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COMMENTARIES

Using Meta-Analysis to Increase Power
in Differential Prediction Analyses

MATTHEW J. BORNEMAN
Southern lllinois University

Meade and Tonidandel (2010) correctly
note several of the interpretive and statisti-
cal problems associated with the analysis
of differential prediction. These include,
most notably, problems with low statisti-
cal power. However, modern techniques
of meta-analysis can alleviate this prob-
lem by combining the regression analy-
ses from multiple smaller sample studies,
thereby reducing standard errors for the
regression coefficients and increasing statis-
tical power. In addition, these meta-analytic
techniques can provide more accurate esti-
mates of intercept differences, allowing for
more accurate interpretation of differential
prediction analyses. This commentary will
serve two purposes. First, | will briefly intro-
duce these meta-analytic techniques and
discuss some of the analytic care that must
be taken in primary studies assessing dif-
ferential prediction. This directly addresses
concerns regarding statistical power dis-
cussed in the focal article. Second, | will
note additional research questions that can
be addressed using these meta-analytic
techniques, which can help build theory
and recommendations for practice.
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Meta-Analysis of
Regression Weights

Although techniques to meta-analyze re-
gression weights have been known for
decades, Becker and Wu (2007) recently
introduced a new method to meta-
analytically synthesize regression slopes
from multiple independent studies. This
method can be applied to any set of
regression models, including those with
and without an intercept, quadratic terms,
and interaction terms; more pertinently,
these methods can be used to synthesize
regression slopes in differential prediction
analyses (i.e., the Cleary model, 1968). In
fact, they have also shown that the results
from these techniques can be exactly equiv-
alent to the results from a full dataset
containing all cases from all of the primary
studies. Basically, these techniques weight
the regression coefficients by the inverse of
the standard error. To conduct these anal-
yses, three supermatrices (i.e., matrices of
matrices) need to be constructed; these are
described in more detail in the Appendix
using the Cleary model of differential pre-
diction as an example.

The primary concern with the meta-
analysis of regression coefficients is that
each study must calculate the exact same
regression equation. Although this is a
serious concern with this technique gen-
erally, two facts mitigate this concern.
First, this meta-analytic technique is flexible
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enough to analyze regression coefficients
from multiple sets of regression equations
and compare results with and without cer-
tain terms through the use of moderator
analyses (see Becker and Wu [2007] for
additional comments regarding this issue).
Second, and more importantly, studies that
assess differential prediction with the Cleary
model have fairly standard output and
nearly always include all four terms, pre-
cluding any need for these more complex
analyses.

However, studies do not always use the
same metric for the predictors. Although this
is less of a concern when the intercept is not
of interest (because unstandardized coeffi-
cients can readily be converted to standard-
ized coefficients given the standard devia-
tions [SDs] of the predictors/criteria), it is of
grave importance when assessing the Cleary
model. To be interpretable when aggregat-
ing unstandardized regression coefficients,
all the studies must be on the same met-
ric; averaging regression coefficients with
different scales is tantamount to mixing
apples and bricks. For an example from
the standardized test literature, consider the
SAT-Quant, which has SD ~ 100, and the
ACT Math, which has SD ~ 5.0; a one unit
increase on the ACT is substantially more
than a one unit increase on the SAT. To help
standardize the metric moving forward, |
recommend first standardizing the focal
predictor/criterion to have M =0.0 and
SD = 1.0 for the total combined group and
using a 0/1 coding scheme for the dichoto-
mous group indicator variable. This will
then force the interaction term and the inter-
cept to a common metric as well, allowing
interpretable accumulation across studies.

Third, the variance—covariance matrix
for the regression weights is nonstandard
output in software packages and typically
unreported in articles.” Although standard
errors are usually reported (i.e., the diagonal

1. It is possible to calculate this matrix from a
correlation matrix and the R?> value when there
are only linear terms in the regression equation and
the intercept is not of interest; however, neither
is true when meta-analyzing results from Cleary
analyses.
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elements of the matrix), the covariance ele-
ments are not. As such, | also recommend
that this matrix be calculated and reported
along with the regression weights; this will
help facilitate future accumulation of regres-
sion coefficients moving forward. Although
it is not technically necessary to have
the off-diagonal elements (Becker and Wu
[2007] present examples where zeroes are
assumed for covariances among regression
coefficients and note for possibilities for the
use of artifact distributions), results are most
accurate when these values are available.

