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Abstract

This paper presents a miniaturized 3-dB branch-line coupler based on slow-wave microstrip
transmission lines. The miniaturized coupler operating at 2.45 GHz is designed and imple-
mented on a double-layer printed circuit board substrate with blind metallic vias embedded
in the lower substrate layer providing the slow-wave effect. Based on this concept, a 43%
size miniaturization is achieved as compared with a classical microstrip branch-line coupler
prototype. The measured S parameters present a return loss of 25.5 dB and an average inser-
tion loss equal to 0.05 dB at the operating frequency.

Introduction

The 3-dB branch-line couplers are essential components in wireless communication systems.
They are used for splitting/combining microwave signals. Classical branch-line couplers, which
are based on four quarter-wavelength (λ/4) transmission lines, suffer from their large size,
especially for low frequencies. Several miniaturization techniques in planar technologies
have been proposed to reduce the physical dimensions of the (λ/4) transmission lines. The
use of fractal space-filling allows size miniaturization of a rat-race hybrid up to 40%, however,
λ/4 transformers were needed in order to have an acceptable matching level in the operating
bandwidth [1, 2]. In [3], high impedance transmission lines with distributed capacitors inside
the open coupler area resulted in 38% miniaturization at the expense of circuit complexity.
Besides, the use of discontinuous microstrip lines can offer a size reduction up to 60% at
the expense of circuit complexity [4]. All the above techniques involve the knowledge of
new topologies and huge design efforts from design engineers.

In this paper, the effort is carried out on substrate technology. Hence classical shape of the
coupler is proposed, thus simplifying the engineer’s design task, while achieving a high degree
of miniaturization, as compared with classical microstrip lines couplers, along with high elec-
trical performance.

The proposed compact branch-line coupler is based on the slow-wave concept using a dou-
ble layer printed circuit board (PCB) substrate. The slow-wave effect is achieved thanks to the
insertion of blind metallic via holes in the lower substrate layer, leading to slow-wave micro-
strip lines (SMS lines). From a circuit point of view, the presence of these blind via holes
increases the transmission line equivalent capacitance per unit length, thus reducing the
wave propagation velocity and creating consequently the slow-wave effect. A similar concept
of slow-wave effect was previously proposed in [5] and successfully applied on substrate inte-
grated waveguides, allowing a size reduction of 60% as compared with classical SIW. In [6],
“Substrate Integrated Artificial Dielectric” structure was presented to reduce the size of micro-
strip circuits by using a mesh of blind via holes connected to the ground plane. A size reduc-
tion of 33% was obtained for a 2 GHz branch-line coupler with 4-dB insertion loss at the
working frequency. Drawbacks of this structure are the huge number of required via holes,
leading to high insertion loss, and the design complexity since the relative position of vias
underneath signal strips depends on the vias matrix dimension. Furthermore, using a high
number of via holes does not lead necessarily to better slow-wave effect since the vias that
are far from the strip do not contribute to the slow wave concept as it will be explained
later. In this paper, the design of the miniaturized coupler is greatly simplified by only
considering one row of the blind via holes underneath the signal strip. Moreover, thanks to
the limited number of via holes, the overall fabrication cost is greatly reduced as compared
with [6].

The organization of this paper is as follows. The proposed SMS coupler topology is pre-
sented in the section “PCB slow-wave microstrip”. Then, the design and measurements of
SMS lines with 35.35 Ω and 50 Ω characteristic impedances are presented. In the section
“Branch-line coupler: design and measurements”, experimental and simulation results of
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both classical and SMS branch-line couplers are presented and
compared. Finally, the paper concludes in the section
“Conclusion”.

PCB slow-wave microstrip

Topology and concept

The topology of the proposed SMS coupler is presented in Fig. 1
(a). The double-layer PCB is described in Fig. 1(b). The lower
substrate layer Sub1 is Rogers RO4003 having h1 = 0.813 mm,
εr1 = 3.55 and tan(δ1) = 0.0027 while the upper substrate layer
Sub2 is Rogers RO4403 having h2 = 0.29 mm, εr2 = 3.4 and tan
(δ2) = 0.005. One row of metallic vias is embedded in Sub1
along the strips length. The presence of the via holes guarantees
the concentration of the electric field in Sub2 while the magnetic
field still circulates around the strip as in the classical microstrip
case where no vias are included. This is illustrated in Fig. 1(b)
where the electric field is captured by the via holes and the mag-
netic field circulates in the different media around the strip (air,
Sub1, and Sub2). This separation of the electric and magnetic
field lines is the origin of the slow-wave effect, as explained in [7].

Design, realization and measurement of SMS lines

SMS lines with 35.35 Ω and 50 Ω characteristic impedances
were designed, fabricated, and tested. Electromagnetic

simulations were carried out using Ansys HFSS [8]. For each
SMS line, three different lengths (16, 32, and 64 mm) were con-
sidered in order to extract their electrical characteristics. The
extraction was done using the Two-line method [9]. The mea-
surements were done using a vector network analyzer
ANRITSU 37369A. The 35.35 Ω SMS line presents a width of
2.9 mm as compared with 4 mm corresponding to its classical
MS counterpart designed using the same substrate stack. On
the other hand, the 50-Ω SMS line has a width of 1.4 mm as
compared with 2.55 mm for a classical 50-Ω MS line. Note
that the SMS strip widths are thinner than for microstrip
lines. This is a result of the additional capacitive effect due to
the proximity of metallic vias and signal strip. Only one via
row is used longitudinally underneath the strip of the SMS
line because the electric field will be sufficiently captured.
Inserting more via rows have drawbacks such as increase in
the complexity of the structure, the cost of fabrication, and
the insertion loss. This is demonstrated in [10]. The simulated
and measured characteristic impedance Zc, as well as the
effective relative dielectric constants εreff for both SMS lines
are compared in Fig. 2. A good agreement is found between
simulated and measured values of Zc and εreff. For a SMS line
having a characteristic impedance of 35.35 Ω, the measured
value of εreff at 2.45 GHz is 4.3 while the value of εreff of its
MS counterpart is 2.8, leading to a slow-wave factor equal to�������������������
1reff−SMS/1reff−MS

√ = ��������
4.3/2.8

√ = 1.23. The measured εreff is
4.2 for the 50-Ω SMS line and 2.6 for its MS counterpart, lead-
ing to a slow-wave factor equal to 1.27.

