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Abstract

We consider interacting urns on a finite directed network, where both sampling and
reinforcement processes depend on the nodes of the network. This extends previous
research by incorporating node-dependent sampling and reinforcement. We classify the
sampling and reinforcement schemes, as well as the networks on which the proportion
of balls of either colour in each urn converges almost surely to a deterministic limit.
We also investigate conditions for achieving synchronisation of the colour proportions
across the urns and analyse fluctuations under specific conditions on the reinforcement
scheme and network structure.
Keywords: Reinforcement; stochastic approximation; central limit theorem; synchroni-
sation
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1. Introduction

Interacting urn models have been studied extensively in recent times [2, 3, 6, 7, 11, 12, 13].
In an interacting urn model, each urn is reinforced based on the sampling of balls from itself or
other urns in the system. Such models exhibit interesting asymptotic behaviour and have appli-
cations across various fields, such as opinion dynamics [9] and in analysing contagion over a
network [14]. In addition to convergence, the phenomenon of synchronisation (or consensus)
is also of interest, especially for exploring applications of these models in opinion dynam-
ics. Synchronisation refers to the convergence of the proportion of balls of each colour to the
same limit across all urns. A special class of interacting models was studied in [13], where the
authors examined a two-colour multi-urn process where the evolution of each urn depends on
itself (with probability p) as well as on all the other urns in the system (with probability 1− p).
The interaction aspect of such models was extended to study urn processes (or, more generally,
stochastic processes taking values in [0,1]) on finite networks in [1]. The model studied in [12]
extends the interactions described in [13] by incorporating a non-linear sampling probability
that depends on a function of the number of balls of each colour. The author obtains conditions
on the function so that with probability 1 eventually only balls of one colour are added to the
urns. In [7] the authors consider interacting urns where the reinforcement dynamics depend on
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2 G. KAUR AND N. SAHASRABUDHE

the average composition in the system as well as a non-linear function of the individual urn
composition and show that in some cases there can be no synchronisation even when there
is an interaction between nodes. Further, the authors in [11] propose a system of reinforced
stochastic processes, interacting through an additional collective reinforcement of mean-field
type.

In this paper, we extend the work of [1, 10] by considering urns with balls of two colours on
a finite directed network G = (V, E), such that each urn i uses a node-dependent reinforcement
matrix Ri. That is, at each time step, a ball is drawn from each urn i, and the urn reinforces its
out-neighbours based on the colour of the drawn ball. If a white ball is drawn, it adds [Ri]1,1
white balls and [Ri]1,2 black balls to each of its out-neighbours; if a black ball is drawn, it adds
[Ri]2,1 white balls [Ri]2,2 black balls to its out-neighbours. We assume that each reinforcement
matrix is balanced, i.e. the row sums of Ri are constant (say mi).

We classify the urns or nodes as either Pólya or non-Pólya type based on the nature of their
reinforcement matrices. By considering node-dependent reinforcement, this paper extends the
work of [10], where the asymptotic properties of a similar interacting urn model with a fixed
reinforcement scheme are studied.

In addition to node-based reinforcement, we also consider node-based sampling, wherein
at each time step the probability of drawing a white ball from urn i is the fraction of white
balls in the urn at that time with probability qi, and the fraction of black balls with probability
1− qi. In other words, each urn has a tendency (quantified by qi) to ‘lie’ about its actual
configuration. When qi is either 0 or 1, it results in either preferential (where a white ball
is drawn with probability proportional to its fraction) or de-preferential sampling (where a
white ball is drawn with probability proportional to the fraction of black balls) respectively.
This type of linear de-preferential sampling, where a more frequent colour is less likely to be
sampled, has been studied before in [4, 9] for a single urn with multiple colours, where the
authors showed that, depending on the reinforcement matrix, the colour proportions in the urn
converge almost surely to a deterministic vector, and derived central limit theorem type results.

In this paper we classify the reinforcement types and graph structures that ensure the pro-
portion of balls of each colour across all urns converges almost surely to a deterministic limit,
thus generalising the results in [10]. Our results show that a deterministic limit exists if there is
at least one node with 0 < qi < 1, or the graph and the reinforcement matrices are such that the
influence of the stubborn urn (a node with zero in-degree) or a non-Pólya type urn permeates
the entire graph. Specifically, on a strongly connected graph, the presence of a single node with
non-Pólya type reinforcement is sufficient to guarantee a deterministic limit for the proportion
of balls of either colour across all urns. When all nodes are of Pólya type, we show that the
presence of de-preferential nodes can still yield a deterministic limit. Further, when qi ∈ {0, 1}
for all i, we classify graphs based on the relative positioning of preferential and de-preferential
nodes, where a deterministic limit is feasible. We also derive general conditions for synchro-
nisation, where the proportion of balls of either colour converges to the same deterministic
limit in each urn. Finally, we state and prove central limit theorem (CLT) type results for the
fluctuation of the proportion of a colour in each urn around its limit.

In the next section we provide an overview of the interacting urn process. For a matrix
Q ∈Rd×d and subsets S, F⊆ [d]:= {1, 2, . . . , d}, we use the notation QSF to represent the
|S| × |F| submatrix obtained by selecting elements from the index set S× F. For simplicity,
we write QS instead of QSS. Throughout the paper, 1 denotes a row vector of appropriate
dimension with all elements equal to 1.
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Interacting urns with node-dependent sampling and reinforcement 3

2. Interacting urn process

Let G = (V, E) be a directed network, where V = [N] denotes the set of nodes and E rep-
resents the set of directed edges. For nodes i and j in V , we use i→ j to indicate a directed
edge from i to j, and i� j denotes a path i= i0→ i1→· · ·→ ik−1→ ik = j from i to j, where
i1, . . . , ik−1 ∈ V . For a subset U ⊆ V , v→U means there exists at least one node u ∈U such
that v→ u. The in-degree and out-degree of a node i are denoted by din

i := |{j ∈ V : j→ i}|
and dout

i := |{j ∈ V : i→ j}| respectively. The in-neighbourhood of node i is Ni:= {j ∈ V : j→ i}.
Throughout this paper, we assume that G is weakly connected.

Following the approach in [10], the node set V is partitioned into two disjoint sets: the set of
stubborn nodes denoted by S and the set of flexible nodes denoted by F. Specifically, we have
V = S ∪ F, where S= {i ∈ V : din

i = 0} represents the stubborn nodes and F= {i ∈ V : din
i > 0}

represents the flexible nodes. Without loss of generality, we assume that the nodes labelled
1, . . . , |F| belong to the flexible set F. By adopting this labelling convention, the adjacency
matrix A, where [A]i,j = I{i→j}, has the following block structure:(

AF 0
ASF 0

)
.

Suppose each node i ∈ V has an urn that contains balls of two colours, white and black.
Let (Wt

i , Bt
i) be the configuration of the urn at node i, where Wt

i and Bt
i denote the number of

white and black balls. Let Tt
i =Wt

i + Bt
i be the total number of balls in urn i at time t. Define

Zt = (Zt
1, . . . , Zt

N), where Zt
i =Wt

i /(Wt
i + Bt

i), as the fraction of white balls in urn i at time
t≥ 0. Given the configuration (Wt

i , Bt
i)i∈V at time t, the configuration of each urn is updated at

time t+ 1 using the following two steps:

(i). Sampling: A ball is selected from each urn with a probability that is a convex com-
bination of the proportion of white balls and the proportion of black balls. Let χ t

i be
the indicator variable for the event that a white ball is drawn from the urn at node
i at time t. Then, conditioned on Ft = σ (Z0, Z1, . . . , Zt), {χ t+1

i }i∈V are independent
random variables such that

χ t+1
i =

⎧⎨⎩1 with probability qiZt
i + (1− qi)(1− Zt

i ),

0 with probability (1− qi)Zt
i + qt

i(1− Zt
i ),

(1)

where qi ∈ [0, 1] for each node i, i.e. given Ft, χ t+1
i is a Ber((2qi − 1)Zt

i + (1− qi))
random variable. We call this process linear sampling with parameter qi. Note that,
when qi = 1

2 , the sampling is independent of the urn configuration. A node i is termed
preferential if qi = 1 and de-preferential if qi = 0. Let P,D denote the set of nodes with
preferential and de-preferential sampling respectively.
Let χ t+1 = (χ t+1

1 , . . . , χ t+1
N

)
. Define I:=Diag (2q1 − 1, . . . , 2qN − 1) and �t:=

Diag ((Zt
1 − 1/2)2, . . . , (Zt

N − 1/2)2). Then, we have

E[χ t+1 |Ft]=ZtI + (1− q), (2)

Var (χ t+1 |Ft)=−�tI2 + 1

4
I. (3)
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4 G. KAUR AND N. SAHASRABUDHE

After observing the vector χ t+1, the balls are returned to their respective urns along
with a specified number of white and black balls, according to the reinforcement scheme
described in the next step.

