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We use the two-dimensional heat equation as an illustrative example to show that the
unified transform is capable of constructing analytical solutions for linear evolution partial
differential equations (PDEs) in two spatial dimensions involving non-separable boundary
conditions. Such non-separable boundary value problems apparently cannot be solved by the
usual transforms. We note that the unified transform always yields integral expressions which,
in contrast to the expressions obtained by the usual transforms, have the advantage that are
uniformly convergent at the boundary. Thus, even for the cases of separable boundary value
problems where the usual transforms can be implemented, the unified transform provides
alternative solution expressions which have advantages for both numerical and asymptotic
considerations. The former advantage is illustrated by providing the numerical evaluation
of a typical boundary value problem, by extending the approach of Flyer and Fokas (2008
Proc. R. Soc. 464, 1823-1849). This work is the two-dimensional continuation of the heat
equation with oblique Robin boundary conditions which was analysed in Mantzavinos and
Fokas (2013 Eur. J. Appl. Math. 24(6), 857-886.

Key words: initial-boundary value problems; two-dimensional heat equation; unified trans-
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1 Introduction

Self-adjoint boundary value problems for linear partial differential equations (PDEs)
formulated in a separable domain and involving separable boundary conditions can be
solved via the usual transforms. The unified transform introduced by one of the authors
[1,2], although originally developed for integrable nonlinear evolution PDEs in one spatial
dimension, has had important implications for linear PDEs. In particular, it is capable
of constructing analytical solutions to certain linear boundary value problems which are
either non-self-adjoint or involve non-separable boundary conditions; see [3] for a recent
review comparing the unified transform with the classical approaches in two dimensions.

Most of the existing results using the unified transform have been restricted to two
dimensions. Regarding linear PDEs, the only works in higher than two dimensions are
the following: (i) the analytical solution of evolution PDEs in two spatial dimensions
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involving either second or third order spatial derivatives formulated in the quarter plane
and satisfying separable boundary conditions; (ii) the analytical solution of the two-
dimensional heat equation formulated in the interior of an equilateral triangle with
Dirichlet boundary conditions [4].

Here we study the two-dimensional heat equation on the quarter plane {0 < x < o0, 0 <
y < oo} with given initial data ug(x, y) and oblique Neumann boundary conditions:

Uy = Uxx + Uy, O<x<o, 0<y<oo, t>0, (1.1a)
u(x,y,0) =up(x,y), 0<x<oo, 0<y<oo, (1.1b)
cos B ux(x,0,t) —sin By uy(x,0,t) = Fi(x,t), 0<x<oo, t>0, (1.1¢)
cos fruy(0,y,t) 4+ sin fru(0,y,t) = Fa(y,t), 0<y<oo, t >0, (1.1d)

where f1, > € [0,2n) are constants and Fi(x,t), F2(y, t) are given functions with appropri-
ate smoothness and decay. We obtain an analytical solution in the case that f31, ; satisfy
any of the following conditions:

Br=Ft@nt 3. n=-2-101 (1.20)
Bi=Cm+ 1T, m=01, fr=@n+ DI, n=01, (1.2b)
pr=mn, m=0,1, f,=nn, n=0,1. (1.2¢)

We note that equations (1.2b) and (1.2¢) are the conditions that the boundary data vectors
shown in Figure 1 are orthogonal, whereas equation (1.2a) is the condition that these
vectors are parallel. 1t will be shown in Section 2 that the condition (1.2a) implies the
following compeatibility requirements for the functions Fi(x,t) and F»(y,1):

n=—1,1: Fi(0,t) = F»(0,1); n=-=2,0: Fi(0,t) = —F(0,t). (1.3)

It turns out that in the case of condition (1.2a) with f; € (0,m/2) U (m,3n/2) well-
posedness requires the additional boundary condition

u(0,0,) = h(t), ¢>0, (1.4)

where h(t) is a given function with appropriate smoothness.

The initial-boundary value problem (1.1) can be regarded as a two-dimensional analogue
of the heat equation posed on the half-line {0 < x < co} with a non-separable boundary
condition of oblique Robin type:

U = Uyy, O0<x<oo, t>0, (1.5a)
u(x,0) = up(x), 0<x < oo, (1.5b)
u(0,t) + oy (0, 1) + pu(0,t) = y(t), t>0, (1.5¢)

where o, 5 are constants and y(t) is a known function. Problem (1.5) as well as the
corresponding problem on the finite interval were analysed in [5], where in addition
the authors considered the case of non-local integral constraints instead of boundary
conditions of the form (1.5¢).
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We emphasise that boundary value problems with non-separable boundary conditions
cannot in general be solved by the usual transforms. In this respect, we note that the
application of the Laplace transform to the two-dimensional heat equation yields a
Helmholtz type equation but with a “complex wave number”; the analysis of such an
equation is rather complicated.

Boundary value problems for the modified Helmholtz equation on the quarter plane
with oblique Neumann boundary conditions were investigated in [6]; the conditions (1.2)
for 51, p, are identical with the conditions for fy, f, appearing in [6].

1.1 The unified transform

The implementation of this method to the heat equation in two dimensions requires the
followings steps:

(1) Rewrite the heat equation
U = Uy + Uyy, (16)
in the divergence form

(efikleik2y+(kf+k§)tu) _ [efikleikgyﬂk,z#»k%)z (uy + ik u)}

t X

+ [e—iklx—ikzy-f-(k%-‘rk%)t (uy + ik, u):| . kik, € C. (17)
y

Use Gauss’ theorem in the given domain to obtain the so-called global relation,
namely an equation which couples the Fourier transform of u(x, y,t), denoted by
ii(ky, ky, t), with appropriate transforms of the given data, as well as with transforms
of certain unknown boundary values.

(2) Solve the global relation for #i(ky,ky,t) and use the inverse Fourier transform to
obtain u(x, y, t) in terms of transforms of the initial and boundary data, as well as of
transforms of certain unknown boundary values. Deform the contours of integration
with respect to k; and k; from the real line to appropriate contours in the complex k;
and ky-planes to obtain an integral representation of u(x, y,t). This representation is
not yet effective because it involves transforms of certain unknown boundary values.

(3) Use the global relation, as well as three additional equations obtained from the
global relation under the transformations k; — —k; and k, — —k;, to eliminate the
transforms of the unknown boundary values and thus obtain an effective solution
expression.

2 The heat equation on the quarter-plane with oblique Neumann boundary conditions

Consider the two-dimensional heat equation
U = Uy + Uyy, U= M(X, Vs Z), (X, Vs [) €Q, (21)

where

Q={0<x<o0 0<y<oo, t>0}, (2.2)
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FIGURE 1. Oblique Neumann boundary conditions on the quarter-plane.
with the initial datum
u(x,y,0) =up(x,y), 0<x<oo, 0<y<on (2.3)

where ug(x, y) has appropriate smoothness and decay.
We pose an initial-boundary value problem by supplementing the above equations with
the so-called oblique Neumann boundary conditions:

cos B ux(x,0,t) —sin By uy(x,0,t) = Fi(x,t), 0<x <oo, t >0, (2.4a)
cos Bruy(0,y,1) +sin fr ux(0,y,1) = Fa(y,1), 0<y<oo, t >0, (2.4b)

where Fi(x,t) and F(y,t) are known functions.
In what follows we apply steps 1-3 of the introduction to the heat equation on the
quarter-plane with the oblique Neumann boundary conditions (2.4).