Fig. 1. Schematic view of the proposed (a) SMS coupler and (b) SMS line topology.

Fig. 2. Characteristic impedance and relative effective dielectric constant of the SMS
lines (---Simulated, —Measured).

Fig. 3. Classical MS branch-line coupler S-parameters (----Simulated, —Measured).
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Branch-line coupler: design and measurements

Classical microstrip branch-line coupler

A classical branch-line coupler based on microstrip lines was
designed and fabricated at 2.45 GHz, to serve as a reference.
Figure 3 shows the simulated and measured S-parameters of the
designed MS branch-line coupler. Measurements were done
with vector network analyzer KEYSIGHT N5222A using elec-
tronic calibration. A 90-MHz shift of the center frequency is
noticed due to a slight variation of the upper substrate layer para-
meters used in fabrication. At 2.36 GHz (location of the max-
imum of coupling coefficient and minimum insertion loss), the
measured insertion loss and coupling coefficient are equal to
3.6 and 3.8 dB, respectively, leading to an amplitude imbalance
(S13-S12) equal to 0.2 dB. The average insertion loss, defined as
[3 dB + (S12 + S13)/2], is equal to −0.7 dB. The measured return
loss and isolation factor are equal to 70 and 71 dB, respectively.
The classical MS coupler size is 26.1 × 22.95 mm2 with lines
lengths L35Ω = 19.2 mm and L50Ω = 22.3 mm.

SMS branch-line coupler

The 35.35-Ω and 50-Ω SMS lines presented in the section “PCB
slow-wave microstrip” were used for the design and fabrication of
the proposed SMS coupler. Final optimization of the SMS lines
length was needed to get a satisfying coupler response, due to
T-junctions parasitics: L35Ω = 15.6 mm and L50Ω = 17.0 mm.
Note that the optimization of the T-junctions is much simpler
with SMS lines, since the strip of SMS lines is smaller, leading
to much minor parasitics.

The measured magnitude and phase responses of the fabri-
cated SMS coupler are shown in Figs 4(a) and 4(b), respectively.
Here again, a shift of 90 MHz of the working frequency is noticed.
The measured values of the insertion loss S12, coupling coefficient
S13, return loss S11, and isolation S14 at 2.36 GHz are 2.9, 3.2, 25.5
and 27.5 dB, respectively. The amplitude imbalance is −0.3 dB,
which is comparable with the reference MS coupler. The average
insertion loss is equal to −0.05 dB, i.e. much lower than the MS
coupler. The phase difference between the output ports is 91° at
2.36 GHz, as shown in Fig. 4(b). The surface area of the miniatur-
ized coupler is 17 × 19.9 mm2, thus presenting a surface miniatur-
ization of 43% as compared with the MS coupler.

Table 1 presents a comparison between the measured charac-
teristics and the size of both MS and SMS couplers. The phase dif-
ference between S13 and S12 is 88.3° for the MS coupler and 91°
for the SMS coupler, respectively, at the working frequency of

2.36 GHz. Table 1 also presents a comparison between the SMS
couplers realized in this work and that presented in [6]. A signifi-
cant improvement in both size reduction and electrical perform-
ance is noticed, accompanied with a reduction in circuit
complexity.

Conclusion

A miniaturized and high-performance branch-line coupler based
on slow-wave microstrip lines was presented. Conventional and
miniaturized couplers were designed at 2.45 GHz. The proposed
slow-wave microstrip technology allowed a size reduction of
43% as compared with classical microstrip coupler, by improving
too its electrical performance since insertion loss is reduced by
0.7 dB for the slow-wave based coupler as compared with the
microstrip classical one. This size reduction highlights the poten-
tial of slow-wave microstrip lines for the realization of RF minia-
turized circuit devices, without any specific design effort as
compared to classical microstrip lines. As compared with [6],
the technology is simpler, leading to a simpler design, and ultim-
ately better electrical performance.

Acknowledgement. This work was partially supported by the franco-
lebanese program “Partenariat Hubert Curien” CEDRE and by the French pro-
gram Rhône-Alpes International Cooperation and Mobilities (CMIRA).

Fig. 4. S-parameters of the SMS branch-line coupler: (a) Magnitude response, (b) Phase response (---- Simulated, —Measured).

Table 1. Coupler Comparison

MS @
2.36 GHz

SMS @
2.36 GHz

[6] @
2 GHz

Direct Path Ins. Loss
(dB)

3.6 2.9 4

Return Loss (dB) 70 25.5 34

Coupling Path Ins.
Loss (dB)

3.8 3.2 3.2

Isolation (dB) 71.6 27.5 27

Amplitude Difference
S13− S12 (dB)

0.2 0.3 0.8

Phase Difference
(S13− S12)

88.3o 91o -----

Surface Area (mm2) 26.1 × 22.95 17.0 × 19.9 -----

Miniaturization ----- 43.5% 33%

Design Complexity ----- Moderate High
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