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Steady and unsteady linearised flow past a submerged source are studied in the
small-surface-tension limit, in the absence of gravitational effects. The free-surface
capillary waves generated are exponentially small in the surface tension, and are
determined using the theory of exponential asymptotics. In the steady problem,
capillary waves are found to extend upstream from the source, switching on across
curves on the free surface known as Stokes lines. Asymptotic predictions are
compared with computational solutions for the position of the free surface. In the
unsteady problem, transient effects cause the solution to display more complicated
asymptotic behaviour, such as higher-order Stokes lines. The theory of exponential
asymptotics is applied to show how the capillary waves evolve over time, and
eventually tend to the steady solution.
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1. Introduction
1.1. Background

Free-surface waves induced by flow over a submerged obstacle can broadly be divided
into waves in which the dominant effect is gravity, and waves in which the dominant
effect is surface tension, known as capillary waves. The behaviour of waves on the
length scale of large obstacles, such as ships or submarines, tends to be dominated
by gravitational effects; however, surface tension plays an important role at smaller
scales. In this study, we perform an asymptotic study of capillary waves caused by
flow over a submerged source in the small-surface-tension limit.

Much of the early theoretical work on the behaviour of capillary waves on a
steady stream is summarised in Whitham (1974), which contains a demonstration that
capillary waves caused by flow past an obstacle have a group velocity faster than
the flow speed in two dimensions, and therefore any steady wavetrain must be found
upstream from the obstacle. Early studies on the behaviour of capillary waves in the
absence of gravity include Crapper (1957), who derived an exact closed-form solution
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Capillary waves due to a submerged source 671

for two-dimensional capillary waves on infinitely deep water, and Kinnersley (1976),
who obtained similar solutions for capillary waves on water of finite depth.

Further studies on related two-dimensional capillary wave systems include
Vanden-Broeck & Keller (1980), who discovered a new family of nonlinear capillary
wave solutions on deep water. Hogan (1979, 1984, 1986) studied particle trajectories
in capillary wave systems, finding a range of symmetric and anti-symmetric wave
patterns. More recently, Vanden-Broeck, Miloh & Spivack (1998) extended the results
of Crapper (1957) and Kinnersley (1976) to axisymmetric domains, while Crowdy
(1999) extended the solutions by Kinnersley (1976) in order to consider capillary
waves on the surface of multiply connected fluid domains. Crowdy (2001) and Blyth
& Vanden-Broeck (2004) used complex variable methods to determine the behaviour
of capillary waves on a flat and curved fluid sheet respectively, and Vanden-Broeck
(1996) studied the behaviour of capillary waves in systems with varying surface
tension. Vanden-Broeck (2004) provides a broad summary of known results on
two-dimensional nonlinear capillary wave systems, including flows past geometries
and around obstacles. Importantly, we note that Chapman & Vanden-Broeck (2002)
studied the behaviour of exponentially small capillary waves in two dimensions, using
asymptotic methods similar to those applied in the present study.

Each of these previous investigations concentrated on capillary waves in two
dimensions. Capillary waves in three-dimensional systems are less well studied. There
do exist a large number of numerical studies into the behaviour of gravity–capillary
waves induced by flow past an obstacle or pressure distribution in three dimensions.
Many of these are found in Dias & Kharif (1999) and Vanden-Broeck (2010), and the
references therein. Other three-dimensional studies have concentrated on exploring
capillary wave behaviour caused by rotating obstacles, such as whirligig beetles
(Tucker 1969; Chepelianskii, Chevy & Raphael 2008). In particular, we will note that
our results are qualitatively similar to figure 2 of Tucker (1969), which depicts an
experimental image of a whirligig beetle travelling through water in a straight line.
This experimental fluid regime is consistent with the parameter regime in the present
study, although, of course, the beetle is not submerged.

Here we are concerned with three-dimensional capillary waves in the small-surface-
tension limit. This is a challenging limit to explore, as the behaviour of capillary
waves past a submerged obstacle in this limit cannot be captured by an asymptotic
power series: the capillary wave amplitude is typically exponentially small in the
surface tension.