2.1 Apply Gauss’ theorem on the divergence form

The formal adjoint of equation (2.1) is
—0l = Uy + Ty, @ =0(x,p,1). (2.5)

Thus,
(fw), = (Buy — fiyu), + (T, — ﬁyu)y. (2.6)

Equation (2.5) admits the two-parameter family of solutions
fi(x, y, t) = e kx—ikytolklt e € ky € C, (2.7)
where the function w(ky,k;), hereafter denoted by w, is defined by
o(ky,ky) = ki + k3. (2.8)

Inserting the particular solution (2.7) into equation (2.6) yields the following divergence
form for the two-dimensional heat equation:

[emtarsoty(x y )] = {e RO [ (x, y, 1) + iy u(x, y. 0]}
+ {e—ik1x—ik2y+wr [uy(x, v, 1) + iko u(x, y, [)] }y . (2.9)
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S

FIGURE 2. The domain V for Gauss’ theorem.

Let @i(ky, ks, t) denote the two-dimensional Fourier transform of u(x, y,t) with respect to
the spatial variables x and y:

o0 o0
ky, ko, t) = / dx / dy e "=ty yx y 1), ki e €, ky e C. (2.10a)
0 0
The inverse Fourier transforms yields

u(x, y,t) = (211)2/ dky / dky e*rxtikey ki, ky,t), 0<x<oo, 0<y<oo (2.10b)

Note that we require k; and k, to have non-positive imaginary parts in order for the
integrand in equation (2.10a) to be bounded as x and y tend to infinity.
Employing Gauss’ theorem, equation (2.9) yields

) ) ux(xayas) +lkl u(x>yas)
// ek sy (xy,s) + iky u(x, y,s) | -dS =0, (2.11)
o —u(x,y,Ss)

where V ={0 <x <o, 0 <y <o, 0<s <t} is depicted in Figure 2 and dS is the
element of the surface of V' pointing in the outward direction. Thus, we obtain

itk ko, t) = fio(k ko) — (g1 (@. Koy ) + ik gf) (@, ko )|

- [Pk ik gl k0|, keC, keT,  (212)
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where

t o0 .

gél)(w,kz, t) = / ds dy e *ytosy0,y,s), ki€ €, ko e C,
0 0
¢ 0

gk = [ds [ dre B0y keC ke,
0 0
t o0

gP(w,ky,t) = / ds [ dxe ™¥tosy(x,0,s), ke C, kyeC,
0 0
t o0

gD, ki, 1) = / ds / dx e X8y (x,0,5), ki €T, ky € C.
0 0

Let us hereafter write
cosfj=cj, sinfj=s;, j=12
Then, the boundary conditions (2.4) become

ciux(x,0,t) = spuy(x,0,t) = Fi(x,t), 0<x<oo, t>0,
czuy(oayat)+s2ux(07yat):FZ(yat): 0<J/<00, t>0.

(2.13a)

(2.13b)

(2.13¢)

(2.13d)

(2.14a)
(2.14b)

We introduce the unknown functions Qi(x,t) and Q,(y,t) which satisfy the equations

St ux(x,0,8) + ¢ uy(x,0,t) = 01(x,t), 0<x<oo, t >0,
S2 uy(Oa Vs t) — 0 ux(oa Vs t) = QZ(ya [)9 0< y<owo, t> 0.

Solving equations (2.14) and (2.15) for the boundary values of u, we find

ux(x,0,t) = c1Fi(x, 1) + 51Q1(x, 1),
uy(x,0,t) = c101(x,t) — s1F1(x, 1),
1)

1)

uy(osya (/ZFZ(ys t) +SZQ2(y> t)a
ux(oaya SZF2(y, t) _C2Q2(y9 t)

Let {f1,f2,q1,q2} denote the relevant transforms of {Fy, F», 01,0}, that is

t o0
fi(o. k) = / ds / dx RO F (x, ),

Falwknt) = / ds / dy e OBy, ),

(0,kq,1) / ds/ dx e7KX+osg (x, 5),

42(0,ka, 1) / s / dy e 0y, ),

(2.15q)
(2.15b)

(2.16a
(2.16b
(2.16¢
(2.16d

—_~ — — —

(2.17a)

(2.17b)

(2.17¢)

(2.17d)

Multiplying equations (2.16a) and (2.16b) by e *1*t®5  taking the double integral over
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(x,s) € (0,00) x (0,t) and integrating by parts, we obtain

ik g8 (., ki, 1) = erfi(w, kio 1) + s1q1 (., ki, 1) + (o, 1), (2.18a)
g, ki,t) = crqi(w, ki, 1) — s1f1(w, ki, 1), (2.18b)

where the function # is defined by
t
iw,t) = / ds ¢”* u(0,0,s). (2.19)
0

Similarly, using equations (2.16¢) and (2.16d) we find

ko8 (@, k2, 1) = eafa(@, ko 1) + $:05(, ko, 1) + fi( 0, 2), (2.20a)
g (@, k2, 1) = s2f2(@,ka, 1) — crga(@, ks 1). (2.20b)

Employing equations (2.18) and (2.20) into equation (2.12) we obtain the global relation

N N k k
e i(ky, ka, t) = fio(ky, k) + [(Cz — szé)qz(w,kz, t) — (52 + Czé)fz(a),kz, t)]
k2 k2
- [(cl + Sla)ql(waklat) - <Sl - cla)fl(waklat)}
(iR e, ke kea (2.21)
ky  ky

This relation couples the known functions {i, f1, f2} with the unknown functions # and
{41, 92}

2.2 Invert the global relation

Inserting equation (2.21) into the inverse Fourier transform (2.10b), we find
1 * * ki x+ik,y—mt A
ulx,p,t) = —= [ dk dka "R g (ky, k)
(2n)* J-w —0

! B ” iky x+ikyy—ot X k1 ki
— o /_OC dky /_v dk; e (32 + czg)fz(w,kz, )+ Eu(w’t)

— (cz — 52%) q2(w, ka, I)}

_ L o 0 ikyx+ikyy—ot | B @ k£~
(2TE)2 /—oc dkl /—oo dk2e (Sl Clkl)fl(w’kl’t) + klu(w, I)

k
s Jatoknn]. 02

Define the regions Dt and D~ of the complex kj-planes, j = 1,2, by

D* ={kjeC" :Re(kj) <0}, D" ={k;eC :Re(kj) <0}, j=12. (223
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Ik

FIGURE 3. The regions D* and D~ of the kj-planes, j = 1,2.

The second term on the right-hand side of equation (2.22) involves the exponential

ltielmm=el=9) x>0, t >, (2.24)

>

where in the definitions (2.13) we have used # instead of y. The definitions (2.8) and (2.23)
imply that this exponential is bounded for k; € €+ \ D, thus we can deform the contour
with respect to k; from the real axis to the contour D" shown in Figure 3. Similarly, in
the third term on the right-hand side of equation (2.22) we can deform the contour with
respect to ko from the real axis to the contour dD*. Hence, the following proposition is
established.

