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Simplexes and other configurations upon a rational normal
curve. By Mr F. P. -WHITE, St John's College.

[Received and read 25 July 1927.]

The theorem that if two triangles be inscribed in a conic their
six sides touch another conic is, of course, to be found in all the
text-books; it is apparently due in the first place to Brianchon*.
The further remark, that if three triangles be inscribed in a conic
the three conies obtained from them in pairs have a common
tangent, is to be found in Taylor's Ancient and Modern Geometry
of Conicsf; it was made independently by Wakeford.

The first generalization to the space cubic is due, so far as
I have been able to discover, to von StaudtJ, who shewed that
if two tetrads of points be taken on a space cubic, the eight faces
are planes of a cubic developable. This theorem, again, was dis-
covered independently by Hurwitz§ in 1875; he also pointed out
that there is then on the cubic a single infinity of tetrads whose
faces touch the same developable, the tetrads forming, in fact, an
involution of sets of four points on the cubic curve. Meanwhile
Cremona || had considered three ra-ads on the cubic curve, and the
doubly-infinite involution of sets of n points determined there-
from, and had shewn that their faces, I _) from each n-ad, touch

a surface of class n — 2. Independently, again, Paschif had con-
sidered the particular case n = 4, in which the twelve faces of three
tetrads touch a quadric.

In 1882 Emil Weyr**, who was acquainted with the work of
Cremona, considered his theorem in more detail, shewing that the
surface of class n — 2 passes through £ (n — 1) (ra— 2) chords of
the cubic curve. For n = 5 we get a class-cubic surface and the
six chords of the cubic curve form half of a double six thereon.
Weyr was, however, chiefly concerned with involutions on rational
curves in the plane, and his numerous other papers ff are not
much to the point.

* Brianchon, Mimoire sur les lignes du second ordre, Paris, 1817, p. 35 (reference
taken from Kncykl. Math. Wits., HI, C. 1, p. 35, fn. 100).

t Cambridge, 1881, p. 360. Taylor refers to H. Picquet, Etude giomStriqve des,
systemes ponctiiels, Paris, 1872, but this author only gives the converse.

* Von Staudt, Beitrage zur Geometric der Lage, 1860, p. 378.
§ Announced in Math. Ann., 15, 1879, p. 14; proof ibid., 20, 1882, p. 135.
| Cremona, Bendiconti Lombardo (2), 12, 1879, pp. 347-52; Opera, t. m, p. 441-
* Pasch, Journal/Ur Math., 89, 1880, p. 256.

" Weyr, Bulletin de Vacad. Toy. de Belgique (3), 3, pp. 472-85.
+f See list in the Royal Society Catalogue of Scientific Papers.
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Finally W. F. Meyer* gave the general theorem: The faces of
k n-ads (and of the oo *~1 n-ads of the involution determined by
them) upon a rational normal curve of order m in space of m
dimensions touch a variety of primes of dimension k — 1 and

class ( , ), (m > k > 2). This result is also given in Segre's

article on Mehrdimensionale Rdmne'f; with the extension made
by F. DeruytsJ to rational curves of order m in space of less than
m dimensions we are not here concerned.

Recently Professor Kubotajjj has returned to the matter, ap-
parently without being aware of the work of Cremona, Weyr and
Meyer; he has considered in particular the case of pentads upon
a space cubic curve and has made a notable extension, as follows:

Taking three pentads upon the curve we get a class-cubic
surface touched by the 30 faces; four pentads give four such sur-
faces which have the planes of a cubic developable in common;
five pentads give five cubic developables which have one plane in
common.

Kubota's work, like that of all writers on this matter except
von Staudt, Hurwitz and Wakeford, is algebraical; and no author
treats n-ads upon a rational normal curve in what would appear
to be the natural manner, namely as arising from the prime
sections of a curve of order n in space of n dimensions, of which
the given curve is a projection. It therefore seems worth while to
point out that a large number of the results hitherto obtained,
including those of Kubota, with generalizations, may be very
readily seen without any calculation by the help of the gene-
ration of the rational normal curve of 'order n from protective
systems, which is explained in Veronese's paper " Princip des
Projicirens und Schneidens||."

For the sake of clearness, a few particular cases will be con-
sidered, and generalizations will be merely indicated II.

1. Pentads upon a cubic curve.
Consider a rational normal quintic curve in space of five di-

mensions ; and take any three chords I, I', I". Then it is clear
that the trisecant planes of the curve are obtained as the inter-
sections of corresponding primes of three triply infinite projectively
related systems of primes through I, I', I" respectively.

