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Abstract

In noise radar, digital signal processing algorithms for implementing the computation of the
Cross Ambiguity Function through range correlation and Doppler compensation call for
optimized solutions. In fact, to achieve a high coherent processing gain, they often compute
a large amount of data beyond the maximum range and/or the maximum radial velocity of
interest, adding useless information. A novel, efficient algorithm, called Range Filter Bank,
is proposed to implement a scope-tailored computation of range/Doppler data in continuous
emission noise radar. Downstream its theoretical analysis, the algorithm has been applied to a
real-life case study based on dedicated field experiments, in which good quality kinematic data
of a car moving at various speeds have been extracted.

Introduction

Active research is being carried out worldwide on Noise Radar Technology (NRT), i.e. on the
use of random (more precisely, pseudo-random in today’s digital generation and processing
systems) waveforms for many radar applications, mostly at short range. The main reasons
for investigating these radar waveforms are threefold:

a) robustness against mutual interference [1,2]
b) low probability of intercept [3]
c) controllable ambiguity levels, both in range and in radial velocity (Doppler frequency) [4]

This paper is focused on item (c) and considers the case of continuous emission (CE) noise
radar, i.e. the stochastic counterpart of a continuous-wave (CW) radar, whose frequency-
modulated version (FMCW) is probably the most popular one. Generalized, the findings
can be used for processing continuously-emitted radar signals such as (pseudo-)noise or
orthogonal frequency division multiplex signals. The latter waveform is used in different appli-
cations such as Passive Coherent Location (PCL) [5], Multiple Input Multiple Output
(MIMO) radars [6] and others.

In order to extract a known signal from a white disturbance background, the matched filter
theory leads to computation of the Ambiguity Function (AF) defined in [7], i.e. the correlation
of a signal having complex envelope s(t) with its Doppler-shifted (of entity fD) replica,

X(t, fD) =
∫1
−1

s(t)g∗ t + t( ) e−j2pfDtdt. (1)

Operationally, a radar receiver/processor performs the cross-correlation of a Doppler-shifted
copy of the transmitted signal and the received signal (over a finite integration time) for a
set of Doppler values of interest. This procedure is often called computation of the Cross
Ambiguity Function (CAF). Conversely, in the radar waveform design phase [8], the AF is
used to quantify the level of unwanted signals (due to ambiguities as well as to side lobes)
after matched filtering of the radar echo. In principle, the radar designer would ask for
radar waveforms with their AF in shape of a thumbtack (i.e. one with neither ambiguities
nor side lobes); a wideband, long duration noise may approximate this behavior. In fact,
when both the duration T and the bandwidth B of a radar signal with noise characteristic
go to infinity, its AF obviously converges to a bi-dimensional Delta function. However, in
the real world both B and T are finite; in particular, B is limited (often, to a few hundred
MHz) by the regulations on the use of the electromagnetic spectrum. For example, all
on-board civil marine radars have to radiate in the 9300–9500 MHz interval for the
X-band, and 2900–3100 MHz for the S-band, i.e. always with B < 200 MHz.

Less straightforward are the bounds on T. Here, we consider short/medium range, medium/
high-resolution surveillance radar applications, where target data have to be updated at the
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typical rate going from one second to a few seconds. Below this
scan time scale, there are two more time scales, i.e. slow
(sweep) time and fast (pulse) time. A radar sweep has a typical
duration called pulse repetition interval or TPRI, of the rough
order of magnitude around hundreds of microseconds, and con-
tains some thousands of range resolution cells, each with duration
around 1/B, i.e. often in the order of hundreds of nanoseconds
(fast time scale).

In classical deterministic, monostatic surveillance radars, the
pulse (or more generally, waveform) repetition interval, once
defined by setting the instrumented range, has zero or little varia-
tions, as well as the scan rate of the antenna. Hence, in those
applications, there is very limited flexibility in setting the values
of slow and fast time, and, for a given radar wavelength λ, the
maximum unambiguous range and radial velocity, Rmax and
|vmax|, are fixed by the well-known relationships

Rmax = cTPRI

2
(2)

and

vmax = l

4TPRI
(3)

leading to the Range Velocity Product

RV P = c · l
8

(4)

independent of the pulse repetition interval.
But such a situation, which is strictly connected to the signal

being periodic, does change when noise radar, with separated
transmitting and receiving antennas, continuously transmits a
random, hence, aperiodic, waveform. In this case, the concept
of sweep has to be reviewed and the most relevant time interval
is the one dictated by the dwell time TD. It is defined as the max-
imum time interval in which a fixed point-target continuously
supplies useful echoes.