Proposition 1 (Integral representation) The two-dimensional heat equation (2.1) posed on
the quarter-plane with the initial datum (2.3) admits the integral representation

u(x, y, t) = 211)2/ dkl/ dky etk =ot e oy
[ k
dk dk iky x+ikyy—wt 4 k , 71~ t
= onr / 1/ e _(Sz 27— )fz(w 2,1) + kzu(w )

— (cz - &%) g2(w, ka, t)}

L « ik x+iky—ort _ 12 .
+ (2n) /700dk1 dky e (51 17— )f1(w ki, t) — k fi(w, t)

oD+

k
_(C1 i slki)ql(w,kl,t)},(x,y, 1) € Q, (2.25)

where iig(ky, k) is the Fourier transform (2.10a) of the initial datum uy(x,y), the functions
filw,kj,t),qj(w,kj,t),j = 1,2, are defined by equations (2.17) and the contour dD* is de-
picted in Figure 3.

2.3 Elimination of the unknown transforms

The integral representation equation (2.25) involves the unknown functions
{q1(w, k1, 1), g2(w, k2, 1)} defined by equations (2.17¢) and (2.17d) as the relevant transforms
of {Q1(x,1),02(y,1)}, as well as the unknown function #i(w, t) defined by equation (2.19).
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In what follows, we will use the global relation (2.21) to eliminate ¢;(w,kq,t) and
q2(w,ky, t) from equation (2.25). In this respect, we note that the function w(ki,k;) is
invariant under the transformations k; — —k;, j = 1,2. Hence, we supplement the global
relation (2.21) with the following additional identities obtained from equation (2.21) via
the aforementioned transformations:

ik t) = ol—krok) + [ (e2 4 52 )t ) = (52 = 3 ok )]
(e =12t~k (s + 1 2 ) il —k0)

+ (1121 ) i(w,t), k€Tt kyed, (2.26a)
2

itk —ha, 1) = ks, —ko) + [ (€2 + 527 )Q2(w o) - (52—02 ) fa(e. k1)

(R s, kea kzea:t (2.26b)
ky ki
and
N N ki
ei—h1, ks, ) = k1, k) + [ (2 = ) a0~k = (32 + 27 ) oo, 0]

[(cl-l-sll; )ql(w kl,t)—(sl—q )f1(60 —ki, )}

g + k2 i(w,t), k €C*, ke C". (2.26¢)
ky Kk

Solving equation (2.26a) for gq(w,k»,t) and equation (2.26b) for qi(w,k,t), we find
respectively the following equations:

ki N N
(327 ) a0k ) = €~k o) — ol —kiska) + (52 = €2 ) okt

+(c1—s1 )ql(w —ki,t) — <S1+C1 )fl(w —ki, 1)

(kl ) (w,1), ki€t ke, (2.27a)
2

and

k> N N k
(e1 =512 )@kt = —e“”u(kl,—kz,z)+uo(k1,—kz)—(sz—Cz—l)h(w,—kz,r)
ki k>

ky

+ (Cz—i—Szk )%(w —ka, t) + (51 +eci— )fl(w ki,t)

(ke i(w,t), k€€, ke C (2.27b)
ks kg
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Inserting equations (2.27) in the integral representation (2.25), we obtain

u(x, y, t) 27)2 / dkl / dkz etk1 V-szy—th (kl,kZ)

1 o k L

[ dk dk lk1X+lk2y—(/)I{ + K1 ,k 4+ ki y

(2n)* /aD+ 1[00 re (Sz Czkz)fz(w 2, 1) kzu(w )

caky — saki [ oy n R
— ————— |e”"i(—ky, ka, t) — fio(—ky, k

Czk2+st1 [e (k1 ko, ) — tio(—k1,k2)

ky

+ (sz — )fz(w ky, t) + (C1 —slk )ql(w —ki,1)

@1+q—mev = (L + 2 Jatwn) |

. . k k
_— dk dk iky x+ikyy—t . h2 ki) — ka ;
+ (27t)2 /,OC l/am 2€ {(51 Clk] )fl(w, 1,1) A ii(w, 1)

ciky + siks
C]k] — S1k2

+(n— et ok — (4 n oo k0
k ki k
- (e )k - (2 +2 ) uwol | (.29

The contributions of the terms involving &(—ky, k,, t) and di(k1, —k», t) are zero. Indeed, the
relevant integrands are analytic and, furthermore, since x + ¢ > 0 and y +# > 0,

{wmh—@o—%mﬁh)

‘kh‘m ehilbc+OFik0=n — 0k e DY, k, € R, (2.29a)
1|00
and
‘kli‘m el — 0 k e, k, € D*. (2.29b)
2|00

Thus, these integrands have exponential decay at infinity and hence, by Cauchy’s theorem
and Jordan’s lemma the corresponding integrals vanish.

2.3.1 The relation between i and [,

The representation (2.28) still involves the unknown functions gq;(w,—ki,t) and
qa2(w, —ka, t). It turns out that we can eliminate these functions by using equation (2.26¢).
However, we have been able to achieve this only if the angles ff; and f, are such that the
combination of q(w, —ky,t) and g,(w, —k,,t) appearing in equation (2.28) is proportional
to the combination of these functions appearing in equation (2.26¢), for all complex values
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of the spectral variables k; and k», i.e.

ok — s7kq ky ciky + siko k1
ek + 5ok (Cl — SIE)QI(w, —ki,t) — ki —siks (Cz + SZE>‘I2(CU, —ko, 1)
— hi e) k2 £} kl
= i|(ertsig ) nto. k0 — (e s Jar(o.—ka.0)]. (230)

for some constant 4 which does not depend on k; and k;. By equating the coefficients
of powers of k; and k;, we find that equation (2.30) is satisfied for all k; and k; if the
following three equations are satisfied:

(cre0 + 512)A—1)=0, c¢155(A+1)=0, c51(A+1)=0. (2.31)

In what follows, we analyse these equations.

(1) A= —1. Then cjc; + 5152 = cos(fi — f2) = 0 or, equivalently,

Bi =P+ (2n+ 1)%, n=—2,-1,0,1. (2.32)

(2) A =1. Then C182 = (281 = 0.
(a) If ¢y = ¢, =0, then

)z

S m=01, fr=(n+ D

Br=(2m+1 5 n=0.1. (2.33a)

(b) If s, =51 =0, then

pfir=mn, m=0,1, f,=nn, n=0,1. (2.33b)

(3) If |A] # 1 then equation (2.31) cannot be satisfied for any choice of the angles f1, .

