorrect conclusion that BW has a causal effect on the
risk of cardiometabolic disease. In contrast, conditional association
analyses using either an unweighted or weighted maternal allele
score corrected for offspring genotypes yielded no evidence of

Table 1. Results of the simulation study. The average effect estimate (causal estimate in the case of the four Mendelian randomization (MR) methods, and regression
coefficient of offspring cardiometabolic outcome onmaternal allele score in the case of the two conditional analyses), 95%Monte Carlo confidence intervals (CIs), type
1 error rates (α= 0.05), and the Monte Carlo CIs of these type 1 error rates. The four traditional MR methods used were: weighted allele score MR (WAS-MR), inverse
variance weighted MR (IVW-MR), weightedmedian MR (WM-MR), andMR-Egger regression. The conditional analyses estimated the effect of thematernal genetic scores
(conditioned on offspring genotype) on cardiometabolic outcomes

Scenario 1 Mean effect estimate (95% CI) Type 1 error rate (95% CI)

WAS-MR −1.903 (−1.909, −1.897) 1 (1.000, 1.000)

IVW-MR −1.904 (−1.909, −1.898) 1 (1.000, 1.000)

WM-MR −1.130 (−1.138, −1.123) 0.949 (0.944, 0.953)

MR-Egger −1.388 (−1.401, −1.376) 0.588 (0.578, 0.598)

Unweighted conditional analysis 0.000 (0.000, 0.000) 0.050 (0.046, 0.054)

Weighted conditional analysis 0.000 (−0.002, 0.001) 0.051 (0.047, 0.056)

Scenario 2 Mean effect estimate (95% CI) Type 1 error rate (95% CI)

WAS-MR −1.015 (−1.021, −1.009) 0.998 (0.997, 0.999)

IVW-MR −1.015 (−1.022, −1.009) 0.799 (0.791, 0.807)

WM-MR −0.545 (−0.551, −0.539) 0.755 (0.746, 0.763

MR-Egger −0.694 (−0.707, −0.680) 0.138 (0.131, 0.145)

Unweighted conditional analysis 0.000 (0.000, 0.000) 0.051 (0.047, 0.056)

Weighted conditional analysis 0.000 (−0.001, 0.001) 0.049 (0.045, 0.054)
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association with the outcomes and produced correct type 1 error
rates (Table 1; Mean = 0; type 1 error rate= 0.05 all scenarios).

The results of our simulations clearly show that traditional MR
analyses, even those that are more robust to violations of core
instrumental variable assumptions like MR-Egger regression15

and weighted median approaches,22 that do not take into account
the relationship between maternal and offspring genotypes, can
produce spurious evidence in favor of a causal relationship
between BW and cardiometabolic disease in later life, when in fact
no such relationship exists. In contrast, we have demonstrated that
when maternal allele scores are conditioned on offspring genotype,
the results maintain correct type 1 error in the absence of maternal
genetic effects on the offspring cardiometabolic phenotype. Ideally,
evidence for the association should also be examined using condi-
tional analysis of father offspring pairs as a negative control. If a
similar, nonzero association is also observed using paternal
SNPs (conditional on offspring genotype at the same loci), then
this strongly implies that the association between parental geno-
type and offspring phenotype may be mediated through the post-
natal environment, rather than the intrauterine environment.

If investigators are interested in testing the validity of the Barker
hypothesis, we recommend a strategy of testing for association
between maternal genotypes related to BW and offspring cardio-
metabolic phenotypes conditional on offspring genotypes at the
same loci.13,16,24 Indeed if the focus of interest is on DOHaD more
broadly, then we point out that a similar framework could also be
used to test for causal relationships between specific environmental
exposures during pregnancy (e.g. maternal blood pressure, mater-
nal adiposity, etc.) and offspring cardiometabolic phenotypes con-
ditional on offspring genotype. Using MR principles to investigate
specific maternal environmental exposures during pregnancy in
relation to future cardiometabolic risk may be a superior strategy
to just using maternal SNPs related to offspring BW for a number
of reasons including (a) the underlying mechanisms responsible
for the association between many maternal SNPs and offspring
BW is unclear, (b) offspring BW itself is an imperfect measure
of many processes of interest including the rate of intrauterine
growth, and (c) it is possible that maternal environmental expo-
sures have long-term effects on offspring cardiometabolic health
but no effect on offspring BW.

In our analyses, we have used a simple multivariable regression
analysis to test our hypotheses. This is because using instrumental
variables analysis to estimate the causal effect of the rate of intra-
uterine growth would not be appropriate in this situation, since we
have not directly measured the exposure of interest, merely BW –
an imperfect proxy of the rate of intrauterine growth.25 That being
said, it may still be possible to estimate the causal effect of the rate
of intrauterine growth on later life phenotypes using, for example,
latent variable methods (making certain assumptions). Indeed,
creating statistical genetics models to do this is a current focus
of our research group.

Finally, we note that our procedure requires estimates of
the association between maternal SNPs, conditional on offspring
genotypes at the same loci, and offspring cardiometabolic pheno-
type. While conditional estimates can be obtained using genotyped
mother–offspring pairs, there is a paucity of cohorts around
the world with such information available, particularly where
the offspring are old enough to have developed cardiometabolic
conditions. Therefore, such conditional analyses may be under-
powered.26 This shortfall in numbers may be partially addressed
by calculating conditional estimates of maternal and offspring
genetic effects using separate genome-wide association studies of

unrelated mothers and offspring via structural equation model-
ling12,16 or similar statistical procedures.27,28 However, the power
to accurately estimate conditional effect estimates is far less com-
pared to if mothers and children from the same families are used.26

We have developed methods that impute “virtual” parental
genotypes from genetic studies of relative pairs that can be used
to derive conditional maternal genetic effect estimates and further
increase the power of these sorts of analyses.29 We are hopeful that
new statistical methods such as these, large-scale genetic studies
with information on families,30,31 and collaborations such as the
within families genetics consortium,32 can be combined produc-
tively to enable appropriate testing of hypotheses related to the
Barker hypothesis andmore broadly DOHaD usingMR in the near
future.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S2040174420001105.
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