When a classic, horizontally scanning antenna for
bi-dimensional (2D) radar surveillance is considered, the dwell
time is computed by dividing the antenna beam width by the
antenna rotation velocity. The order of magnitude of TD in 2D
short-medium range surveillance is often tens of milliseconds,
and in each scan the information content that can be extracted
by an individual target is proportional (for both deterministic
and noise radars) to the ratio between the dwell time and the
signal’s sampling period.

For a staring, or persistent, radar the scan is absent and the
dwell time is limited by the transit time, in a range resolution
cell, of the target having radial velocity vr, i.e. TD is less than
(c/(2Bvr)), leading to a possibly large value (order of millions)
of the theoretical number of independent signal samples, i.e. up
to (c/(2vr)).

In typical applications, with a signal sampling period TS = k/B
(with the oversampling factor k being of the order of the unity)
the number of digital samples to be processed in an ideal compu-
tation of the full CAF is equal to k · B · TD , i.e. often reaches the
impractical order of millions, calling for separation of the range
and Doppler processing.

This separation is relatively straightforward when the radar
waveform is repetitive (i.e. in the deterministic case). In fact, in
this case, TD includes a given number NS of sweeps (i.e. TD =NS ·

TPRI), and the fast time processing, aimed to the extraction of
range data, is done in each of them. The fast time processing is
normally followed by re-organization of the processed data (some-
times called corner turn) and by the slow time processing, aimed to
provide a further processing gain and to extract Doppler (i.e. radial
velocity) data.

Note that, regardless of the waveform type (deterministic or
random), the separation of range extraction from Doppler (i.e.
radial velocity) extraction calls for choosing the duration TW of
the transmitted waveform. Compatibly with the power budget,
TW has to be short enough to have a negligible, or at least
acceptable, Doppler sensitivity. This means that, denoting fmax

the maximum Doppler frequency, the condition shall held that
TW · fmax < < 2π. A practical rule may be to keep, for both
deterministic and random waveforms, the product TW · fmax less
than a small fraction (e.g. 1/8) of the complete phase rotation:

TW · fmax ,
p

4
(5)

Based on these considerations adequate Doppler compensation is
required in many noise radar applications.

This compensation is often implemented by calculating the
well-known range–Doppler map [9], representing a set of
Doppler-compensated range profiles. Usually, in NRT this is
performed by computing, by means of fast algorithms, the CAF
[10,11] as explained above. Approaches for efficient range–
Doppler processing in CE and CW radars are strongly needed,
as the calculation of the CAF is inefficient in most cases [4].
Besides the CAF approach, an optimized algorithm for digitally
analyzing the Doppler signal in a smaller number of range cells
has been published in [12]. In the manner similar to the one of
Doppler analysis in FMCW radars, [13] describes an algorithm
that is based on partitioning the reference signal into batches.

Let us summarize the key points in the processing system pro-
posed here: in a CE noise radar, waveforms are not repetitive,
leaving freedom to choose the duration of the fast time and of
the slow time processing intervals, within the finite and fixed TD.

This paper presents a novel procedure resulting in fully
customizable range–Doppler maps in CE noise radar. The advan-
tages of this Range Filter Bank (RFB) algorithm over the CAF in
computational cost have been briefly presented in [4]. In the
following, a detailed description of the procedure of the RFB is
given, which shows how the RFB overcomes range-dependent
correlation losses and offers tailored range–Doppler computations
with minimum overhead. Verification of the RFB algorithm is
shown based on the results of dedicated field experiments
implemented thanks to a working noise radar demonstrator in
order to evaluate the practical performance and effectiveness of
the proposed algorithm.

The RFB algorithm

In the following, two major problems of noise radar signal pro-
cessing are addressed and suggested solutions are presented.
Each of these problems depends on the considered dimension
of the range–Doppler analysis. First, the range-related techniques
are presented and afterwards a Doppler-related algorithmic
procedure is introduced. The two-phase characteristics of the
RFB algorithm are finally highlighted.