(ii). Reinforcement: Let mi ∈Z≥0 and αi, βi ∈ {0, 1, . . . , mi} be fixed non-negative integers
for each node i ∈ V . If a white ball is selected from the urn at node i (in the sampling
step), αi white balls and mi − αi black balls are added to each urn j such that i→ j. On
the other hand, if a black ball is selected from the urn at node i, mi − βi white balls and
βi black balls are added to each urn at each node j such that i→ j. In other words, the
urn at node i reinforces its out-neighbours according to the reinforcement matrix

Ri =
(

αi mi − αi

mi − βi βi

)
.

We classify the type of reinforcement by node i as follows.

• Pólya type if αi = βi =mi, which corresponds to Ri =miI;

• non-Pólya type if 0 < αi + βi < 2mi.

The interacting urn dynamics (defined by the sampling and reinforcement steps) can be
expressed by the following recursive relations:

Wt+1
i =Wt

i +
∑
j∈Ni

[
αjχ

t+1
j + (mj − βj)

(
1− χ t+1

j

)]
,

Bt+1
i = Bt

i +
∑
j∈Ni

[
mj − αjχ

t+1
j + βj

(
1− χ t+1

j

)]
for all i ∈ V . (4)

Note that, although we consider mi, αi, βi ∈Z≥0, the results in this paper extend to all balanced
matrices with entries in R≥0. Furthermore, the urns at stubborn nodes are not reinforced, and
therefore their configurations remain unchanged throughout the process.

Before we proceed to state and prove our main results, we fix some notation.
Define ai = αi/mi and bi = βi/mi. Let a= (a1, . . . , aN) and b= (b1, . . . , bN). The total
reinforcement at node i is mi =∑j∈Ni

mj. We also define the diagonal matrices B=
Diag (a1 + b1 − 1, . . . , aN + bN − 1), Tt =Diag (Tt

1, . . . , Tt
N), M =Diag (m1, . . . , mN), and

M =Diag (m1, . . . , m|F|, 0S), where mi = 0 for every i ∈ S. Finally, the scaled adjacency

matrix is defined as Ã=MAM
−1

, where M
−1 =Diag (m−1

1 , . . . , m−1
|F|, 0S).

2.1. Equivalence in node-based and node-independent sampling

Throughout this paper, we have omitted the case where αi + βi = 0 or αi + βi = 2mi, except
for a specific case covered under Theorem 1. The case where αi + βi = 0 is when both values
are zero, which leads to the reinforcement matrix(

0 mi

mi 0

)
.

It is worth noting that preferential sampling with this reinforcement matrix is equivalent to
de-preferential sampling with Pólya type reinforcement. However, as discussed later, this rein-
forcement scheme may not always lead to a deterministic limit. In this paper our focus is
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1 2

1 2

FIGURE 1. The exploration process for the graph partition G(P1, P2, D1, D2), as described in Steps 8 to
11 of Algorithm 1 (Appendix A). The arrows represent the directed edges where, for instance, an arrow

from D1 to P1 means that there exist u ∈D1 and v ∈ P1 such that u→ v in G.

to analyse the cases where Zt converges to a deterministic limit, so we do not address these
specific cases.

More generally, for any node, linear sampling with parameter qi and reinforcement with Ri

is equivalent to uniform sampling with reinforcement using the matrix(
αiqi + (mi − βi)(1− qi) (mi − αi)qi + βi(1− qi)
αi(1− qi)+ (mi − βi)qi (mi − αi)(1− qi)+ βiqi

)
.

Such node-dependent reinforcement models, where each node uses its own reinforcement
scheme, have not been studied before. Despite equivalence through this coupling, we study
the processes by separating node-based sampling and node-based reinforcement for clarity
and application purposes. This distinction is important for extending existing models of de-
preferential sampling (see [4]) to interacting urns and for future exploration of non-linear
sampling schemes. The non-linear sampling has been studied before in [7], but it is limited
to complete graphs with sampling dependent on all the urns and a non-linear function of the
proportion of balls of white colour in each urn. Our approach naturally extends this to linear
node-based sampling on more general graphs, and we aim to explore non-linear node-based
sampling in future work.

2.2. Exploration process on the graph

Suppose qi ∈ {0, 1} for all i ∈ [N] and V =P ∪D. We introduce an exploration process
on the graph G = (V, E) that starts from an arbitrary node v ∈ V and proceeds to explore its
neighbours. In this process, nodes are categorised into subsets based on their sampling type
and the types of nodes in their in-neighborhood. More specifically, P is partitioned into sets
P1 and P2, and D is partitioned into D1 and D2, with P1, P2, D1, and D2 initially empty.
Depending on v’s sampling type, it is assigned to P1 (if preferential) or D1 (if de-preferential).
In the subsequent steps, the sets P1, P2, D1, D2 are updated based on the sampling type of
the newly explored node and their in-neighbours. If every node has a unique assignment, this
results in a partition of V into these four disjoint subsets. The exploration process is illustrated
in Figure 1. Detailed steps of the algorithm and examples are provided in the appendix (see
Algorithm 1 in Appendix A). This approach thus classifies all finite directed graphs into two
categories: graphs that admit partition via this exploration process and graphs that do not admit
a partition.

In Section 3, we state and prove the convergence and synchronisation results for Zt. In par-
ticular, we show that when all qi ∈ {0, 1} the limiting behaviour of the interacting urn process
depends on whether the underlying graph admits a partition or not. In Section 4, we prove CLT
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6 G. KAUR AND N. SAHASRABUDHE

type limit theorems for Zt. Finally, in Section 5, we discuss some examples with simulations
and applications in opinion dynamics.

3. Convergence and synchronisation

Theorem 1. (Convergence of Zt.) Suppose F is strongly connected and one of the following
conditions holds:

(i). There exists a node i with qi ∈ (0, 1).

(ii). There exists a non-Pólya type node in F.

(iii). There are no stubborn nodes, i.e. S �=∅.

(iv). All nodes in F are Pólya type and F does not admit a valid graph partition as per
Algorithm 1 (Appendix A).

Then Zt a.s.−→Z� as t→∞, where Z� is of the form (Z�
F, Z0

S) such that

Z�
F =

[
Z0

S(IBÃ)SF + (aÃ)F − (qBÃ)F
](

I − (IBÃ)F
)−1. (5)

Remark 1. When qi = 1
2 for all i, Z�

F =
( 1

2 (1+ a1 − b1, . . . , 1+ aN − bN )̃A
)

F . Further, when

the reinforcement at all vertices is Pólya type (ai = bi = 1), we get Z�
F = 1

2

(
1Ã
)

F . For instance,
on a cycle graph, this special case is equivalent to N independent urns or N independent
symmetric random walks.

Remark 2. We briefly discuss the case of the interacting node-based Pólya type urn process
when the underlying graph does not satisfy Theorem 1(iii).