Equations (2.33) are actually the conditions that the boundary data vectors shown in
Figure 1 are orthogonal, whereas condition (2.32) forces these vectors to be parallel.
Equation (2.32) implies the compatibility requirements (1.3). Indeed, according to the
condition (2.32) for n = —1,1, we have ¢; = s, and s; = —c;. Thus, evaluating the
boundary conditions (2.14) at x = y = 0, we find

$2ux(0,0, 1) + c2u, (0,0, 1) = F1(0, 1) _
ea10,(0,0, ) + 5212(0,0, 1) = Fy(0,1) | — 1100 =F2(0.0)

On the other hand, for n = —2,0 we have ¢; = —s; and s; = ¢,. Thus, evaluating the
boundary conditions (2.14) at x = y = 0, we find

—52ux(0,0, 1) — couy(0,0,1) = F(0,1)

cwmwﬁ+nw&an=&mo}3“m”:_5&”
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The integrals on the right-hand side of the representation (2.28) involving the functions
q1(w, —kq,t) and gz(w, —k,,t) are given by

1 - ik x+ikyy—wt C2k2 - SZkl k2
(2m)? /6D+ dh /—oo dhoe c2ky + soky (Cl S ki )q1(a), ki, 1),

and

¢ Clk1 + S1k2

1 * : :
/ dkl dk2 elk1x+1k2y—w
0 oD+ Clkl — Slkz

“oer /. )612(60 —ka, t).

(2+szlli

The integrands of the above integrals are analytic for all k; € C*\ D*, j = 1,2, hence,
by Cauchy’s theorem and Jordan’s lemma, the contours with respect to k, and k; can be
deformed from the real axis to the contour 0D, so that

1 B etikay_or C2ka = s2k ko
- k ik x+ikyy—wt €282 7 S2R1 _ —k
2n)* Jop+ i /_w dhaye caky + soky ( TS )ql(w 1,1)

_ 1 iky x+iky y—amt M L & B

= on? /aD+ dky . dky e S (q S1k1 )ql(w, ki t), (2.34a)

and

! : kix-tikoy—or C1K1 4 S1k2 ky
_ dk dk ik x+ikyy—t C171 T S182 P
(2“:)2 [m ! /3D+ 2 ¢ Clkl — Slkz ( 2 + S2k )QZ(W 25 )

1 ciky + siks ki
= dk dky elrxtikey—ot 210 TP () 4 —ky, t 2.34b
(2n)/ YRCY el (CE g PR SN X

Under condition (2.30), we can combine equations (2.34) with equation (2.26¢). Neg-
lecting the function #(—ky, —k;,t) (using the earlier arguments, see equations (2.29)), we
find that the terms of equation (2.28) that involve qi(w,—k;,t) and g»(w,—k;,t) are
equal to

e / dk, / dky eF1xtikey— wf[ o(—ky, —ky) — <Sz+62 )fQ(w —k», 1)
oD+ oD+

+(sl—c1 )fl(w ke t) — (’lz;ﬂ;’f) a(w,z)]. (2.35)
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Inserting equation (2.35) in the integral representation (2.28) we obtain the following
representation, which does not involve any of the unknown functions gq; and g;:

u(x, y,t) = / dky / dky "X Fiey=otg (e ko)

2k
dk dk iky x—+ikyy— wt{ k ,
(275) / ! / ¢ coky + S2k1f2(w 1)

crky — soky |
- —ki,k —k
S {uo( 1,ka) + (51 +c—= )fl(w 1,1t)

+ |-+ oL fi(w,t
(& + ) w0 + tato.n
1 . ; ; 2k
o dk dk 1k1x+1kzywt{2 kot
(2n)? [ ! [m 2¢ ciky —S1k2f1(w )

crky + siko ki
crki —siks { o(k1, —k2) — (Sz - 62E)f2(a), —ky, t)

ki ks
+<k +k1> ii(w t)} “ii(o, z)}
ik x+ik, y—awt _ & ki N
(2ﬂ /wdkl/mdke J [ ol—kt, ~kz) <k2+k1>“(w,r)

+ (31— er 2 )0~k = (52 ) ol k)] (2.36)

The above representation contains the unknown function #i(w, t), thus we rewrite it in
the form

u(x, v, 1) = (27 / dky / dky PRI () )

. . 2k
- dk dk ikyx+ikyy—ct J AR kot
(20’ /D+ 1 /*J” > {Czkz + soky @k, 1)

Czkz — Szkl
- —ki, k —k
S [ o(—k1,k2) + (31 +ci— )fl(w 1 )]}

1 «© . ; 2k
_ dk dk ik x+ikyy—mt 2 . kit
(2m)? [ 1/D+ 2¢ {Clk1—51k2fl(w’ 1)

_|_°1k1+51k2[ olkt, kz)—(Sz—CZ )wa k2’t)]}

C]k] — S1k2
A )—
+ W / dkl b dk elkl xtikoy t|: ( kl, —kz)

+ (=2 ) fito k0 — (2 + ) oo~k )]
+u'(x, 1), (2.37)
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where u*(x, y,t) is defined by

1 * N k cky — soky [k k
* 1) = — dk dk iky x+ikyy—ot | 1 2R2 2h1 [ R R2 ~ ¢
u (%2 1) (2m)? /6D+ 1/,go 2¢ {kz + crky + soky \ ka + ky e, 1)

_ 1 / dk, dk, eik1x+ikzy7wt l:k2 + ciki + siks <k1 + k2>:| ﬁ(w,t)

@2n)* oD+ ki ek —sika \ka Ky
2 oo ki ky
_ dk dk iky x+ikyy—owt [ 1 "2\~ ¢ 238
(2m)? /am Y ope ¢ (kz + kl) o, 1) (238)

with fi(w, t) defined by equation (2.19).

Case 1 / = 1. We have two subcases: ¢y =c¢; =0 or s; =5, =0. (a) ¢c; = ¢, = 0. Then,
formula (2.38) becomes

* 1 OO ikix+ikyy—w k ~
= o /amdkl [ e ebvesteror 2 e

L ostitny—or K
+ / dky | dky RN (o0, 1)

(2TE)2 —0 oD+ 2
1 e ki ko
- dk dky erxFiky=ot (20 4 22 ) fi(w, 1) = 0 2.39
(27_[)2 [D+ 1 - 2€ <k2 + k]) u(w7 ) 5 ( )

after deforming all the contours of integration to 0D ™.

(b) s; = s = 0. Then, after deforming all the contours of integration to dD*, formula
(2.38) becomes

* 1 ik x+ik, y—w k k ~
w0 =—— /a N dky - dky erxtikey—ot (k; + k?) ii(w, ). (2.40)

Using equations (2.4), however, it is possible to compute @i(w, t) explicitly. Indeed, we have
ciux(x,0,t) = Fi(x,t), couy(0,y,t) = Fa(y,1), (2.41)
hence, differentiating with respect to x and y respectively, we find
Ciug(x,0,1) = 0. F1(x,t),  cauyy(0,y,t) = 0, F>(y,1). (2.42)
Evaluating the above expressions at x = y = 0, we obtain

1 1
Ur(0,0,1) = 1(0,0,1) + 1yy(0,0,1) = — 0 F1(0,8) + — 0, F2(0, ), (243)
1 2

which in turn yields the formula
! 1 1
M(Oa Os [) = dS ? axFl(Os S) + ; ayFZ(O: S) + MO(O, O)a (244)
0 1 2

where we have used the fact that u(0,0,0) = u(0,0). Inserting formula (2.44) in the
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definition (2.19) of @i(w,t) we then find
~ ! (ON ’ ! 1 / 1 /
i(w,t)= [ dse* dt' | — 0, F1(0,t") + — 0, F»(0,t") | + uo(0,0)
0 0 €1 C2
! ) * / 1 / 1 / 1 t
= [ dse” [ dt' | —0.F(0,t)+ —0,F(0,t)| + — (e“’ — 1) up(0,0).  (2.45)
0 0 C1 (&) w

Formula (2.45) is an explicit formula for fi(w,t) in terms of the initial and boundary
conditions and, therefore, when inserted in equation (2.40) yields an explicit formula for
u*(x,y,1).