The RFB method is based on the fact that the CE of a noise-
radar grants a peculiar flexibility to be exploited by dividing the
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received signal into a (well greater than the unity) number P of
processing segments, each with a fixed, convenient duration Tr.
Hence:

TD = PTr. (6)

As all P noise signal segments are stochastically independent, any
subset of M out of P segments can be used for range-scope
enlargement. A strict requirement for the usage of the RFB is
that the waveform is non-repetitive during the analysis, i.e.

TW ≥ PTr. (7)

Algorithmic details of the RFB in range domain

This section focuses on range calculations only. It describes a
common problem in noise radar signal processing as well as a
Filter Bank approach to overcome this problem. The main design
parameters and criteria of the presented algorithm are explained
in detail.

The range limitation problem
A current problem in radar signal processing often occurs when
digital correlation is applied for range measurement: digital cor-
relation often produces an inefficiently high amount of range cal-
culations for a given range region of interest (ROI) as shown in
the following.

The received echo signal s(t) of a single target in range R is a
delayed, possibly Doppler shifted and disturbed version of the
transmitted radar waveform g(t). It is

s(t) = Ag(t − tR)e j2pfDt + n(t), (8)

where fD denotes the Doppler shift, n(t) represents the additive
disturbances and τR = ((2R)/c) is the round-trip delay as defined
by the target range R. The value of the amplitude A depends
on several factors including distance and reflectivity of the target.

The cross-correlation function Rsg(τ) in general measures the
similarity of two signals s(t) and g(t) in dependency of their rela-
tive delay τ [14].

Rsg(t) =
∫1
−1

s(t)g∗(t − t)dt. (9)

Often (9) is utilized for measuring the target distance in radar
applications, as Rsg has its maximum value for τ = τR when (8)
is taken into account. The cross-correlation function Rsg(τ) of
two continuous-time signals s(t) and g(t) can only be computed
by dividing them into a finite number of segments of duration
Tr and computing their linear convolution. This is usually done
through the circular convolution, effectively computed in the fre-
quency domain by multiplication of the relevant spectra followed
by inverse Fourier transform.

The value of the peak amplitude of |Rsg(τ)| depends on the
delay τR of the echo signal s(t) proportional to g(t− τR) and the
computation is affected by the finite length Tr of the correlation
process and the non-periodic structure of the noise waveform.
In case of a noise waveform with a rectangular window, this
peak value for different round-trip delays τR follows a triangular
shape defined by the section length Tr. The triangular function

reaches its maximum value for τR = 0. It then linearly declines
to zero for target delays τR = Tr and τR =−Tr. Hence, the absolute
maximum target range, which can be processed, is limited by the
correlation length Tr. Beyond this, practical radar applications
might only cope with a correlation loss, say, of 1 dB leading to
a much shorter acceptable target distance having a maximum
round-trip delay of τ1dB≤ ((Tr)/5). The described standard range-
correlation procedure calculates the full range scope of ((cTr)/2)
although 4/5 of the range profile correspond to ranges beyond
the ROI. This is quite inefficient as illustrated in Fig. 1 with loga-
rithmic representation of the linear range-dependent correlation
loss. The inefficiency is removed in the novel filter bank approach
described hereafter.

Usage of a bank of matched filters
A novel approach of overcoming the above-said limitation makes
use of the aperiodic characteristic of the radar waveform and also
of the fact that, in principle, the instantaneous bandwidth B of
any section of a continuous noise signal does not depend on
the section length.

In this algorithm, the previously described range-dependent
amplitude loss in the correlation signal is compensated for by
coherently combining a number of suitable range sectors. This pro-
cedure is illustrated in Fig. 2 and can be performed in two steps.

The first step corresponds to the filter bank composition and
simultaneous filter operations which are highlighted by a gray
box in Fig. 2. In this step, M range correlations of the same
echo signal section s(t) with different properly delayed
reference signals gm(t) are computed. The signals gm(t), which
are defined as

gm(t) =g(t −mTr) · rect t
Tr

( )
,

m = 0, 1, . . ., (M − 1)
(10)

form a Range-Filter Bank. Each element of the filter bank repre-
sents a particular past section of the known transmitted signal g(t)

Fig. 1. Range-dependent loss: due to linear decline of the correlation peak, a range
scope much higher than the range region of interest needs to be computed in direct
range correlation. In this example, a radar application with a tolerable loss of 1dB in
its range correlation amplitude is drawn. The target round trip delay then is τ1dB≤
((Tr)/5) for a given correlation interval of length Tr. This restriction will be eliminated
later in this paper.
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with all elements having length Tr. According to (9) and (10) the
resulting correlations Rsgm in each stage of the filter bank have a
length of 2Tr as both, positive and negative delay values are
taken into account.