• Suppose qi = 0 for all i (i.e. P =∅). Then if the graph partition exists, F admits a par-
tition under the exploration process if and only if F is a bipartite digraph with node sets
D1 and D2 (see Figure 1). This case is equivalent to each node i sampling uniformly and
the reinforcement scheme (

0 mi

mi 0

)
(as discussed in Section 2.1). A special case of this with mi =m for undirected bipartite
graphs, specifically for urns with multiple drawings, was studied in [8].

• Suppose qi = 1 for all i (i.e. D=∅). In this case, if the graph partition exists, there are
two disjoint strongly connected components P1 and P2, with no interaction between P1
and P2. Since we assume that the graph is strongly connected, one of these components
must be empty. A special case of this with mi =m for all i was studied in [10], where it
was shown that on a regular directed graph, the limiting configuration of urns is random.
Moreover, it was shown that the urns synchronise, in the sense that the fraction of balls
of either colour converges to the same random limit almost surely.

In general, when the graph is regular and mi =m for all i, it is easy to see that the limiting
fraction takes the form such that Zt

i→ Z∞ for all i ∈ P1 ∪D2 and Zt
i→ 1− Z∞ for all i ∈

P2 ∪D1. This can be shown by swapping the colours of the balls in P2 ∪D1 and applying the
existing synchronisation results from [2] for interacting Pólya urns.
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To extend Theorem 1 for weakly connected graphs (Corollary 1), we define a strongly
connected component C of F as a stubborn block if no node outside C can reach C; that is, for
any v /∈C, v �→C. Otherwise, it is defined as a flexible block.

Corollary 1. Suppose F is weakly connected. Suppose conditions (i), (ii), or (iv) of Theorem 1
hold for every stubborn block of F, or condition (iii) holds such that for every stubborn block

F′, there exists a node s ∈ S such that s→ F′. Then, as t→∞, Zt a.s.−→Z�, where Z� is as given
in (5).

3.1. Conditions for synchronisation

We now explore the conditions for synchronisation, i.e. when the limiting fraction of balls
of each colour is the same for every urn. Synchronisation occurs if and only if Z�

F = z�1 for
some constant z�, therefore from (5) we get

z�
(
1− (IBÃ)F1

)= [Z0
S(IBÃ)SF + (aÃ)F − (qBÃ)F

]
. (6)

This equality holds if each element of the vectors on both sides matches, i.e., for every i ∈ F,

z�

(
1− 1

mi

∑
j∈F∩Ni

(2qj − 1)rj

)
= 1

mi

( ∑
j∈S∩Ni

Z0
j (2qj − 1)rj +

∑
j∈Ni

αj − qjrj

)
,

where rj = αj + βj −mj (which is also an eigenvalue of Rj). Therefore, the following are
sufficient conditions for synchronisation.

Condition SC1. There exists a constant μF such that, for all i ∈ F,

1

mi

∑
j∈F∩Ni

(2qj − 1)rj =μF .

Condition SC2. There exists a constant μ0 such that, for all i ∈ F,

1

mi

( ∑
j∈S∩Ni

Z0
j (2qj − 1)rj + αj − qjrj

)
=μ0.

These conditions ensure that different components of the vector in (6) are constant, leading
to synchronisation within the framework of Theorem 1. Note that μF = 1 occurs only when
αj = βj =mj and qj = 1 for all j, i.e. when all nodes are preferential and of Pólya type – a case
not considered fully in this paper but discussed briefly in Section 5.

Another way to understand synchronisation conditions is as follows. Let

fi(Zt)= 1

mi
E
[
Wt+1

i −Wt
i |Ft

]
be the average proportion of white balls added to urn i at time t+ 1 given Ft. Then, using
(1) and (4), we find
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8 G. KAUR AND N. SAHASRABUDHE

fi(Zt)= 1

mi
E
[
Wt+1

i −Wt
i |Ft

]
= 1

mi

∑
j∈Ni

αj
(
qjZ

t
j + (1− qj)

(
1− Zt

j

))+ (mj − βj)
(
qj
(
1− Zt

j

)+ (1− qj)Zj
)

= 1

mi

∑
j∈Ni

Zt
j (2qj − 1)rj + αj − qjrj.

We can decompose fi into fi = f (fixed)
i + f (random)

i , where

f (fixed)
i = 1

mi

∑
j∈Ni∩S

Z0
j (2qj − 1)rj + αj − qjrj,

f (random)
i = 1

mi

∑
j∈Ni∩F

Zt
j (2qj − 1)rj.

The synchronisation occurs when the fixed part is the same for all i and the random part changes
with the same rate in the direction (1, 1, . . . , 1), which is given by〈

1,∇f (random)
i (Zt)

〉= 1

mi

∑
j∈Ni∩F

(2qj − 1)rj.

Corollary 2. (Synchronisation.) Suppose the conditions of Theorem 1 hold. Then, under the
synchronisation Conditions SC1 and SC2,

Zt
i

a.s.−→ z� = μ0

1−μF

as t→∞ for every i ∈ F.

Remark 3. Note that these conditions are only sufficient and not necessary. For instance, on a
cycle graph with all Pólya type nodes such that only one node is de-preferential, while condi-
tion Theorem 1(iv) holds (see also the first case discussed in Section 5.1), Condition SC1 does
not hold. However, it is easy to check that the fraction of balls of either colour synchronises to
a deterministic limit of 1

2 .

Corollary 3. (Synchronisation in extreme cases). Suppose either condition (i), (ii), or (iii) of
Theorem 1 hold. Further, suppose the following (special synchronisation) conditions hold.

Condition SSC1. There exist αF, αS, βF, βS, mF, mS ∈Z≥0 with αF + βF < 2mF +mS such
that, for every i ∈ F,

∑
j∈Ni∩S mj =mS,

∑
j∈Ni∩S βj = βS,

∑
j∈Ni∩S αj = αS, and

∑
j∈Ni∩F

Rj =
(

αF mF − αF

mF − βF βF

)
.

Condition SSC2. If S �=∅, there exist α0,S, β0,S, m0,S ∈Z≥0 such that, for every i ∈ F,∑
j∈Ni∩S

Z0
j Rj =

(
α0,S m0,S − α0,S

m0,S − β0,S β0,S

)
.
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Then:

(i) When there are no de-preferential nodes in the graph then, as t→∞, for all i ∈ F,

Zt
i

a.s.−→ z� = mF +mS − βF − βS − (m0,S − α0,S − β0,S
)

2mF +mS − αF − βF
.

In particular, if S=∅ and synchronisation Condition SSC1 holds then, for every i ∈ V ,
as t→∞,

Zt
i

a.s.−→ mF − βF

2mF − αF − βF
.

(ii) When there are no preferential nodes in the graph,

Zt
i

a.s.−→ z� = αF + αS +m0,S − α0,S − β0,S

mS + αF + βF

as t→∞ for every i ∈ F. In particular, if S=∅, the fraction of white balls asymptoti-
cally synchronises to c ∈ [0, 1] if, for all i ∈ [N], (1− c)

∑
j∈Ni

αj = c
∑

j∈Ni
βj.

Note that in both cases, when S=∅ the urns synchronise to 1
2 provided that αF = βF , i.e. for

every i ∈ [N],
∑

j∈Ni
Rj is a classical Friedman type replacement matrix.

3.2. Proofs

The main tool in analysing the asymptotic properties of the fraction of white balls across
urns is to write an appropriate stochastic approximation scheme (see [5, 15]) for the vector Zt

F .
Using (1) and (4), we derive the recursion for the proportion of white balls in the urn at node
i ∈ F as follows:

Zt+1
i = 1

Tt+1
i

Wt+1
i = Tt

i

Tt+1
i

Zt
i +

1

Tt+1
i

∑
j∈Ni

[
αjχ

t+1
j + (mj − βj)

(
1− χ t+1

j

)]
= Zt

i −
mi

Tt+1
i

Zt
i +

1

Tt+1
i

∑
j∈Ni

mj(aj + bj − 1)χ t+1
j + 1

Tt+1
i

∑
j∈Ni

mj(1− bj).