Case 2 / = —1. Then, the function u*(x, y,t) is equal to

* 1 ” i\’ia*(oCk_Sk k k ~
u(x’y’t):_w/aD+dkl/_oodk2 ek1«+k,y IM( 1+2> M(OJ,[)

eoky + soki \ky Ky

1 *© : o ek + 81k (ke )
——— [ dki | dky frer 2 (2 2 W, 1). (246
(2m)? /—ao Yo 7 ciky — siky \ k2 1 (@,1). (2:46)

We have the following two subcases:

(a) c¢1s; < 0. Then ¢ps; = 0 and hence (c2ks + sokyi)(c1k; — siks) # 0 for all ki, k, € C*.
Thus, both integrands on the right-hand side of equation (2.38) are analytic for
ki,k, € C*. Hence, we can deform the contour of integration with respect to k; in
the first double integral, as well as the contour of integration with respect to k; in
the second double integral, to the contour dD". Then, due to condition (2.32)

cky — sk | etk sika  2(kf +k3)(ciea +5150) 0
eoky +saki ikt —sika  (ciki —kasi)(eaka +kis2)

therefore, u™(x, y,t) vanishes.

(b) ¢ysy > 0. Then condition (2.32) implies ¢;55 < 0, hence the integrands in equation
(2.46) have poles at ky; = kycotpB; for k;,ko € C*. The contours of integration
with respect to ki can be deformed to the boundary OE™, shown in Figure 4.

Thus, noting also that condition (2.32) is now equivalent to tan f; tan i, = —1, we
find
1 « R coky —soky (ki k
u'(x,y,1) = ——— dk dky efrtikey—or 2272 7 9281 (1 + 2) w,t
(x:,1) (2n)? /aE+ ! [30 ? Coky + 5okt \ ko ki (@.1)
1 et r Coko —soky (ki ko\ L
+— dk / dky eixtikoy—ot 222 P2 ( + ) ii(w, ).
(2n)? /aE+ Yo Cokay + soky \ ko 1 (@.1)
(2.47)
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k.

J

oD~

D+

FIGURE 4. The contours 0D+, 0D~ and 0E™.

Cauchy’s theorem in the region €1\ D' of the ky-plane for the first term of equation
(2.47) yields

ko — soky (k k
1) = dk dk iky x+ikyy—ot u (1 + 2> i Jt
u (X p,t Tc)2 /E+ ! /D+ ¢ Cky + skt \ka ki w0

—I—l—csc Bi i +dk ekilxty ot ="t o m(w*, 1)
E

1 T xtikyv—ot C2ko —Saki (ki ko _
dk dk iky x—+ik, y—wt ¢
- (2n)? / " 0 ¢ caky + $2ky (kz + ki ) B, 1),

where the second term above corresponds to the residues from the poles at k, = ky cot f5;
and " = k? csc? 1. Hence, for c¢1s1 > 0 we have

1 o . .
u*(x’ V, t) — E CSC2 ﬁl - dk] elkl()H’} cot f1)—wt k] ﬁ(w ,t) (248)

In order to determine fi(w”,t), we need to employ appropriate version(s) of the global
relations (2.26) evaluated at k; = ky cot #1. Recalling that g; and ¢, are unknown and yield
a non-zero contribution due to the exponential e” %), we see that the only versions that
may be used are equations (2.26a) and (2.26b), since in these identities the coefficients of
q1 and ¢, vanish at k, = ky cot ;. However, equations (2.26a) and (2.26b) are valid for
{ky € C*, ky e €} and {k; € €, k, € C*} respectively, thus they cannot be employed
since ky = ky cot f; and cot f; > 0.

Consequently, for c¢is; > 0 the representation (2.37) contains the function u*(x,y,t)
defined by equation (2.38). Equation (2.48) expresses u*(x, y,t) in terms of the unknown
function @i(w*,t), i.e. the function fi(w,t) evaluated at ky = ki cot f;. On the other hand,
for ¢1s; < 0 the function u*(x, y,t) vanishes and the representation (2.37) depends entirely
on given functions.

The above are summarised by the following proposition.

Proposition 2 (Solution) Let u(x, y,t) satisfy the heat equation (2.1) with the initial datum
(2.3) and the oblique Neumann boundary conditions (2.4).
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If the constants 1, B2, A satisfy condition (2.33a), or condition (2.32) with the restriction
cos By sin f§; < 0, then the solution is given by

1 o0 o0
U(X,y, t) = (21-[)2/ dk]/ dk e’k1x+lk2} sz (k],kz)

1 oo 2k,
_ dk dk iky x—+iky y—wt , k ot
e Y {Qb+hhbw)2)

% [ao(—kl,kz) + (s +az )fl(w kl»f)]}
(2111) /OO dk; - dk> eik'”ikzy‘"‘{qlquzslsz](w,kl, )

+@rw1)ﬁm—m) @ﬁwz)nw k0] (xy) € (249)

where tig(kq,k,) is the Fourier transform (2.10a) of the initial datum, the functions fi(w,ky,t),
f2(w, ky, t) are defined by equations (2.17) and the contour 0D is shown in Figure 4.

If the constants f1, B2, A satisfy condition (2.33b) then the solution (2.49) involves the
additional term u*(x,y,t), which is given explicitly in terms of the initial and boundary
conditions via equations (2.40) and (2.45).

If the constants fy, > satisfy condition (2.32) with the restriction cos f§; sin 1 > 0 then
we assume the additional boundary condition

u(0,0,t) = h(t), t>0. (2.50)

In this case, the solution (2.49) involves the additional term u*(x, y,t),

1 7 * *
u"(x,y,t) = P csc? b1 /am dky ey eotB—ot pmiw* 1), t >0, (2.51)

where the function ti(w”,t) is defined by

t
", t) = / dse”h(s), " =kIcsc’fy, t>0. (2.52)
0

3 Numerical evaluations

The solution formulae obtained through the unified transform involve integrals along
contours in the complex k; and kj-planes. The analytical advantage of this feature was
already exploited in Section 2, where we employed Jordan’s lemma in the process of elim-
inating the transforms of the unknown boundary values from the integral representation.
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We will now utilise this feature for a different purpose, namely for evaluating numerically
the solution formula (2.49) for various initial and boundary conditions.