In a second step the resulting range profiles of all M channels
of the filter bank are subsequently combined to create a single
range profile R̃sg . This profile is formed by summing appropriately
delayed range sections Rsgm to

R̃sg(t) =
∑M−1

m=0

Rsgm (t −mTr). (11)

The M delay blocks in (11), each of which has an impulse
response of δ(t−mTr), produce a 50% overlap of each of the adja-
cent range correlations causing a pairwise compensation of the
triangular-shaped amplitude characteristic, that each single
range correlation Rsgm has.

The resulting signal R̃sg has a length corresponding to a round-
trip delay of (M + 1) · Tr whereas the maximum computed range
of targets with fully restored correlation amplitude is enhanced to

Rmax = c
2
· (M − 1) · Tr. (12)

Figure 3 demonstrates the RFB principle of adding overlapping
range sectors for an exemplary value of M=4.

The first phase of the RFB algorithm produces a sequence of
range profiles with a range profile update rate that is independent
from the range scope corresponding to a much higher measurable
round-trip delay of (M− 1) · Tr for M > 2. The efficiency of the
range calculation is defined by the design parameterM which cor-
responds to the number of filters in the filter bank. The parameter
M defines the ratio of the range of interest to the computed range
scope (maximum range), i.e. to the instrumented radar range.

The second design parameter is the length of each matched filter
Tr. The higher the design parameterM is chosen, the shorter the sec-
tion length Tr becomes for a given instrumented range. A smaller
value of Tr leads to a high range profile update rate but lowers the
elementary processing gain. Let us recall that, in principle, the the-
oretical maximum coherent processing gain in the CAF computa-
tion is bound to B · TD. Using the RFB a large overall range scope
is covered by (12) but the processing gain of this operation is defined
by a single slice length and thus is equal to the time-bandwidth
product of a single elementary filter bank operation of only

Gcorr = B · Tr. (13)

Ways to improve the processing gain of the RFB without lowering
the range profile update rate and exploiting P outputs are explained
in the following.

Application of the RFB in the Doppler domain

This section describes how the correlation gain of the RFB process-
ing can be increased. An approach for range–Doppler calculations
is presented offering range scope and maximum unambiguous
Doppler frequency which are independently selectable.

The starting point of the proposed gain enhancement proced-
ure is formed by a set of P adjacent (i.e. in the slow time domain,
equivalent to the sweeps-azimuth domain in classical 2D surveil-
lance radar) extended range profiles which have been created by
the bank of matched filters as shown in Fig. 2. In order to enhance
the signal to noise ratio (SNR) of target echoes in the output sig-
nal of (11), coherent processing of this series of range profiles is
performed. The over-all processing gain, then, is P-fold increased
from (13) to

GRFB = B · (P · Tr). (14)

Fig. 3. Range-dependent loss compensation performed by a Range Filter Bank with
M=4 elements. In the middle section an amplitude plateau of R̃sg spanning a length of
(M− 1)Tr can be observed.

Fig. 2. The Range Filter Bank core algorithm for efficient computation of range pro-
files. The design parameter Tr which represents the length of each elementary
matched filter operation defines the update rate of the resulting extended range pro-
files. The design parameter M describes the number of matched filters in the filter
bank and thus it defines the range scope according to (12).
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The bonded range scope and Doppler ambiguity problem
In conventional radars, as described in the introduction, the pulse
repetition interval (TPRI) defines the unambiguous range and also
the extent and resolution of the Doppler analysis: long TPRI values
lead to large unambiguous range but short unambiguous Doppler
interval. The opposite is true for short TPRI values.