Now, we write the above recursion in vector form as follows:

Zt+1
F =Zt

F +
[−Zt

F +
(
χ t+1BÃ

)
F + ((1− b)̃A)F

](
M(Tt+1)−1)

F

=Zt
F +

[−Zt
F +

(
E
[
χ t+1 |Ft

]
BÃ
)

F + ((1− b)̃A)F +
(
�χ t+1BÃ

)
F

](
M(Tt+1)−1)

F

=Zt
F +

[
h(Zt

F)+ (�χ t+1BÃ
)

F

]
MF

(
Tt+1

F

)−1

=Zt
F +

1

t+ 1

[
h(Zt

F)+ (�χ t+1BÃ
)

F

]
MF + εt, (7)

where �χ t+1
j = χ t+1

j −E
[
χ t+1

j |Ft
]

is a martingale difference sequence,

εt =Zt
F +

[
h(Zt

F)+ (�χ t+1BÃ
)

F

]
MF

((
Tt+1

F

)−1 − 1

t+ 1

)
,
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10 G. KAUR AND N. SAHASRABUDHE

and the function h : [0, 1]|F| → [0, 1]|F| is such that, using (2),

h(Zt
F)=−Zt

F +
(
E
[
χ t+1 |Ft

]
BÃ
)

F +
(
(1− b)̃A

)
F

=−Zt
F + (ZtW)F +

(
(1− q)BÃ

)
F + ((1− b)̃A)F

=−Zt
F + (ZtW)F − (qBÃ)F + ((1B+ (1− b))̃A)F

=−Zt
F +Zt

FWF +Z0
SWSF − (qBÃ)F + (aÃ)F.

Thus, for Z ∈ [0, 1]N ,

h(ZF)=−ZF[I −WF]+Z0
SWSF + (aÃ)F − (qBÃ)F, (8)

where q= (q1, . . . , qN) is as defined in Theorem 1. Since Tt =T0 + t M, we have MF(Tt)−1
F =

O(1/t). Therefore, the above recursion can be written as a stochastic approximation recur-
sion with γt = 1/t and {εt}t≥1 such that εt→ 0 as t→∞. Then, from the theory of stochastic
approximation [5, 15], we know that the process Zt

F converges almost surely to the stable limit
points of the solutions of the ordinary differential equation given by ż= h(z). Hence, from (8),
whenever I − (IBÃ)F is invertible, the unique equilibrium point is given by

Z�
F:= [Z0

S(IBÃ)SF + (aÃ)F − (qBÃ)F
](

I − (IBÃ)F
)−1.

Hence, it is enough to show that I − (IBÃ)F is invertible under the conditions of Theorem 1.
We now show that, under the conditions of Theorem 1, I − (IBÃ)F is invertible.

Proof of Theorem 1. Suppose I − (IBÃ)F is not invertible. Then there exists a non-zero

vector v ∈C|F| satisfying (I − (IBÃ)F)v= 0. This implies that v= (IBMAM
−1

)F v. In other
words, for every k ∈ F, we have

vk

IkkBkk
=
∑

i∈Nk∩F mivi∑
i∈Nk

mi
. (9)

Let j= arg maxi |vi|. We denote the normalised vector v as ṽ= v/|vj|. Therefore, (9) can be
written as

ṽk

IkkBkk
=
∑

i∈Nk∩F miṽi∑
i∈Nk

mi
for all k ∈ F, (10)

where |ṽk| ≤ 1 for all k ∈ |F| and |ṽj| = 1. We first show that if |ṽk| = 1, then k cannot be a
non-Pólya type node. From (10) we have∣∣∣∣ ṽk

IkkBkk

∣∣∣∣=
∣∣∣∣∣
∑

i∈Nk∩F miṽi∑
i∈Nk

mi

∣∣∣∣∣.
However, under the assumption, we have∣∣∣∣ ṽk

IkkBkk

∣∣∣∣= 1

|2qk − 1||ak + bk − 1| > 1.

On the other hand, the right-hand side is∣∣∣∣∣
∑

i∈Nk∩F miṽi∑
i∈Nk

mi

∣∣∣∣∣≤ 1

(since ṽi ≤ 1 for all i). This contradiction implies that k cannot be a non-Pólya type node. Now,
let us consider the following cases:
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(i) Suppose qj ∈ (0, 1). From (10) we have∣∣∣∣ ṽj

IjjBjj

∣∣∣∣=
∣∣∣∣∣
∑

i∈Nj∩F miṽi∑
i∈Nj

mi

∣∣∣∣∣ ,
where

∣∣∑
i∈Nj∩F miṽi /

∑
i∈Nj

mi
∣∣≤ 1. However,∣∣∣∣ ṽj

IjjBjj

∣∣∣∣= ∣∣∣∣ 1

(2qj − 1)Bjj

∣∣∣∣> 1

since |Bjj| ≤ 1 and |2qj − 1|< 1. This leads to a contradiction. Now, suppose qr ∈ (0, 1)
for some r �= j. Since j is a Pólya type node, from (10) we get

1=
∣∣∣∣ ṽj

IjjBjj

∣∣∣∣=
∣∣∣∣∣
∑

i∈Nj∩F miṽi∑
i∈Nj

mi

∣∣∣∣∣ .

Considering 0≤∑i∈Nj∩F mi ≤∑i∈Nj
mi and |ṽi| ≤ 1, the only possibility for the equal-

ity in (10) to hold is when Nj ∩ F=Nj and |ṽi| = 1 for all i ∈Nj. Thus, all i ∈Nj are also
Pólya type. Now consider a directed path from r to j, denoted by (r, i1, i2, . . . , il, j). By
the above argument, r, i1, i2, . . . , il are all Pólya type nodes. Now,

1 <
1

|2qr − 1| =
∣∣∣∣ ṽr

IrrBrr

∣∣∣∣=
∣∣∣∣∣
∑

i∈Nr∩F miṽi∑
i∈Nr

mi

∣∣∣∣∣ ,
which is a contradiction. For rest of the proof, we assume that qi ∈ {0, 1} for all i ∈ [N].

(ii) We show that the theorem holds under condition Theorem 1(ii). Since j cannot be a non-
Pólya type node, it follows that j must be a Pólya type node. Therefore, we have Bjj = 1
and thus from (10) we get

1=
∣∣∣∣ ṽj

IjjBjj

∣∣∣∣=
∣∣∣∣∣
∑

i∈Nj∩F miṽi∑
i∈Nj

mi

∣∣∣∣∣ .

Considering that 0≤∑i∈Nj∩F mi ≤∑i∈Nj
mi and |ṽi| ≤ 1, the only possibility for the

equality in (10) to hold is when Nj ∩ F=Nj and |ṽi| = 1 for all i ∈Nj. Now consider a
directed path from a non-Pólya node k to j, denoted by (i1, . . . , il), such that i1, . . . , il
are all Pólya type nodes. Such a node k and a path always exists since F is strongly
connected. Then, from the previous argument, we know that |ṽi1 | = · · · = |ṽil | = |ṽk| =
1. However, this leads to a similar contradiction to earlier. Therefore, if there is at least
one non-Pólya type node in F, it ensures that I − (IBÃ)F is invertible.

(iii) When S �=∅ and there exists an f ∈ F which is non-Pólya then, by (i), I − (IBÃ)F is
invertible. Now we consider the case when S �=∅, and all nodes in F are Pólya type.
Then, by (10), we get

1=
∣∣∣∣ ṽj

IjjBjj

∣∣∣∣=
∣∣∣∣∣
∑

i∈Nj∩F miṽi∑
i∈Nj

mi

∣∣∣∣∣ .
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12 G. KAUR AND N. SAHASRABUDHE

This implies that Nj ∩ F=Nj and |ṽi| = 1 for all i ∈Nj. Note that when S �=∅, there
exists a node s ∈ S and f ∈ F such that s→ f . Since F is strongly connected, there exists
a path f � j, say (f = f0, f1, . . . , fr−1, fr = j). Along this path, for all 0≤m≤ r, using
the same argument as above for fm, we get |ṽk| = 1 for all k ∈Nfm and Nfm ∩ F=Nfm .
However, this gives a contradiction for f0, as Nf0 ∩ F � Nf0 .