(1) Suppose that

uo(x,y) = A(x¢™) (y2e ™), A,a1,a, €R, (3.1)
and
Fi(x,t) = x>¢ "~ sin(byt), by >0, by € R, Fy(y,t) =0. (3.2)
Using the transforms (2.10a) and (2.17), straightforward computations yield
44
to(k1,ky) = , 33
Bk k2) = o (@ ¥ o) (3:3)
and
2(e®t — 1) sin(byt
okt = 2 Jsinbad) o kayt) = 0. (3.4)

w(by +iky)?
Suppose further that we have

21 b
ﬁl - ?, /32 - ga
so that
1
01:_7951:£) 02:£9S2:15
2 2 2 2
and hence

) T
cosfysinf; <0, fy1=p+ R

Then, condition (2.32) holds with n = 0 and 4 = —1. Moreover, note that the
compatibility requirement (1.3) also holds for our choice of Fi(x,t) and Fy(y,t).

Inserting the above in the solution formula (2.49), we find

44

1 o 0 ' ‘
0)=—"-—+5 dk dk iky x+ikyy—wt

o (2m)? /_OC 1 /—oo 2¢ (a2 + ik )3(d3 + ika)?
- % dk; / V dky effrxtikey—ot m
et s V3ka + ki

44 k2 (eu)t _ 1) Sin(bzt)

32\ — )Y

’ L“? @+ ik (f kl) w(by — ik;)?

_ 1 /30 dk] dkz eik1x+ik2y7wt _ 8k2 . (ewl — 1) Sin(bZt)
ki + \/§k2 w(bl + ik1)3

(275)2 —o0 oD+

ki —\3ky 44 }

+ - -
ki + 3k, (af +iki)}(a3 — iky)?

1 Lo 44
[ dk dk ik x+ikyy—ot |:
(2m)? /E>D+ " 0 ¢ (a2 — iky)3 (a3 — ikp)?
ko 2(e®t — 1) sin(byt)
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k.
oD+ u
L+

/8 /8

FIGURE 5. The steepest descent path L*.

FIGURE 6. The solution (3.5) depicted over {(x,t) € [0,3] x [0,4],y = 0.3} for 4 = 100, a; = 2,
ay = 25, b1 = 3, bz =5.

Following the hybrid analytical-numerical method of Flyer and Fokas [7], we
deform the contours of integration to the steepest descent path LT (see Figure 5),
which forms an angle of n/8 with the real k;-axis, j = 1,2.

This deformation is very helpful for numerical computations, since now both the
x-part and the ¢-part of the relevant exponentials decay as |k;| — oo. Then, using the
change of variables k; = isin(n/8 — i0),k, = isin(n/8 — i¢h), a few lines of code in
Mathematica produce the graphical representations shown in Figures 6-8.

(2) Suppose that

uo(x,y) = A(xe_“zx) (ye_“zy), A, a€R, (3.6)

and
Fi(x,t) = X3¢ ™"¥sin(byt), by >0, b» € R, (3.7a)
Fy(y,1) = (v’ ™) (te™™"), b3 >0, by > 0. (3.7b)
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FIGURE 7. The solution (3.5) depicted over {x = 2,(y,t) € [0,3] x [0,4]} for A =100, a; = 2,
ay = 1.2, b1 = 3, b2 =35.

0

FIGURE 8. The solution (3.5) depicted over {(x,y) € [0,3] x [0,4],t = 5} for A = 100, a; = 2,
a) = 12, bl = 3, b2 =5.
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Straightforward computations yield

X B 4
fio(k1, ko) = @ T k@ T ) (3.8)
and
6 wt . 1 3 b
(w—by)t _ _
frovknt) = (1 e (o = ot — 1) (3.95)

(b3 + ika)*(w — by)?

Suppose further that we have

b 3n
ﬂl - Ea ﬁ2 - 77
so that
C1=0,51=1, Cz=0,52=—1.

Then, the orthogonality condition (2.33a) with m = 0 and n = 1 is satisfied and we have
/.= 1. Also, note that the compatibility requirement d,F;(0,¢) = 0,F»(0,¢) is satisfied.

The solution formula (2.49) now becomes

1 . o L A
u(x, y,t) = —= dk dk ezk1x+zkzy7wz
( g ) (Zn)z \/71) ! /70c ? (a% + lk1 )2(05 + ikz)z

1 . — 4 (14 &= (0 — ba)r — 1])
4+ — dk / dk iky x+ikyy—wt |: :
(275)2 /GDJr ' —0 2¢ (b3 + tk2)3(w — b4)2
n A 6(e”" — 1) sin(byt)
(a? — ik1)*(a3 + ika)? w(by — iky)*

+ L / T [k, eik.x+imwz[12(e‘”f — Dsin(bat)

2n)? ) oD+ w(by + iky)*
N 4 , (14 [0 — by = 1)
(a + iky)*(a3 — ik,)? (b3 — ik2)*(w — by)?

1 L A
+ dk dk ikyx+ikyy—ot |:
(2n)? /az)+ : oD+ 2¢ (a% — ikl)z(ag — ik;)?
6(e”" — 1) sin(bst) N 2 (14 ™) [(w — ba)t — 1])
w(b1 — ik1)4 (b3 — ik2)3(w — b4)2

(3.10)

The same technique as in the previous example yields the graphical representations of
Figures 9-11.
4 Conclusion

We have used the particular example of the heat equation (1.6) formulated in the domain
Q specified by equation (2.2), with the oblique type boundary conditions (1.1¢), (1.1d) and
with the constants {f, f»} satisfying equation (1.2), to illustrate the fact that the unified
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FIGURE 9. The solution (3.10) depicted over {(x,?) € [0,3] x [0,4],y = 0.3} for 4 =100, a = 2,
by=3,b=50by=1,by=1/3.

FIGURE 10. The solution (3.10) depicted over {x = 0.3,(y,t) € [0,3] x [0,4]} for A =100, a = 2,
by=3,b,=50by=1,by=1/3.
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FIGURE 11. The solution (3.10) depicted over {(x,y) € [0,3] x [0,4],t = 1.2} for A = 100, a = 2,
by =3,by=5by;=1,by=1/3.

transform yields the solution of two-dimensional evolution PDEs with a large class of
non-separable boundary conditions.

The solution of the above initial-boundary value problem is expressed in Proposition 2,
in terms of certain integrals in the complex k; and the complex k,-planes.

If the given initial and boundary data are such that their associated transforms can be
computed analytically, then the solution representation of Proposition 2 yields an efficient
way for the numerical evaluation of the solution. This is illustrated in Section 3 for the
particular case that the initial and boundary data are given by either equations (3.1) and
(3.2) with {fy = 2n/3,p, = n/6}, or by equations (3.6) and (3.7) with {f; = ©/2,f, =
3m/2}.
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Appendix A Verification of the solution

In the applied mathematics literature, a PDE is solved under the a priori assumption of
existence. Indeed, since the solution is obtained by applying an appropriate transform,
this procedure makes sense only if one assumes a priori that the solution exists and
has certain decay and smoothness properties. In order to eliminate this assumption one
must prove a posteriori that the expression obtained by this approach satisfies the PDE
and the given initial and boundary conditions (one then has to address independently
the question of uniqueness). However, this verification is almost never carried out in the
applied literature. Actually, this is not a straightforward task because any representation
obtained via the usual transforms is not uniformly convergent at the boundary. A major
advantage of the unified transform is that it constructs a solution which is uniformly
convergent at the boundary. Thus, it is straightforward, at least formally, to verify that
the solution satisfies the given PDE and the given data. The rigorous implementation of
this verification for a large class of PDEs is discussed in (see note below).!