We can motivate this claim by considering a steady train of two-dimensional
surface waves on deep water. From Whitham (1974), we find that, after neglecting
gravitational effects, the wavelength of two-dimensional linearised capillary waves,
denoted by λ, on a steady flow with velocity U, representative length scale L, surface
tension σ and density ρ is given by

λ

L
= 2πσ

ρLU2
= 2πε, (1.1)

where ε = σ/ρLU2 is the inverse Weber number. Since the velocity potential φ
satisfies Laplace’s equation, solutions which oscillate with the required wavelength
are given (up to a phase shift) by

φ = (C1ey/ε +C2e−y/ε) sin(x/ε), (1.2)

where all distances have been scaled by L, and C1 and C2 are arbitrary constants.
Thus we might expect the impact of a submerged object on waves on the free surface
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672 C. J. Lustri, R. Pethiyagoda and S. J. Chapman

to decay exponentially with the distance of the object from the free surface relative
to ε. Consequently, asymptotic studies of capillary wave behaviour in the limit ε→ 0
require the use of exponential asymptotic techniques.

While the neglect of gravity in the present study limits the range of its applicability,
it provides a step towards an analysis of a system containing both gravity and capillary
waves. In two dimensions an exponential asymptotic analysis has been performed on
gravity–capillary systems with small surface tension and small Froude number by
Trinh & Chapman (2013a,b). These studies found an intricate interplay between
gravity and capillary waves with a structure considerably more complicated than that
of each effect considered in isolation. An equivalent three-dimensional analysis would
be challenging, and this study at least provides an answer in the limit that capillarity
dominates gravity.

Exponential asymptotic methods have been applied in order to study a range of
other wave problems arising in fluid dynamics. Chapman & Vanden-Broeck (2006)
applied exponential asymptotic methods to resolve the low speed paradox, finding
the behaviour of exponentially small two-dimensional gravity waves over a step in
the small-Froude-number limit. This was extended in Lustri, McCue & Binder (2012)
to describe the waves caused by flow past submerged slopes, ridges or trenches, by
Lustri, McCue & Chapman (2013) to describe gravity waves caused by flow past
a submerged line source and by Trinh, Chapman & Vanden-Broeck (2011), Trinh
& Chapman (2014) in order to describe gravity waves caused by ship hulls in two
dimensions. These ideas were extended to three dimensions by Lustri & Chapman
(2013) for the case of steady linearised flow past a source, and Lustri & Chapman
(2014) for the corresponding unsteady problem. Shallow gravity–capillary waves
with small surface tension have also been the subject of a number of studies using
exponential asymptotics, including Pomeau, Ramani & Grammaticos (1988), Boyd
(1991, 1998), Grimshaw & Joshi (1995), Yang & Akylas (1996), Grimshaw (2011),
Trinh (2011).

Aside from Lustri & Chapman (2013, 2014), each of the previous exponential
asymptotic studies on fluid flow behaviour have been performed in two dimensions.
We will therefore follow the methodology of Lustri & Chapman (2013, 2014), in
which we linearise the problem around the source strength in order to fix the position
of the boundary in the linearised regime. We will then apply exponential asymptotic
techniques directly to the flow equations in order to determine the fluid potential, and
the free-surface position.

1.2. Fluid regime
The combination of inviscid flow and capillary-dominated surface waves is an unusual
one. This implies that we are considering systems in which both viscous effects and
gravitational effects are negligible compared to surface tension. For the inviscid fluid
flow model to be valid, we require that the inverse of the Reynolds number, given by
1/Re=µ/ρUL where µ is the dynamic viscosity of the fluid, be small. In this case,
the Bernoulli condition for gravity–capillary waves, expressed in terms of the surface
tension parameter ε and the Froude number F, is given by

1
2
(|∇φ|2 − 1)+ ξ

F2
+ εκ = 0 on z= ξ, (1.3)

where φ is the complex potential, ξ is the free-surface position, κ is the surface
curvature and the Froude number is given by F = U/