(iv) Let j= arg maxi |�(vi)|. We denote the normalised real part of vector v as v̄=
�(v) / maxi |�(vi)|. Therefore, (9) can be written as

v̄k

IkkBkk
=
∑

i∈Nk∩F miv̄i∑
i∈Nk

mi
, (11)

where |v̄k| ≤ 1 for all k ∈ |F| and |v̄j| = 1. Assume that all nodes are Pólya type. In this
case, we have B= I and we assume S=∅. First, suppose j is a de-preferential node.
When v̄j = 1 then, from (11), we get

−1= v̄j

IjjBjj
=
∑

i∈Nj
miv̄i∑

i∈Nj
mi

.

This implies that
v̄i =−1 for all i ∈Nj. (12)

Similarly, when v̄j =−1, from (11) we get

v̄i = 1 for all i ∈Nj. (13)

We now show that if v̄ exists then there is a graph partition G(P1, P2, D1, D2).
From Algorithm 1 (see Appendix A), in Step 2 we initialize the sets as D1 = {j}, D2 =
P1 = P2 =∅ and repeat Steps 8 to 11 until all the nodes are covered. Then, from (12)
and (13), we get v̄i = 1 for all i ∈D1, v̄i =−1 for all i ∈D2, v̄i = 1 for all i ∈ P1, and
v̄i =−1 for all i ∈ P2. Therefore, if v̄ exists then there can be no reassignment of nodes
in Step 13, thereby resulting in a valid graph partition G(P1, P2, D1, D2). Similarly,
when j is preferential, if v̄ exists then a valid graph partition G(P1, P2, D1, D2) exists
with j ∈ P1. Therefore, I − (IBÃ)F is invertible whenever F does not admit a graph
partition. �

The graph exploration process in Algorithm 1 (Appendix A) is motivated by the argument
given above. It is easy to see that if such a vector v exists then P1 = {i ∈P : v̄i = 1}, P2 = {i ∈
P : v̄i =−1}, D1 = {i ∈D : v̄i = 1}, and D2 = {i ∈D : v̄i =−1} forms a valid graph partition.
Thus, the existence of graph partitions is equivalent to the existence of a non-zero vector v
such that (I − (IBÃ)F)v= 0. We now prove Corollary 1, which extends the result to a weakly
connected directed graph.

Proof of Corollary 1. For an arbitrary graph F with strongly connected components
F1, . . . , Fk, ÃF can be expressed as an upper block triangular matrix:

ÃF =

⎛⎜⎜⎜⎝
ÃF1 ÃF1F2 . . . ÃF1Fk

0 ÃF2 . . . ÃF2Fk
...

...
. . .

...

0 0 . . . ÃFk

⎞⎟⎟⎟⎠ ,
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where ÃFiFj =MFi AFiFj M
−1
Fj

is an |Fi| × |Fj| matrix such that non-diagonal blocks are not all

0. Let IFi be an |Fi| × |Fi| identity matrix. Note that I − IBÃ is invertible if and only if each
IFi − (IBÃ)Fi is invertible for 1≤ i≤ k. Suppose Fr is a stubborn block; then the proof of
Theorem 1 implies that IFr − (IBÃ)Fr is invertible. Now, for a flexible block Fr, there exists a
node j ∈ Fr such that Nj ∩ Fr � Nj. Then, using the same argument as in case (iii) in the proof
of Theorem 1, we conclude that IFr − (IBÃ)Fr is invertible for all 1≤ r≤ k. �

Proof of Corollary 2. Synchronisation occurs when Z�
F = z�1 for some constant z� ∈ [0, 1].

From Theorem 1, this condition holds if

z�1(I − (IBÃ)F)=Z0
S(IBÃ)SF + (eBÃ)F + ((1− b)̃A)F .

Then, under Conditions SC1 and SC2, we have z�(1−μF)1=μ01. Thus,

z� = μ0

1−μF
1

is the synchronisation limit under these conditions and as t→∞. �

Proof of Corollary 3. Note that Conditions SSC1 and SSC2 imply Conditions SC1 and SC2,
with

μF = αF + βF −mF

mF +mS
, μ0 = α0,S + β0,S −m0,S

mF +mS
+ 1− βF + βS

mF +mS
.

Therefore, synchronisation occurs and we get

z� = mF − βF − βS +mS − (m0,S − α0,S − β0,S
)

2mF +mS − αF − βF
. (14)

When S=∅, we get

z� = mF − βF

2mF − αF − βF
.

The proof for the case when all nodes are de-preferential is similar. �

Remark 4. Note that Condition SSC1 implies that if all nodes are Pólya type (i.e. mF =
αF = βF , mS = βS, and m0,S = α0,S = β0,S) then there is at least one stubborn node in the in-
neighbourhood of every node. In that case, (14) reduces to

∑
i∈Nj∩S Z0

i mi /
∑

i∈Nj∩S mi. Thus,
the limiting fraction of white balls is a weighted average of the initial fraction of white balls in
the stubborn nodes of the in-neighbourhood.

4. Fluctuation results

We now state the fluctuation results for Zt
F around the almost sure limit Z�

F . Suppose
λmin(Q) denotes the real part (�( · )) of the eigenvalue of a matrix Q with the minimum real
part. Define ρ:= λmin(I −WF), where I is a |F| × |F| identity matrix and W:= IBÃ. Note
that W= 0 when q= 1

2 1 (i.e. I = 0). For the case when qi �= 1
2 for all i, we assume that W is

diagonalisable, i.e. there exists an invertible matrix U with V =U−1 such that

W=UV =U Diag (λ1, . . . , λ|F|, 0S)V, (15)
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14 G. KAUR AND N. SAHASRABUDHE

where λ1, . . . , λ|F| are the eigenvalues of WF . Let column vectors u1, . . . , uN and row vectors
v1, . . . , vN be the right and left eigenvectors of W with respect to the eigenvalues λ1, . . . , λN

respectively. Then U = (u1· · ·uN
)

and V� = (v�1 · · ·v�N ).
Theorem 2. (Fluctuation of Zt.) Suppose Zt

F
a.s.−→Z�

F as t→∞. Then:

(i) If ρ > 1
2 , as t→∞,

√
t
(
Zt

F −Z�
F

) d−→N (0, �), � =
∫ ∞

0

(
exp

{−( 1
2 I −WF

)
u
})�

�exp
{−( 1

2 I −WF
)
u
}

du.

(16)

(ii) If ρ = 1
2 with multiplicity 1, as t→∞,√

t

log (t)

(
Zt

F −Z�
F

) d−→N (0, �), (17)

� = lim
t→∞

1

log (t)

∫ log (t)

0

(
exp

{−( 1
2 I −WF

)
u
})�

� exp
{−( 1

2 I −WF
)
u
}

du.

Here, � = (−W��W+ 1
4 Ã
�

B2Ã
)

F and � is the N ×N diagonal matrix such that

[�]i,i =
(
Z�

i − 1
2

)2
.

For ρ < 1
2 , we refer the reader to [15, Theorem 2.2], which states that the limit of appro-

priately scaled (Zt
F −Z�

F) is close to a weighted sum of some finitely many complex random
vectors.

Corollary 4. The limiting variance � can be simplified as follows:

(i) When q= 1
2 1, then (16) holds with � = 1

4

(̃
A
�

B2Ã
)

F.

(ii) When qi �= 1
2 for all i and W has a decomposition as in (15) then, for ρ > 1

2 , (16) holds
with � such that

[�]ij =
∑
k∈F

∑
�∈F

λkλ�

1− λk − λ�

(u�k �̄u�)vkivlj for all i, j ∈ F

and, for ρ = 1
2 , (17) holds with [�]ij = 1

4 (u�1 �̄u1)v1iv1j. Here, �̄=−�+ 1
4I−2 is an

N ×N diagonal matrix such that [�̄]i,i =−
(
Z�

i − 1
2

)2 + 1
16

(
qi − 1

2

)−2
.