In what follows, by utilising the advantage of the unified transform to yield represent-
ations for the solution which are uniformly convergent at the boundaries, we will verify
that the expression (2.49) does indeed satisfy the initial-boundary value problem posed by
equations (2.1), (2.3) and (2.4).

A.1 The heat equation

By employing Cauchy’s theorem and Jordan’s lemma, we can show that the integrals in-
volving the functions fy, f» and & depend on the temporal variable ¢ only through the expo-
nential e~®'. Thus, the physical variables (x, y, t) enter equation (2.49) exclusively through
the exponentials e1¥+ky=ot and ekilxtycoth)—o’t "which obviously satisfy equation (2.1).

A.2 Initial condition

Note that u*(x, y,0) = 0. Moreover, evaluating equation (2.49) at t = 0 gives

1 ®© @ i
u(x,y,0) = W / dky / dk» e’kIXJrzkz}'ﬂO(kl’kz)
—0 0

1 @© . L Coky — sok
——— | dk | dkg ety S22 (g k
(2n)? /ap+ 1/700 2¢ ek + s2ky o(—H, ko)
1 *© : oo Cck +Slk2 N
—— | dk dhy eixtikey TIELTT TR 4 e
(2n)? /—oo Yo ciky — sika olkt, —k2)
) o
+ = dk dky ™tk fo (ki —k,).
207 /am v e o(—ki, —k2)

! Fokas, A. S. & Sung, L. Y. (1999) Initial-boundary value problems for linear dispersive evolution
equations on the half-line (unpublished).

https://doi.org/10.1017/50956792515000224 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792515000224

Non-separable boundary conditions in two dimensions 911

The last three terms above vanish by Cauchy’s theorem and Jordan’s lemma, hence

1 0 0 ) —
u(x,y,0) = (271:)2/ dk1/ dky €V fig (k1 kp) = uo(x, ),

with the last equality due to the inverse Fourier transform formula (2.10b).

A.3 Boundary conditions

First, recall that the only case in which the function u*(x, y, t), given by equation (2.48), is
not trivially zero is when condition (2.32) with the restriction cos ff; sin f; > 0 holds. But
then,

COSﬁlu;(X, Vs [) —sin ﬁlu;(xa Y, t)

1 , . . .
= csc? i / dky ety eoth—o"t p(cos By — sin By cot f1) kii(w*, t) = 0
OE+
and, due to condition (2.32),

cos fouy (X, y,t) + sin fouy(x, y, t)

1 P B . .
= csc? By dky efiHyeotf=o't . (cos p2 cot 1 + sin ) kiii(w”, 1) = 0.
OE+

Therefore, in all cases the function u*(x,y,t) satisfies the homogeneous version of the
boundary conditions (2.4).

The same is true for the terms of equation (2.49) involving uy(x, y). Indeed, by inserting
these terms in equation (2.4a) we find

i

i / dky / ks 50 1y — s1ka) ok, ko)

(2m)*
- #/ dk; /OC dk ei¥—ot Caky = S3k1 (c1ky — siky) tto(—k1, k2)
(27-[)2 oD+ —» Czkz + Szkl ’
- / dky | dky @ (erky + sika) fio(k1, —k2)
(27'5) —o0 oD+
+ Lz / dky dky €170 (¢1ky — s1ka) fig(—ky, —ky). (A1)
(2m)* Jop+ oD+

We let k, — —k, in the first term and then deform the k,-contour from the real line to
oD, Similarly, we deform the ky-contour in the fourth term to the real line and then we
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let ky — —kj. In this case, equation (A 1) becomes

/ dky / s 550 1y + s1ka) gkt —ko)
27t oD+

i ikyx—at M _ A
(271:) /D+ dkl/ dkz e crky + sk, (c1ky — s1ka) ig(—k1, k2)

i

/ diy [ dky @0 ey + sika) ok, —ko)
(27f) oD+

2/ dk1/ dky € (c1ky + s1ka) flo(—k1, k2). (A2)
2‘II) oD+

In the case of A = —1, where condition (2.32) is valid, this expression equals

. " x—or 20102 +s152)kiky _
(27.[)2 ~/6D+ dkl /OO dkz e Czkz T Szk] 0( kl,kz) =

On the other hand, if A =1 then equation (A 2) becomes

@ / dky [ dky @ (ks + sika) ok, —ko)
—o0 oD+

i * dox—ot C2Ko — sk R
" on? S ki / dky e™1¥! ﬁ (ciki = sika) fto(—k1, k2)
i
(@enp
i

+ / dky / dky 5 (kg + s1ka) ok, ko).
(27t) oD+

/ dky | dky 0 (e + s1ka) ok, —ko)
oD+

Hence, the above expression vanishes under each one of the conditions (2.33).
The above analysis regarding u*(x, y,t) and the terms involving ug(x, y) implies

cos 1 ux(x,0,t) — sin B uy(x,0,1)

i . ix—wr C1K1 — S1k2
= —— dk dk ikjx—wt C1%1 ™ 9112 o ’k t
(21‘[)2 /aDJr 1 »/—oo 2€ Czkz +S2k1 l: 1f2(w ) )

k
+ (c2ky — Szk1)<31 +c k*2>f1(60, —ki, I)}
1

i
(21t

(2n /D+ dky /D+ dky €5 (e kg —S1k2){<51 —c1—>f1(w —k1,1)

_ (s2 + c2é> Fa(w, —ks, t)} . (A3)

. k
/ dky dk, et [2k2f1 (o, ki, t)—(ciki+siks) (Sz - szl)fz(w, —k, t)}
) oD+ ko

Using Cauchy’s theorem and the change of variables k, — —k, in the first integral, the

https://doi.org/10.1017/50956792515000224 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792515000224
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terms involving f, in the above expression may be written in the form

;. © ikix—wt m . kfl _
(2n)’ /am i /—:x: dhz e {2](1 crky — s7ky (crki + S1k2)(cz ko S2)

— Meiky — Slkz)(sz +o— )}fz(w —ka, t).

If A = —1, condition (2.32) is valid and then, the coefficient of f, simplifies to

0.

) 2
st c1e8 —s1¢5 ok S2(s182 + c1¢2)
=2k ————

2k1 |:Sl + (6‘152 — 516‘2):| = 2k1
&) (6] €2

If 2 =1, then according to conditions (2.33) either ¢; = ¢, = 0 or sy = s, = 0. Thus, the
coefficient of f, again vanishes. Consequently, equation (A 3) becomes

cos 1 uy(x,0,t) —sin B uy(x,0,¢)

i * i sitky — c1k
= gt fp [ e R sk (s e o ko

_ (2# / dk, / dky €159 s £ (0, K1, 1)
oD+
(21‘[ / dkl/ dky ell‘l\ ot (Clkl — Slkz)(Sl — le)fl(w kl,l')
oD+ oD+

Deforming the contours of integration, we find

cos 1 ux(x,0,t) —sin B uy(x,0,t)

i * i stky — cik
- w/w ki / e (esko — soko) (s + 1 2 2 fi(o, k1.0

_(2;)2/ dk1/ dk, ekix—ot 2kyf1(w, ki, 1)
oD+ o
iz ” ik x—wt k2
+(2ﬂ?)2/az)+ dky /_Ocdkze (ciky s1k2)<s1 ClE)f1(w, ki,t).