In a manner similar to the FMCW Doppler analysis, [13]
describes an algorithm which is based on sectioning of the refer-
ence signal in the so-called batches of length TB. These batches are
processed in range domain by correlation with a section of the
surveillance signal that has at least a length of TB. For each
time shift (range cell) a Doppler FFT then is applied to nB correl-
ation outputs. The range profile update rate TB is equal to the
batch length and assumes the role of the TPRI of conventional
radar signal processing. Thus, the strong bond of the range-scope
with the Doppler ambiguities still exists. However, the range-
dependent correlation loss is not resolved in [13] beyond a single
batch interval TB.

In the following, it is presented how the strong interdepend-
ency of range-scope and Doppler-scope can be eliminated by util-
izing the new RFB algorithm.

Resolving the range-Doppler bond by the RFB algorithm
The range profile update rate of the RFB algorithm is defined by
the elementary matched filter length Tr. It allows Doppler pro-
cessing with maximum unambiguous frequency fd,u of

|fd,u| = 1
2Tr

. (15)

For a set of P range profiles which is analyzed by a Doppler-FFT
along each range cell, the frequency resolution is determined by
the overall coherent processing interval P · Tr to

Dfd = 1
PTr

. (16)

It is important to point out that the range extension factor M
does not play any role for the Doppler analysis. This means
the observable range scope Rmax is independent of the resolution
and ambiguity of the Doppler analysis when the RFB algorithm
is applied.

For very short section length values of Tr, the number of
coherently processed range profiles P significantly increases for
a given coherent processing interval TD. In case of simply
Doppler analyzing this set of range profiles, the length of the
FFT would linearly increase with the parameter P and the max-
imum unambiguous Doppler shift would increase to large values
according to (15).

Tailoring the Doppler scope
The proposed procedure described in this section reduces the
number of Doppler calculations by carefully adjusting the
Doppler analysis parameters to the requirements of the particular
radar application.

Figure 4 describes a Doppler processing optimized in terms of
computational efficiency. The requirement for this procedure is
that the number of coherently processed range profiles P can be
factorized to integer values

P = NS · NF . (17)

According to Fig. 4, the factor NS describes the integer number of
subsequent range profiles that are element-wise integrated prior to
the FFT operation. After coherent range cell integration the
frequency analysis is performed with a reduced number of FFT
points equal to NF .

As the integration is performed coherently, the processing gain
of the full analysis procedure does not change and so does the
Doppler resolution

Dfd = 1
Tr · (NF · NS)

. (18)

But the coherent range cell integration reduces the effective range
profile update rate from (1/(Tr)) to (1/(NS · Tr)) which limits the
maximum Doppler extent (Doppler scope) to

|fd,u| = 1
2
· 1
NS · Tr

. (19)

By this procedure an FFT implementation with a length much
shorter than the full number of range profiles P can be utilized
as long as the resulting Doppler scope fits the requirements of
the application. This fact significantly increases the computational
efficiency of the Doppler analysis.

Fig. 4. Flow chart of Doppler scope adjustment while preserving the Doppler reso-
lution. Coherent integration of range profiles prior to the Doppler FFT brings flexibil-
ity to the section length Tr of the RFB algorithm. The processing gain is not affected.
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Practical considerations

The performance of the range–Doppler map resulting from the
procedure presented in this paper can be adjusted by selecting
the independent parameters NS, M, and P appropriately, within
the bounds of (7).

The section length Tr can be chosen first, based on technical
implementation considerations.

For a given application, the range–Doppler performance of a
noise radar system can be adjusted based on assumptions or a
priori information on the expected targets as follows. It is
assumed that the elementary matched filter operation is imple-
mented with a fixed filter length Tr. This especially is the case
for modern FPGA-based radar systems.

First, according to the application’s maximum range of inter-
est, the RFB parameter M is chosen, which represents the number
of matched filters in the filter bank.

Second, the required processing gain based on the requested
detection probability of a given target radar cross-section at a
given distance defines the coherent processing interval. For a
fixed section length Tr it only affects the value of P, i.e. the size
of the set of range profiles.

Third and independent of M, the Doppler scope is considered
by respecting the expected target velocity vmax. The parameter NS

is selected from the already chosen parameter P, the fixed value Tr
and the velocity vmax.

Following this procedure, a well-tailored range–Doppler map
is created by calculating range–Doppler combinations only in
the given range and Doppler scopes of interest.