Corollary 5. (Fluctuation under synchronisation.) Suppose W=W�, qi �= 1
2 for all i, and Z�

is such that �̄= c(q, Z�)I, where c(q, Z�) is a constant that depends only on q and Z∗. Then:

(i) If ρ > 1
2 , (16) holds with � = c(q, Z�)W2(I − 2W)−1.

(ii) If ρ = 1
2 with multiplicity 1, (17) holds with

� = c(q, Z�)W2U�
(

1 0
0 0

)
U.

Further, under Condition SC1,

� = c(q, Z�)

4N
J.
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In particular, if synchronisation occurs, i.e. Z� = z�1 for some z� ∈ [0, 1] and all nodes
are either preferential or de-preferential (i.e. qi ∈ {0, 1} for all i) then c(q, Z�)= z�(1−
z�).

Remark 5. (Multiplicity of ρ.) The fluctuation theorem (Theorem 2) gives an explicit expres-
sion for the limiting variance when 1

2 is a simple eigenvalue of W. When 1
2 is not simple, a

general description of the limiting variance can be found in [15]. For strongly connected F
where I = I (all nodes are preferential), the Perron–Frobenius theorem implies that the max-
imal eigenvalue of W, and therefore ρ, is simple. In the presence of de-preferential nodes,
classifying graphs and reinforcement matrices that lead to ρ = 1

2 as a simple eigenvalue of W
is more complex. For instance, consider a cycle graph with n nodes with node-independent
reinforcement where W= (a+ b− 1)IA. In this case, certain conditions can make ρ = 1

2 a
simple eigenvalue. Specifically, if qi ∈ {0, 1} for all i, the characteristic polynomial of IA is
xn + (− 1)m−1, where m is the number of de-preferential nodes. Thus, the eigenvalues of W
depend on the zeros of xn − 1 when m is even, and zeros of xn + 1 when m is odd. Since 1
is always a simple eigenvalue in the first case, ρ = 1

2 can also be a simple eigenvalue. For
example, in a cycle graph with eight nodes (as in Figure 10), where Ã= A, the eigenvalues of
I −W= I − IA are 1, −1, (−1+ i)/

√
2, (−1− i)/

√
2, (1+ i)/

√
2, (1− i)/

√
2, i, −i. Thus,

λmin(I −W)= ρ = 1
2 is a simple eigenvalue when a+ b− 1= 1

2 .

4.1. Proofs of fluctuation results

Proof of Theorem 2. From (8), h(ZF)=−ZF[I −WF]+Z0
SWSF + (aÃ)F − (qBÃ)F . Thus,

∂h(z)/∂z=−I +WF . Hence, when ρ > 1
2 , we apply [15, Theorem 2.2] and get

√
t
(
Zt

F −
Z�

F

) d−→N (0, �), where � is defined as

� =
∫ ∞

0

(
exp

{−(I −WF − 1
2 I
)
u
})�

� exp
{−(I −WF − 1

2 I
)
u
}
du.

Similarly, when ρ = 1
2 with multiplicity 1, using [15, Theorem 2.2] we get√

t

log (t)

(
Zt

F −Z�
F

) d−→N (0, �),

where � is defined as

� = lim
t→∞

∫ log (t)

0

(
exp

{−(I −WF − 1
2 I
)
u
})�

� exp
{−(I −WF − 1

2 I
)
u
}
du.

Here, � = limt→∞ E
[(

(�χ t+1BÃ)F
)�((

�χ t+1BÃ
))

F |Ft
]
. To compute �, we use

lim
t→∞E

[(
�χ t+1BÃ

)�(
�χ t+1BÃ

) |Ft
]= (BÃ)

�
E
[
�
(
χ t+1)��χ t+1 |Ft

]
BÃ.

From the variance expression obtained in (3) we get

lim
t→∞E

[(
�χ t+1BÃ

)�(
�χ t+1BÃ

) |Ft
]= lim

t→∞ (BÃ)� Var
(
�χ t+1 |Ft

)
BÃ

= (IBÃ)�(−�)(IBÃ)+ 1

4
Ã
�

B2Ã

=−W��W+ 1

4
Ã
�

B2Ã.
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Thus, � = (−W��W+ 1
4 Ã
�

B2Ã
)

F . This completes the proof. �

Proof of Corollary 4. Consider the following two cases:

(i) When q= 1
2 1, we get I =W= 0N×N , thus ρ = 1 and � = 1

4 (̃A
�

B2Ã)F . Hence,
√

t
(
Zt

F −
Z�

F

) d−→N (0, �), where � = �
∫∞

0 e−u du= � = 1
4 (̃A

�
B2Ã)F .

(ii) When qi �= 1
2 for all i, since I is invertible we can write � =−W��W+ 1

4 W�I−2W=
W��̄W, where �̄=−�+ 1

4I−2. Assuming the decomposition for W, we have
W=UV with V =U−1. Therefore,

� = [W��̄W]F = (WF)��̄FWF + (WSF)��̄SWSF

= V�F F
[
U�F �̄FUF +U�SF�̄SUSF

]
FVF

= V�F F(U��̄U)FFVF .

Let �̃ = (V�F )−1
�V−1

F . Then, for ρ > 1
2 ,

�̃ =
∫ ∞

0

(
exp

{−( 1
2 I −F

)
u
})�

F[U��̄U]FF exp
{−( 1

2 I −F
)
u
}

du.

For i, j ∈ F,

[�̃]ij = λiλj
[
u�i �̄uj

] ∫ ∞
0

e−(1−λi−λj)u du= λiλj

1− λi − λj

[
u�i �̄uj

]
.

Hence, � = V�F �̃VF , where

[�]ij =
∑
k∈F

∑
�∈F

λkλ�

1− λk − λ�

(
u�k �̄u�

)
vkivlj.

Now, for ρ = 1
2 , with λmax(WF)= λ1 = 1

2 being simple, we have

�̃ = lim
t→∞

1

log (t)

∫ log (t)

0

(
exp

{−( 1
2 I −F

)
u
})�

F
[
U��U

]
FF

(
exp

{−( 1
2 I −F

)
u
})

du.

The (1,1) element is given by

[�̃]11 = λ1λ1
(
u�1 �u1

)
lim

t→∞
1

log (t)

∫ log (t)

0
e−(1−λ1−λ1)u du

= 1

4

(
u�1 �u1

)
lim

t→∞
1

log (t)

∫ log (t)

0
1 du= 1

4

(
u�1 �u1

)
.

For every other k, l ∈ F we have λk + λl < 1 and thus

lim
t→∞

1

log (t)

∫ log (t)

0
e−(1−λk−λl)u du= 0.

Hence we get [�]ij = 1
4

(
u�1 �u1

)
v1iv1j. �
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Proof of Corollary 5. With the assumption W=W�, we get S=∅ and U = V�. Thus, for
ρ > 1

2 , we have

�̃ =
∫ ∞

0

(
exp

{−( 1
2 I −

)
u
})�

[U��̄U]
(

exp
{− ( 1

2 I −
)
u
})

du

= c(q, Z�)
∫ ∞

0

(
exp

{−( 1
2 I −

)
u
})

2( exp
{−( 1

2 I −
)
u
})

du

= c(q, Z�)2(I − 2)−1.

This implies that � = c(q, Z�)V�2(I − 2)−1V = c(q, Z�)W2(I − 2W)−1. Now, for part
(ii), i.e. when ρ = 1

2 , we have

�̃ = c(q, Z�)2 lim
t→∞

1

log (t)

∫ log (t)

0
e−(I−2)u du= c(q, Z�)2

(
1 0
0 0

)
.

This implies that

� = c(q, Z�)W2V�
(

1 0
0 0

)
V .

Thus, for ρ > 1
2 we get � = c(q, Z�)W2(I − 2W)−1 and for ρ = 1

2 we get

� = c(q, Z�)W2V�
(

1 0
0 0

)
V .