In both cases (2.32) and (2.33), the above expression reduces to
cos 1 ux(x,0,t) —sin B uy(x,0,1)

i *® .
= (2? / dky / dky elklx_(m 2k, [fl(cu, —kq, l’) — fl(w,kl, t)]
oD+

- / dé / dky / ds e 0= Fy (&, 5) [0 — glil=0)] dky e7939) iy

(2n)? oD+

The change of variables | = —ik3 maps 0D to (—c0,0) and

dky e 809 i, = — / dl "™ = 21 (s — 1), (Ad)

oD+
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therefore, we conclude that

cos iy (.0.0) = sin prn (x,0.0) = 5 [ & [l [PM00 = O By
0 —o0

- /0 " dE8(E — OFED) = Fi(x,0) (AS)

and hence the boundary condition (2.4a) has been verified. The verification of the second
boundary condition (2.4b) can be achieved in a similar fashion.

As noted in Proposition 2, in the case of condition (2.32) with the restriction
(cos By sin 1) > 0 the expression (2.49) for the solution u(x, y,t) involves the unknown
boundary value u(0,0,t) through the quantity u* defined by equation (2.51). How-
ever, we have just verified that equation (2.49) solves the particular initial-boundary
value problem specified by equations (2.1), (2.3) and (2.4) regardless of the sign of
(cos By sin fy).

Therefore, if condition (2.32) with (cosfisinfl;) > O is satisfied then the
expression (2.49) provides the solution up to the function u* which satisfies
the homogeneous version of the boundary conditions, thus not affecting the
value of u(x,y,t) at the boundary. Under condition (2.32) with (cosf;sinf;) <
0, as well as under conditions (2.33), no such unknown function enters the
solution.

We will now show that the presence of u* on the right-hand side of the solution (2.49) in
the case of (cos 1 sin ;) > 0 is necessary for consistency at x = y = 0. Indeed, evaluating
equation (2.49) at x =y =0 for L = —1 and f5; € [0,2n) we have

u(0,0,t) = —— / dk, / dky e fig (ko)
‘ —0

(27'5)2 —o0

1 « e il y 2k
_ dk dk ik x+ikyy—wt , k 1
(2m)? /am ] /—oo 2¢ {Czkz + s2k4 ECR)

coky — s2ky [ ks
ks + soky [uo(—k],kz) + (Sl + ¢1 E)f] (o, —k1,t)} }

! ” —wt 2k2
— W/;wdkl -~ dkze {Mfl(w,k],[)

ki +sika [, k
M |:u0(k1’ _kZ) - (S2 - C2é)f2(w’ _kz’ t):l }

ciky — siky
1
- dk dky e " | fig(—ky, —k
on) /am 1 . 2e [uo( 1,—k2)

+ (81 — cl%>f1(w, —ky,t) — (Sz + CZ%)fZ(wa_k% t)}

+u*(0,0,1).
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Rearranging and using condition (2.32), we find

_ kz +kicotfrip .
0,0,t dk dky e " — tio(—ky, k
u(0,0,1) = P /D+ 1/ s cotﬁl{ io(—k1, k2)

+cscﬂ2 fale, ko, ) = cse By f1(, —ki, 1)

_ kz + ki cot 8 N
dk dky e " — tig(ky, —k
(207 / 1/D+ s cotﬁl{ tio(k1, —k2)

+csc By falw, —ka, t) — csc By fi(w, ki, t)]
+u(0,0, 1),

Letting ky — —k; and k, — —k, in the second term above, we obtain

1 « _op k2 + ki cot By N
t) = — k kre @0 = — " | fig(—ky, k
w0.0.0= oo /md 1/_%4 TR

+ csc B fa(w, ka, t) — csc By f1(w, —ky, I)}

1 [~ —ot kot kicotBip o
+— dk dky e™ " —————— = | —fig(—ky, k
(2m)’ / Yo TC ke —kicotfy { ol =k, 2)
o+ cse fa falo.kast) = esc b f1(w. —k1.1)]
+ u*(07 05 t))

where the contour 0D~ is shown in Figure 4. Moreover, deforming the contours with
respect to k; to the contour dE™, also shown in Figure 4, we find

_ 1 OO —wt kz +k1 COtﬁl A
u0.0.0 = o /aE+ dky /_wdkze kz_klcotﬁl[ fio(—k1, k)

+ csc B fa(w, ka, t) — csc 1 f1(w, —ky, t)}

1
n / dk, dky e ka + ki cot By [ — fig(—k1, k2)
oD~

(2TE)2 ky — ky cot iy
+ csc B ol ko, ) — ese B fi(, ki, 1)|
+u*(0,0,1). (A6)
~ in the first

Hence, deforming the contour with respect to k; from the real axis to 0D
term and computing the contribution from the residue at k; = k; cot 1, we obtain

u(0,0,t) = u*(O, 0,t)+ ﬁ H(— cot ﬁl)/ dky e_‘”*’ 2ky cot By [flo(—kl,kl cot 1)
0E+

—csc 2 fa(0", ki cot fr) + ese fi fi(", k) (A7)

where # denotes the Heaviside function.
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If cot f; < 0 then by evaluating the global relation (2.26a) at k; = ky cot 1, we obtain

e ti(—ky, ki cot i, t) = fig(—ky, ki cot B1) — csc fa fa(w,ky cot fy)
+csc i fi(@,—ki) + (cot B; — cot Bo) i(w",t), ki € C".

Using this identity in equation (A 7), we find
u(0,0,t) = u*(0,0,1) — ﬁ H(—cot B1) (cot B; — cot ﬁz)/ dky et 2ky cot By W(w”,t)
OE+
+ —— H(—cotfy) / dky 2ky cot By ii(—ky,ky cot By, 1),
2n OE+

Furthermore, analyticity in the upper half complex k;-plane and Jordan’s lemma imply
that the integral involving ii(—ky,k cot fi1,t) vanishes for cot §; < 0, hence

u(0,0,1) = u"(0,0,1) + é H(—cot f1) (cot f — cot ﬁl)/ dky ™" 2ky cot By (", 1)
QE+

(A8)
On the other hand, by the definition of & and the change of variables | = —ik? it follows
that
u(0,0,t) = x (cot fr — cot ﬁl)/ dky e~ 2k cot By fi(w”, 1). (A9)
2n OE+

Therefore, combining equations (A 8) and (A 9) we conclude that
u*(0,0,1) = ﬁ H (cot B1) (cot B — cot B3) dky e 2ky cot By fi(w”, 1),
OE+

which is consistent with the expression (2.51) for u”.
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