Finally, it should be noted that this call
is for reporting research moving forward;
it is unlikely there are sufficient data in
published manuscripts lying around for
meta-analysis. Published and unpublished
data sets can certainly contribute to future
meta-analyses, though some reanalysis will
need to take place to contribute to a
future meta-analysis using the techniques
presented here.

Additional Research Questions

Similar to more traditional uses of meta-
analytic techniques, the benefits of this
new meta-analytic technique are twofold.
First, cumulating across multiple studies
will provide more accurate estimates of
the regression coefficients, allowing the
researcher to be more confident when inter-
preting the magnitude of these coefficients.
Second, these techniques allow for the
possibility of increasing statistical power
and decreasing confidence intervals around
these estimates, decreasing error rates of
these statistical analyses. However, these
analyses permit additional research ques-
tions to be asked.

The Becker and Wu (2007) methods of
meta-analysis also permit moderator anal-
yses to be conducted. At minimum, this
will allow for differences to be computed
between different assessments, test batter-
ies, or constructs; this helps provide aggre-
gated estimates of group differences in
slopes and intercepts, allowing additional
theory to be developed regarding the causes
and correlates of these differences.
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Another application of these moderator
analyses is for advice on the practice of
employee selection. Meade and Tonidandel
suggest that practitioners and consultants
work together to discover the causes of
slope and intercept differences, should they
be found. This work can be extremely
beneficial to others as it can allow other
researchers, consultants, and practitioners
to avoid similar pitfalls in their selection
work. And as before, this will also allow
for theory to be developed as to what
HR practices, test development efforts, and
so on can lead to slope and intercept
differences.

Conclusion

Meta-analytic techniques for regression
coefficients are a new and useful tool to
enhance differential prediction analyses.
These techniques can increase the statistical
power of Cleary model analyses and
provide more accurate estimates of the
regression coefficients. In addition, through
the use of moderator analyses, theory can
be built to help both selection research and
practice.
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Appendix

First, consider a column vector of the
regression weights from the Cleary model,
b;' = [b,’o, b,'x, b,'y, b,'()(y)], where i indexes
the study, bg is the intercept, by is the
regression weight for the predictor, by is the
regression weight for the group indicator,
and byxy is the regression weight for the
interaction term. The first supermatrix, b, is
created by vertically stacking all of the by’
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column vectors yielding a [(4k) x 1] vector?
where k is the number of studies and

bio 7

by x

biy
biixy)

bio
bix
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The second supermatrix is created by diag-
onally binding the variance—covariance
matrices of the regression weights for each
study. This turns out to be

Cov(by) 0 0 0
0 Cov(by) O 0
0 0 ’ 0
0 0

Y =

0 Cov(by)
(A2)

where X is a (4k x 4k) supermatrix, and
Cov(by) is the variance—covariance matrix
of the regression weights [i.e., (X/X;)~'S?],
where X is a matrix of predictor scores’
and S is the mean squared error for the
regression model in study i. The final
supermatrix is a weight matrix W of ones
and zeros denoting which study includes
which regression weights; in the simplest
case, where each study includes all four
regression coefficients of the Cleary model,
the resulting W matrix would be k stacked

2. The number of rows is 4k when meta-analyzing the
Cleary (1968) model only; it would be k*p more
generally, where p is the number of regression
slopes.

3. For analyses including a regression intercept
(including those with the Cleary model), a column
vector of ones is appended to the predictor score
matrix such that the ones appear as the first column.
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4 x 4 identity matrices, yielding a (4k x 4)

supermatrix.*
[1 0 0 07
01 0 O
0O 0 1 0
0 0 0 1
We | ¢ 1@ : (A3)
10 0 O
0O 1T 0 O
0O 0 1 0
00 0 1]

With the three supermatrices from
Equations (A1)-(A3) having been con-
structed, two additional steps need to be
conducted to calculate the weighted mean
(which is, in effect, weighted by the inverse
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of the standard error) and aggregated
variance—covariance matrix of the regres-
sion coefficients (which will vyield the
standard errors). The mean effect is cal-
culated by
B=WZIZI'W)'WEZ b (A4
The aggregated variance—covariance matrix
can then be calculated by
Covip) = W'Z~'w)~". (A5)
In short, though considerably more com-
plex, this method of meta-analysis provides
accurate estimates of aggregated regression

coefficients in a manner similar to more
traditional methods of meta-analysis.

4. It is also important to note that the W matrix is
where additional weights would be included for
“moderator analyses; see Becker and Wu (2007) for

additional details on how to conduct moderator
analyses.
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