Further, under Condition SC1,
∑N

i=1 [W]ij = 1
mj

∑
i∈Nj

Ii,i(αi + βi −mi)=μF = 1
2 is the max-

imal eigenvalue of W and the corresponding normalised eigenvector is (1/
√

N)1. Hence we
get

� = c(q, Z�)W2V�
(

1 0
0 0

)
V = c(q, Z�)W2 1

N
J = c(q, Z�)

4N
J.

This completes the proof. �

Remark 6. When all nodes are preferential, under Condition SSC1,

Z� = mF − βF

2mF − αF − βF

(note that under the conditions of Corollary 5, S=∅). Thus, for ρ > 1
2 we get

� = (mF − βF)(mF − αF)

(2mF − αF − βF)2
W2(I − 2W)−1

and for ρ = 1
2 we get

� =
(
mF − βF

)(
mF − αF

)
(2mF − αF − βF)2

W2V�
(

1 0
0 0

)
V .

Under Condition SSC1 with S=∅, μF = (αF + βF −mF)/mF . Thus, (αF + βF −mF)/mF =
1
2 is the maximal eigenvalue of W with the corresponding normalised eigenvector (1/

√
N)1.

Hence, we get
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� =
(
mF − βF

)(
mF − αF

)
N(mF)2

J.

Similarly, when all nodes are de-preferential we get

� = αFβF

N
(
αF + βF

)2
J = 4αFβF

9N(mF)2
J.

5. Simulations and discussion

Since Zt
F converges to a deterministic limit under the conditions of Theorem 1, the variance

Var (Zt
F) converges to zero as t→∞. Before we illustrate some examples via simulation, we

obtain the approximate rate at which Var (Zt
F) converges to zero and illustrate the explicit

dependence of the rate of decay on the eigenvalue structure of the matrix WF .
For N ×N matrices Q1 and Q2, we write Q1 �Q2 if [Q1]ij =O([Q2]ij) for all 1≤ i, j≤N.

Further, Q1 � f (t) means [Q1]ij =O(f (t)) for all 1≤ i, j≤N. Suppose qi �= 1
2 for all i. From

(7) and (8), recall that

Zt+1
F =Zt

F +
[
h(Zt

F)+ (�χ t+1BÃ
)

F

]
MF

(
Tt+1

F

)−1
,

where h(ZF)=−ZF[I −WF]+Z0
SWSF + (aÃ)F − (qBÃ)F . Therefore,

Var
(
E
[
Zt+1

F |Ft
])=Var

(
Zt

F + h
(
Zt

F

))= P�t Var
(
Zt

F

)
Pt, (18)

where Pt = I − (I −WF)MF
(
Tt+1

F

)−1. Similarly, using (3) we get

E
[

Var
(
Zt+1

F |Ft
)]=MF

(
Tt+1

F

)−1((BÃ)�
(−�I2 + 1

4 I
)
BÃ
)

FMF
(
Tt+1

F

)−1

=MF
(
Tt+1

F

)−1(−W��̄tW
)

FMF
(
Tt+1

F

)−1

=MF
(
Tt+1

F

)−1(WF)��̄t
FWFMF

(
Tt+1

F

)−1 =Q�t �̄t
FQt, (19)

where �̄t =−�t + 1
4I−2 and Qt =WFMF

(
Tt+1

F

)−1. Now, combining (18) and (19) we get

Var
(
Zt+1

F

)= P�t Var
(
Zt

F

)
Pt +Q�t �̄t

FQt. Iterating this, we get

Var
(
Zt+1

F

)= t∑
j=0

( t−j−1∏
k=0

P�t−k

)
(Qj)
��̄

j
FQj

(
t∏

k=j+1

Pk

)
.

Since MF
(
Tj+1

F

)−1 � (1/j)IF we get Qj � (1/j)IF and thus

Var
(
Zt+1

F

)
�

t∑
j=0

1

j2

( t−j−1∏
k=0

P�t−k

)
�̄

j
F

(
t∏

k=j+1

Pk

)
. (20)

Now assuming W is diagonalisable, i.e. W=UU−1, we get

t∏
k=j+1

Pk �U

[
t∏

k=j+1

(
I + 1

j
(F − I)

)]
U−1 �

(
t

j

)�(λmax)−1

. (21)

Thus we have the following rates of decay of variance.

https://doi.org/10.1017/jpr.2024.105 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.105


Interacting urns with node-dependent sampling and reinforcement 19

FIGURE 2. A graph with four nodes, with P = {1, 2, 3}, D= {4}.

Proposition 1. Suppose qi �= 1
2 for all i. The following bounds hold for Var

(
Zt

F

)
:

Var
(
Zt+1

F

)
�

⎧⎪⎨⎪⎩
t2�(λmax)−2 for �(λmax) > 1

2 ,

t−1 log t for �(λmax)= 1
2 ,

1/t for �(λmax) < 1
2 .

(22)

Proof. Using (21) in (20), we get

Var
(
Zt+1

F

)
�

t∑
j=1

1

j2

(
t

j

)2�(λmax)−2

,

which simplifies to (22) where the decay rate in the regime �(λmax) > 1
2 holds because∑t

j=1 1/j2�(λmax) <∞ as t→∞. �

In the next section we discuss three examples with different sampling and reinforcement
schemes and present the simulation results.

5.1. Simulation results

In this section, we present the simulation results for a cycle graph with four nodes, where
all the nodes are of Pólya type and qi ∈ {0, 1} for all i. We explore three specific cases for this
graph.

Consider first the case when all nodes are preferential except node 4 (see Figure 2), i.e.
I =Diag (1, 1, 1,−1). We observe that this case satisfies condition Theorem 1(iii), as it does
not have a valid graph partition. Thus by Theorem 1, Zt has a deterministic limit 1

2 1, which is
independent of the initial vector Z0. Figure 3 illustrates the convergence of Zt

1, . . . , Zt
4. Note

that, in this case, the eigenvalues of the matrix I −W are

1+ 1√
2
+ i√

2
, 1+ 1√

2
− i√

2
, 1− 1√

2
+ i√

2
, 1− 1√

2
− i√

2
.

Therefore, ρ = 1− (1/
√

2) < 1
2 and�(λmax)= 1/

√
2; thus, from (22) we get Var (Zt)� t

√
2−2.

We now consider two examples of cycle graphs with four vertices where Theorem 1
does not apply. The first graph has all preferential nodes, i.e. I =Diag (1, 1, 1, 1) (see
Figure 4(a)). The second graph has alternate preferential and de-preferential nodes, i.e.
I =Diag (1, 1,−1,−1) (see Figure 4(b)). Since a valid graph partition exists according to
Algorithm 1 (see Appendix A) for both cases, condition Theorem 1(iii) is not satisfied.
Therefore, the urn configuration in these graphs does not converge to a deterministic limit.

The first case corresponds to a specific instance of Pólya type reinforcement at each node
in a d-regular graph (where din

i = dout
i = d for all i) for d= 2, which was previously studied

in [10]. The authors showed that synchronisation occurs, i.e. there exists a random variable Z∞
such that Z�

F = Z∞1 (as illustrated through simulations in Figure 5).
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FIGURE 3. Convergence of Zt
1, . . . , Zt

4 in six different simulations. In this case, the limit is deterministic:
0.5 for all urns.

(a) (b)

FIGURE 4. Graphs that do not satisfy the conditions of Theorem 1.

The simulations in Figure 6 suggest that in the second case, the limit is of the form (Z∞, 1−
Z∞, 1− Z∞, Z∞). This is consistent with Remark 2.

For a graph that can be partitioned using Algorithm 1 (Appendix A), the fraction of balls
of either colour in each urn tends to a random limit. Specifically, from our simulations (see
Figure 7), we conjecture that in a cycle graph with alternating preferential and de-preferential
nodes, the limiting behaviour results in the fractions of balls of either colour in P1, D2
(or P2, D1) converging to the same limit. Further analysis of these cases, with a more general
sampling scheme, is left as future work.