An extreme case of the presented algorithm can be applied to
static scenarios, i.e. for vmax = 0 with NF = 1 and NS = P. The
full set of P output signals of the RFB then is coherently integrated
forming a single range profile with extended range scope and full
coherent processing gain. The computational effort is significantly
reduced as compared with the direct correlation of surveillance
and reference channels.

Experimental verification

This section presents a dedicated experimental test of the RFB
algorithm. The scopes of both dimensions of the range–Doppler
map have been strictly tailored to the given situation of the
experiments.

Experimental set-up

An X-band noise radar demonstrator with a signal bandwidth of
50 MHz and <2 W effective radiated power (ERP) was available
for the tests. This radar is implemented using the heterodyne
receiver principle. The received echo signal (surveillance channel)
and a copy of the transmitted signal (reference channel) are
digitized and a digital implementation of the RFB generates
range–Doppler maps based on a given set of parameters. The
raw data are saved for verification.

During the experiment, staring antennas have been connected
to the demonstrator and mounted on a tripod in 3.5 m height
oriented along a country road.

On this road a car was driving cooperatively with velocities of
over 100 km/h when approaching the radar and of about 50 km/h
when departing from the radar.

The maximum available target distance was 250 m due to the
shape of the particular road section. Figure 5 shows the installa-
tion of the radar demonstrator while the cooperative radar target
is displayed in Fig. 6. This image is a still taken from a surveillance
camera which was used for visual confirmation.

A Gaussian pseudo noise signal of 50 MHz bandwidth was
used as radar waveform. Its period was equal to 200 ms, being
much larger than the recording interval of the receiver. Thus,
this waveform can safely be treated as a non-periodic signal
from the data analysis point of view.

In this particular set-up, the motion of the target follows the
line of sight of the radar. No significant tangential component
of the motion does exist. A simple mapping of tachometer vel-
ocity of the car and measured velocity of the radar echo can be
made.

For this reason, the radar data representation was converted
from the Doppler shift of echo signals to target velocity values.

Experimental results

Two major results can be drawn from the analysis of data
obtained by these experiments. The first result shows the validity
of the RFB algorithm in terms of valid range measurement and
also valid Doppler measurement. The second result supports
the basic assumption that neither the velocity resolution nor
the processing gain are affected by the different factorization
values of (17).

Range and Doppler measurement verification
This section describes the results of the experiments regarding the
creation of valid range–Doppler maps using the RFB algorithm.
The implemented elementary correlation length was equivalent
to Tr = 700 ns. With M = 3, the range scope of both displayed
maps has been adjusted to 210 m, which covers most of the
observed length of the country-road. The velocity analysis was
adjusted to the maximum possible speed of the Audi A6 station
wagon which is limited to 240 km/h in the respective configur-
ation. The maximum available coherent processing interval in
this recording was TCPI = 16 ms. With the resulting velocity
resolution of 3.6 km/h, a 128 point FFT was sufficient for analyz-
ing the maximum expected Doppler of the target. Thus, from
TCPI = PTr = 16 ms and (17) it follows that the choice of setting
NF to 128 results in NS = 15625 coherent summations as the
sampling frequency is equal to 125 MHz.

Figures 7 and 8 show the resulting range–Doppler maps that
have been created by the RFB algorithm with the tailored scopes

Fig. 5. Installation of the X-band noise radar demonstrator (50 MHz bandwidth,
ERP < 2 W) in the field with two staring horn antennas mounted at a height of
3.5 m looking along a country road.
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in both dimensions. The moving target can be clearly identified in
both figures with an SNR of more than 25 dB. In Fig. 7 the
distance between radar and car is determined to 156 m and the
measured velocity of the car is 115 km/h. While the car was on
its way back to the starting point of the track with much slower
speed, the recording of Fig. 8 was made showing 50 km/h radial
velocity and a distance of 132 m.

No clutter suppression or weighting was applied to the data as
the pure output of the basic RFB algorithm is to be demonstrated
in this section. Due to the wide beam of the horn antennas, and
lack of clutter suppression, clutter is well visible at zero Doppler.

Doppler scope tailoring verification
The procedure described in Fig. 4 assumes that the coherent pro-
cessing gain and the velocity resolution of the data analysis is
unaffected by the choice of NSNF -factorization if the require-
ments of the observed scene are respected.