* Meyer, Apolaritat und rationale Curven, 1883, p. 387.
•f Encykl. Math. Wise., in, C 7, p. 896. X See reference in Segre, loc. cit.
§ Kubota, Science Reports, Tohoku Imperial University, 15, 1926, pp. 39-44;

Math. Zeits., 26, 1927, pp. 450-6.
!| Veronese, Math. Ann., 19, 18B1, pp. 161-234, especially pp. 219-20.
IT The proof of the theorem on the twelve faces of three tetrads on a space cubic

curve from four dimensions is indicated in Baker's Principles of Geometry, vol. iv,
1925, p. 147.
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Now take two arbitrary primes meeting in a solid <S; a tri-
secant plane lying in any prime through S meets S in a line. We
consider then the trisecant planes which meet S in lines.

Let P be a point of S; join it to I, I', I" by planes Wj, «r2', BT3",
and let •cr2, •ET3 be the planes through I corresponding to or2' and
to tjg" in the projectivity mentioned above. As P varies in S we
thus get three projectively related triply infinite systems of planes
through I, and taking the section by an arbitrary solid 2 we get
three projectivities of the space 2. Three corresponding planes
«r,, IIT2, CT3, passing through I, lie in a prime II through I which,
with its corresponding primes through l\ I", gives the trisecant
plane of the quintic curve which passes through P. This tri-
secant plane thus projects from I on to 2 into the plane joining
three corresponding points in the projectivities of 2. If, however,
the trisecant plane meets S. in a line m, the solid joining it to I
lies with the solids corresponding to it, in the projectively related
systems through I, in the prime which projects the trisecant plane,
and hence in this case the projection is a plane which contains
three corresponding lines in the projectivities of 2. This is the
dual of the point of concurrence of three corresponding lines in
three projectivities between the planes of a space of three dimen-
sions and the locus of such points is known to be a sextic curve
of genus three, the residual intersection of two cubic surfaces with
a space cubic curve in common*.

Hence we have the result that the trisecant planes of a quintic
curve in five dimensions which meet a given solid in lines project,
from a chord of the curve, into the planes of a sextic developable
of genus three, obtained from two class-cubic surfaces with a cubic
developable in common.

On projection the quintic curve gives rise to a cubic curve
in 2, the intersections of primes through S with the quintic give
an involution of sets of five points upon the cubic, determined by
any two of the sets, and the ten trisecant planes lying in any such
prime give the ten faces of the corresponding pentad on the
cubic.

Hence the 20 faces of any two pentads on a space cubic curve
touch a sextic developable, which is touched by the faces of all the
pentads of the involution which they determine.

It is easy to see that the oo 1 lines in which S is met by tri-
secant planes are the trisecant chords of the sextic curve (of genus
three) in which S meets the sextic three dimensional variety of
chords of the quintic.

The case of three pentads upon the cubic curve is rather
simpler. These clearly arise in a similar way from the intersections

* Schur, Math. Ann., 18, 1881, pp. 1-32.
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of the quintic curve with three primes, which meet in a plane m.
The faces of the pentads of the doubly infinite involution deter-
mined by the three arise from the trisecant planes which meet TX,
each in a point. Joining vr to I, I', I" by primes IIj, II,', n3" and
taking II2) n3, through I, corresponding to IT/, n3" respectively,
we have three primes through I containing respectively the three
planes •ar1, ST2, •ar3 arising from any point P in ts. On projection
we get from IIi, n2) II3 three planes in 2, projectively related,
and the join of corresponding points in these planes is the
projection of a trisecant plane of the quintic curve which
meets vr.

Again we have the dual of a case considered by Schur and
others, who obtain a cubic surface as the locus of intersections
of corresponding planes of three projectively related bundles (or
stars), each with a base point. Moreover, as is well known, there
are six sets of corresponding planes which meet in lines, giving
six lines of the cubic surface, the half of a double six. In our case
we get a class-cubic surface and six lines of it; clearly these six
lines arise from the chords of the quintic curve which meet w, in
the six intersections of or with the variety of chords.

Hence we have the result:
Three pentads of points on a space cubic curve determine a

doubly infinite involution of pentads, and the ten faces of each
pentad touch the same class-cubic surface, which has six chords of
the curve as half of a double six.