5.2. Application to opinion dynamics

Our model is motivated by the network-based opinion dynamics model discussed in [10].
This model uses urns to represent opinions in a network, with white and black balls indicating
positive and negative views, respectively. An individual’s opinion Ot

i can be represented either
as a fraction Zt

i , which is supported on [0,1], or as a sign, Sign
(
Zt

i − 1
2

) ∈ {−1, 0, 1}. In this
model, stubborn nodes are treated as bots, with Z0

i being the bot’s power to influence towards
the ‘positive/favourable’ opinion.

At each time step, every individual reveals their true opinion with probability qi and rein-
forces their opinion based on the type of reinforcement applied: Pólya type reinforcement
reinforces only the revealed opinion, whereas non-Pólya type reinforcement adds a mix of
both types of views. Our main results show that on a strongly connected network if there is at
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FIGURE 5. Convergence of Zt
1, . . . , Zt

4 in six different simulations.

FIGURE 6. Convergence of Zt
1, . . . , Zt

4 in six different simulations.

least one individual with qi ∈ (0, 1), all individuals’ opinions converge to a deterministic limit.
In the case when all qi ∈ {0, 1}, the existence of a deterministic limiting opinion depends on
the reinforcement type as well as the graph structure. We also obtain conditions for asymptotic
consensus.

We briefly discuss the implications of our results for the opinion dynamics model. Consider
a cycle graph on four nodes with edges i→ i+ 1 for 1≤ i≤ 3 and 4→ 1. Note that for directed
cycles, Ã= A and therefore the mi do not contribute to the limiting opinion. Let xi = (2qi −
1)r′i, where r′i = (ai + bi − 1). The limiting opinion of node 1 is given by

Z�
1 =

1

1− x1x2x3x4
[a4 − q4r′4 + (a1 − q1r′1)x2x3x4 + (a2 − q2r′2)x3x4 + (a3 − q3r′3)x4].

Suppose, for i ∈ [N], that ai = a and bi = b. Then, r′i = r′ (say) for all 1≤ i≤ 4. Further assume
that q1 = 1

2 . We consider two cases:
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FIGURE 7. Histogram of Zt
i in 100 different simulations, at t= 100 000, for the four interacting urns
placed on the nodes of the graph as in Figure 4(b).

FIGURE 8. A cycle graph with a stubborn node s attached.

Case I: When all the other nodes are preferential, i.e. 2, 3, 4 ∈P , we get

Z�
1(I)= 1− b+ 1

2
(1+ a− b)(r′)3 + (1− b)(r′)2 + (1− b)r′

= a(r′)3

2
+ (1− b)

(
1+ r′ + (r′)2 + (r′)3

2

)
.

Case II: With 2, 3 ∈P and 4 ∈D, we get

Z�
1(II)= a− a(r′)3

2
− (1− b)

(
r′ + (r′)2 + (r′)3

2

)
.

Here, Z�
1(I) and Z�

1(II) denote the limiting configuration of urn 1 in the two cases. Note that
Z�

1(II)= Z�
1(I) when r′ = 0, and Z�

1(II) < Z�
1(I) when r′ > 0. Now consider a bot (or a stubborn

vertex s) attached to node 1, with 2, 3 ∈P and 4 ∈D (as shown in Figure 8).
In this case, the fraction of balls of white colour in urn 1 converges to Z�

1(s)= Z1(II)+
f
(
Z0

s , r, m
)
, where f

(
Z0

s , r, m
)
> 0 for r > 0. Thus, a bot can be used to mitigate the effect

of the de-preferential node attached to 1. Further, our results provide explicit expressions that
can determine the optimal ‘strength’ (given by Z0

s and the reinforcement matrix) of the bot(s)
required to obtain a specific limiting opinion profile. We remark that for a more complicated
graph, the optimal positions of the bots (with varying strengths) on the network is an interesting
problem in this context.
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Algorithm 1. Graph exploration process.

Input: A directed graph G(V, E) and the sets of preferential nodes P and de-preferential
nodes D.
Output: Whether G admits a partition or not.

1: Select a node j ∈ V
2: if j ∈P then
3: Initialize P1←{j}, P2 =D1 =D2 =∅.
4: else
5: Initialize D1←{j}, P1 = P2 =D2 =∅.
6: end if
7: while (P1 ∪ P2 ∪D1 ∪D2) � V do
8: P1← P1 ∪ (∪j∈P1 Nj ∩P) and D1←D1 ∪ (∪j∈P1 Nj ∩D)
9: P2← P2 ∪ (∪j∈D1 Nj ∩P) and D2←D2 ∪ (∪j∈D1 Nj ∩D)

10: P1← P1 ∪ (∪j∈D2 Nj ∩P) and D1←D1 ∪ (∪j∈D2 Nj ∩D)
11: P2← P2 ∪ (∪j∈P2 Nj ∩P) and D2←D2 ∪ (∪j∈P2 Nj ∩D)
12: if P1, P2, D1, D2 are not mutually disjoint then
13: BREAK and return ‘G does not admit a graph partition.’
14: end if
15: end while
16: Repeat Steps 8 to Step 11 once.
17: if any node is reassigned from P1 to P2 (or vice versa) or from D1 to D2 (or vice versa)

then
18: else
19: return ‘G admits a graph partition G(P1, P2, D1, D2) such that P = P1 ∪ P2 and

D=D1 ∪D2.’
20: end if

Appendix A. Graph exploration process

The graph exploration process is described in Algorithm 1. If a graph partition exists, it is
determined; otherwise, the algorithm reports that no such partition is possible. Note that this
partitioning algorithm is invariant to the initial choice of node j, up to a permutation of the sets
(P1, P2, D1, D2). We now provide a few examples to illustrate different cases.

Example 1. (Graph that does not admit a partition.) Suppose F=P ∪D is such that it is
strongly connected and there is only one node in the set D, represented as D= {d}. Let j ∈P
be the node selected at Step 1 of Algorithm 1, i.e. j ∈ P1. Since F is strongly connected, there
exists a path d� j such that all nodes on the path are preferential, implying that d must be in
set D1 (see Step 8 of Algorithm 1). Similarly, j� d via a path of preferential nodes, implying
that j ∈ P2 (see Step 9 of Algorithm 1 or see Figure 1). A similar conclusion holds if the node
selected at Step 1 is d. Thus, such a graph does not admit a valid partition. To illustrate this, we
consider a special case of a strongly connected graph with one de-preferential node in Figure 9.

Example 2. (Graph that admits a partition.) Consider an even cycle of size 2k with alternate
preferential and de-preferential nodes. In this case, starting with 1 ∈ P1, the algorithm
terminates with a valid assignment of nodes to the four sets, namely, P1 = {1, 3, . . . , k− 1},
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FIGURE 9. A graph with eight nodes with P = {1, 2, 3, 4, 5, 6, 7} and D= {8}. Suppose in Step 3 of
Algorithm 1 we initialize with P1 = {1}, P2 =D1 =D2 =∅. Then, following algorithm Steps 8 to 11,
we get D1 = {8} and P2 = {2, 3, 4, 5, 6, 7}, D2 =∅. However, in Step 16, node 1 gets reassigned to P2.

Therefore, the graph does not admit a graph partition under Algorithm 1.

FIGURE 10. A graph with eight nodes with P = {1, 2, 3, 4} and D= {5, 6, 7, 8} that results in a valid
partition via the given exploration process. In particular, we get P1 = {1, 3}, P2 = {2, 4}, D1 = {6, 8}, and

D2 = {5, 7}.

P2 = {2, 4, . . . , k}, D1 = {k+ 1, k+ 3, . . . , 2k− 1}, and D2 = {k+ 2, k+ 4, . . . , 2k}.
Figure 10 illustrates the case for k= 4.

It is easy to see that a cycle graph with an odd number of de-preferential nodes does not
admit a valid partition, whereas a cycle graph with an even number of de-preferential nodes
has a valid partition.
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