To underline this assumption, the same samples of the experi-
ment displayed in Fig. 7 have been processed with different RFB
parameter configurations. Figure 9 shows the results of this

investigation. The plots are labeled referring to the parameter
NF = (P/(NS)) which is more intuitive than NS.

It can be clearly seen in Fig. 9 that the velocity resolution is
constant for the exemplary combinations and that for all config-
urations the target peak of the moving target at 115 km/h is pro-
cessed with full coherent processing gain. Minor differences in the
Doppler side lobes can be observed for higher velocity values.
Close to velocity value zero the curves perfectly match.

Discussion

The RFB algorithm can be verified by direct comparison of its
results to those of the CAF. Figure 10 displays the result of a con-
ventional CAF computation. The image is a cutout of the range-
velocity matrix covering the range scope from 0 to 250 m and the
huge velocity scope of |v| < 1.4 · 106 km/h.

It is important to note that the more efficient RFB algorithm
delivers the same target values as the conventional CAF as can
be seen by comparing the results shown in Figs 7 and 10. The
main difference between both figures can be observed at ranges
beyond the Range scope of interest being 210 m. A fading effect
is visible in the RFB according to Fig. 3. Obviously this effect is
not present in the results created by solving the CAF.

The results of the experiments show that the RFB algorithm
offers valid measurements of distance and velocity. In [4] it was
demonstrated how much more efficient the RFB is compared to
the CAF based on a generalized investigation of the computa-
tional cost of these algorithms. Furthermore, in the present
work the computational cost of the RFB implementation was
improved by tailored Doppler processing.

For efficiency purposes, the coherent processing of P adjacent
range profiles, which can be factorized into a linear combination
part and a frequency analysis part, should include as many linear
combinations of range profiles as the resolution and range/
Doppler ROIs allow.

It was taken into account that according to [15] the cost for an
FFT of length NF can be rated by

O NF log2(NF )
( ) (20)

Fig. 7. Measured range-velocity map of a car approaching with 115 km/h was created
by the RFB algorithm. The Doppler dimension was converted to relative speed for
verification purposes. The signal to noise ratio of the target is higher than 25 dB in
this figure.

Fig. 6. Station wagon used as cooperative moving radar target driving along a coun-
try road with speeds of 50 km/h in one experiment and more than 100 km/h in a
second experiment.

Fig. 8. The movement of the car driving in the opposite direction with lower speed of
50 km/h was also detected and correctly measured by the RFB algorithm.
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elementary operations whereas the cost for a coherent summation
of NS samples is linear with cost of

O NS

( )
. (21)

The relative cost of different factorizations thus can be rated
with (22) and (21) to

O NS1
NF 1 log2(NF 1 )

NS2
NF 2 log2(NF 2 )

( )
= O log2(NF 1 )

log2(NF 2 )
( )

(22)

for any valid factorization NS1
NF 1 = NS2

NF 2 = P.
The experimental results of Fig. 9 show matching results for

the respective velocity scope of the analysis for different linear

combination to frequency analysis factorizations. For NF = 128
the maximum displayed velocity is 230 km/h whereas for
NF = 4096 it is equal to more than 8000 km/h which is unneces-
sarily high for the configuration in the experiment.

The computational speed up between both extreme cases is
equal to 42% by reducing the FFT length from NF 2 = 4096 to
NF 1 = 128. The data rate of the RFB output matrix is reduced
to 3%.

Conclusions and outlook

In this paper, a customizable and efficient range–Doppler pro-
cessing algorithm was presented. The intense use of short Fast
Fourier Transforms results in an improved efficiency compared
with calculating range–Doppler maps by solving the CAF,
which usually is referred to in noise radar technology.

Range-dependent correlation losses have been resolved and the
bond of range scope with Doppler scope has been cut.

The described procedure is based only on parameter variations
that apply to the received signals. The performance of the
range–Doppler processing can be chosen without altering the
transmitted signal. In future, even several different RFB
implementations with different sets of parameters might be exe-
cuted in parallel on the same sample of received data, each of
them fulfilling different tasks. The RFB is also compatible with a
varying section length parameter Tr, like in the conventional
staggered PRF surveillance radars, to enhance the available RVP.

The presented approach paves the way toward real-time
implementation of range–Doppler computations in CE noise
radar signal processing.
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