The configuration for four pentads is similarly obtained from
four primes in the space of five dimensions, which have in common
a line m. The threes of the four pentads determine four planes
through this line and the planes common to the four class-cubic
surfaces are obtained from the trisecant planes of the quintic curve
which meet m. In this case we get three solids through I and
sets of three planes through I, lying in them and projectively re-
lated. On projection we get, from the trisecant planes meeting TO,
the planes joining corresponding points of three projectively related
lines, that is, the planes of a cubic developable. Hence, the four
class-cubic surfaces touching the faces of threes of four pentads
upon the cubic curve have in common a cubic developable.

Lastly, take five pentads upon the cubic curve. These arise
from primes through a point P in the five-dimensional space.
Through this point just one trisecant plane of the quintic can be
drawn. We have thus the final result:

The five cubic developables arising from the sets of four pentads
taken from the five have one plane in common.
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2. (2r — l)-ads upon a rational normal curve of order r.
Precisely the same method applies to sets of 2r — 1 points

upon a curve of order r in space of r dimensions. We need only
state the results.

A set of 2 r - l points in r dimensions gives, by the joins of

r points, ( ) primes, which we shall call the faces of the

(2r - l)-ad.
The faces of r such (2r — l)-ads upon the curve of order r

touch a variety of primes of dimension r — 1 and class r, obtained
from r projectively related primes, say a V^__v

The r + 1 such Vr
r_l arising from the sets of r of r + 1

(2r — l)-ads have in common a F*^"1*.
The r + 2 such V^}[~1) arising from the sets of r +1 of r + 2

(2r - l)-ads have in common a rjl<p1)(r~2).

C)The r + k such Fr_£ arising from the sets ofr + A - 1 oi r + k

(2r — l)-ads have in common a Fr_j2{.

The 2r — 1 such F / (developables of class r) arising from the
sets of 2r — 2 of 2r — 1 (2r — l)-ads have in common a single
prime.

This general statement includes the case of § 1 for r = 3, and
for r = 2 gives the theorem in conies mentioned in the introduction.

3. Hexads upon a cubic curve.
As another example, take the case of three hexads upon a

space cubic curve.
These should be considered as arising from three primes and

a sextic curve in space of six dimensions. The three primes inter-
sect in a solid, which meets a plane in a prime through it in a
point. We have thus to consider the trisecant planes of the sextic
curve which meet a given solid S in points.

Now the trisecant planes of a rational normal sextic curve
arise as the intersections of corresponding primes of four pro-
jectively related triply infinite systems of primes, the base of
each being a trisecant plane of the curve. Let o, y3, y, 8 be the
bases. Then joining a point P to a, /3, 7, 8 by solids and pro-
ceeding as before, we get four solids through or. If these He in a
prime this prime projects from a a trisecant plane which then
passes through P. Taking all points of S and projecting from o
upon a solid 2 we thus get four projectivities of S, and the tri-
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secant planes which meet S project into planes which join four
corresponding and coplanar points in these projectivities. The
locus of planes in 2 is thus* a surface of class 4, whose tangential
equation is given by the vanishing of a determinant of four rows
and columns—a surface which, following Jessopf, we may call a
determinant class-quartic surface.

This surface is, however, not the most general determinant
class-quartic; it contains 10 lines which are chords of the cubic
curve, these arising from the 10 chords of the sextic curve which
meet the solid S. (The locus of chords of the sextic is a variety
of dimension 3 and of order 10.) Hence the result:

The 45 faces of three hexads upon a space cubic curve touch a
surface of class 4 which is the Jacobian of four quadrics, given in
plane coordinates.

It is not necessary to do more than state the results for four
and for five hexads upon the cubic curve.

Taking four hexads, the four class-quartic surfaces arising from
the threes thereof have in common the planes of a developable of
class 6 and of genus 3 ; taking five hexads, the five sextic de-
velopables have in common four planes^.

The extension to the rational normal curve of order r is at
once clear. We take r sets of 2r points upon the curve; the

/2r\
r ( J faces touch a variety of class r + 1; r + 1 sets give r + 1

such varieties, with the primes of a F*1_(£+1) in common, and so
on, until finally we arrive at 2r — 1 sets of 2r points and r +1
common primes.

The elementary case in which r = 2 is interesting; the twelve
sides of two quadrangles inscribed in a conic touch a curve of
class 3; the three class-cubics arising from three quadrangles have
three common tangents.

4. (n + l)-ads upon a rational normal curve of order n.
Another generalization of the theorem concerning tetrads upon

a space cubic curve is worth special investigation, particularly as
Segre§ calls attention to it in a foot-note. This is the case of
simplexes upon a rational normal curve of any order.

* Schur, loe. cit.
t Jessop, Quartic Surfaces, Cambridge, 1916, Chap. ix.
X The points P in S through which pass trisecant planes of the sextic curve

describe a symmetroid, the 10 nodes of which are the points of intersection of S
with the variety of chords of the sextic. For the four hexads we get a plane in the
six-dimensional space and on it a quartic curve, through the points of which pass
trisecant planes; with five hexads we get a straight line and four points of it. The
symmetroid, the quartic curve and the four points are the intersections of 5, the
plane and the line respectively with the variety of trisecant planes of the sextic,
which is of dimension 5 and order 4.

§ Segre, loc. cit., p. 896, fn. 375.
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For this we consider the curve as the projection of a curve
of order n + 1 from a point of itself. As before, a simplex arises
by projection from the intersections of this curve by a prime, and
the faces of the simplex from the n-secant spaces of dimension n —1.
Consider two such simplexes and the corresponding primes, which
meet.in a space S of dimension n — 1. In a prime through S a
space of dimension n — 1 meets S in a space of dimension n — 2.
We have thus to consider the n-secant spaces of the curve of order
n +1 which meet S in spaces of dimension n — 2.

The n-secant spaces arise as the intersections of corresponding
primes of two related oo" systems whose bases are respectively
two points A, B of the curve. Taking any point P and joining
to A, B, and taking the line through A. which corresponds to the
line BP through B, we have two lines through A, and any prime
through the plane determined by these lines meets the corre-
sponding prime through B in an n-secant space which passes
through P.

Varying P in S and projecting from A upon a prime 2 we get
two protectively related primes nr, p of 2, corresponding points
arising from the pairs of lines through A, and an w-secant space
through P projects into a prime in 2 which contains two cor-
responding points of the primes or, p. An n-secant space which
meets S in a space of dimension n - 2 thus gives rise in 2 to two
spaces of dimension n — 2 in ts, p which correspond in the pro-
jectivity and which lie in a prime of 2.

The dual of all this is, first, a projectivity of the primes through
two points in a space of n-dimensions, and then two corresponding
lines in the projectivity which intersect; the locus of such inter-
sections, as is well known, is a rational normal curve of order n.

Hence, in our case, the faces of the two simplexes and of the
simplexes in the involution determined by them are the osculating
primes of a rational normal curve of order n.

Three simplexes on the curve of order n arise in a similar way
from three primes in the space of n + 1 dimensions, which have in
common a space of dimension n — 2. We have to consider n-secant
spaces of the curve of order n +1 which meet this in a space of
dimension n — 3. Projecting from A upon 2 we.get two spaces
a, yS of dimension n — 2, projectively related, and the faces of the
simplexes arise from corresponding spaces of dimension n — 3 in
a, /3 which lie in a prime of 2. We thus get a double infinity of
primes of class n - 1 *.

Skipping intermediate cases, which may easily be worked out
if desired, let us go on to the case of n simplexes.

* The dual is a surface of order n - 1 arising as the locus of intersections
of corresponding planes of two projectively related systems of primes through
two lines.
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In the space of n +1 dimensions we have n primes, which meet
in a line I. A space of n — 1 dimensions in a prime through I
meets I in a point. We have thus to consider the n-secant spaces
of the curve of order n + 1 which pass through the points of I.
We clearly get, on projection from A, two lines m, n in 2, pro-
jectively related, two corresponding points M, N upon them arising
from the same point P of I. Any prime through MN is the pro-
jection from A of an n-secant space of the curve of order n + 1
which passes through P. The primes through MN are the tangent
primes of a quadric, which is moreover degenerate tangentially
into a quadric surface in the three-dimensional space of the
lines m, n.

The dual theorem is perhaps easier to state:
Taking n simplexes, each formed by n osculating primes of a

rational normal curve of order n, the n (?i + l) vertices lie upon
a quadric cone of which the "vertex" is a space of dimension a —4*.

For n + 1 simplexes (going back to the original form of the
theorems), we have to consider the w-secant spaces through a
point P, and thus on projection the primes through a line MN.
Hence the n + 1 quadrics ansing from the simplexes taken n at a
time have in common all primes through a line—the dual of the
statement that quadric cones of the (?i — 4)-th kind have a gene-
rating space of dimension n — 2 in commonf.

* Cf. Segre, loc. cit. He does not remark that the quadric is degenerate if n > 3.
For n = 3, 2 the cone becomes an ordinary quadric and a conic, respectively.

t The result, included in this for « = 3, that, for four tetrads on a cubic curve,
the four quadrics touching the faces of threes have a common generator, was re-
marked by Mr J. H. Grace.

https://doi.org/10.1017/S0305004100013748 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100013748