√
gL. We see that, for the
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Capillary waves due to a submerged source 673

surface behaviour to be dominated by surface tension effects, we require 1/F2 � ε.
Consequently, the regime under consideration is given by

Re−1, F−2� ε� 1. (1.4a,b)

In contrast to the associated analysis on gravity waves performed by Lustri &
Chapman (2013, 2014), this set of scalings is not relevant to the study of submerged
obstacles such as submarines. These scalings are instead associated with ripples
caused by small submerged objects, such as fish or insects, which move rapidly, or
by thin sheets of fast moving fluid.

For example, using values of the density, viscosity and surface tension of water/air
at 20 ◦C from Batchelor (1953) we require that

U� 72 m s−1, L� 2.7 mm, LU2� 0.000073 m3 s−2. (1.5a−c)

Using values L = 1 mm and U = 0.5 m s−1, gives Re−1 ≈ 0.002008, F−2 ≈ 0.03922
and ε≈ 0.2917. Studies of capillary waves in liquids other than water (such as liquid
silicon or liquid gallium, whose capillary waves were investigated in Fork et al. (1996)
and Regan et al. (1996) respectively), will necessarily produce different parameter
regimes in which the current analysis is asymptotic valid. We note that, as is typical
of asymptotic results, the expressions for capillary wave behaviour obtained in this
study are still useful in practice even outside of the regime of formal validity. For
example, we will show in figure 4 that the asymptotic wave behaviour provides an
accurate approximation even for values of ε that are not extremely small.

1.3. Methodology
In order to study the behaviour of capillary waves due to flow past submerged
obstacles, we will adapt the exponential asymptotic methodology of Lustri &
Chapman (2013) for the steady flow case, and Lustri & Chapman (2014) for the
unsteady flow case. These studies considered flow past submerged obstacles in
the small-Froude-number limit. The surface waves were found to be exponentially
small in this limit, and therefore could not be studied using classical asymptotic
power series techniques. Instead, exponential asymptotic techniques were applied to
determine the solution, and it was found that the gravity waves were switched on as
certain curves on the free surface, known as Stokes curves, were crossed. We will
see that similar behaviour is present in the solution to the capillary wave problem in
the small-surface-tension limit.

Stokes (1864) first observed that a function containing multiple exponential
terms in the complex plane can contain curves along which the behaviour of the
subdominant exponential changes rapidly. These curves are known as Stokes lines.
This investigation will apply the exponential asymptotic technique developed by Olde
Daalhuis et al. (1995) and extended by Chapman et al. (1998) for investigating the
smooth, rapid switching of exponentially small asymptotic contributions across Stokes
lines.

The first step in this technique is to express the solution as an asymptotic power
series, such as

f (x; ε)∼
∞∑

n=0

εnfn(x) as ε→ 0. (1.6)

As the capillary wave problem is singularly perturbed in the small-surface-tension
limit, the series will be divergent. However, the error of the divergent series
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674 C. J. Lustri, R. Pethiyagoda and S. J. Chapman

approximation can be minimised by truncating the series after some finite number of
terms, known as the optimal truncation point. To find the optimal truncation point, we
follow the commonly used heuristic described by Boyd (1999), in which the series
is truncated at its smallest term. Chapman et al. (1998) observed that the optimal
truncation point tends to become large in the asymptotic limit, and hence knowledge
of the behaviour of the late-order terms of the series (that is, the form of an in the
limit that n→∞) is sufficient to truncate the asymptotic series optimally.

In singular perturbation problems, Dingle (1973) noted that successive terms in the
asymptotic series expansion are typically obtained by repeated differentiation of an
earlier term in the series. Consequently, singularities present in the early terms of the
series expression will persist into later terms. Furthermore, as these singularities are
repeatedly differentiated, the series terms will diverge as the ratio between a factorial
and the increasing power of a function χ which is zero at the singularity. Chapman
et al. (1998) therefore propose that the asymptotic behaviour of the series terms may
be expressed as a sum of factorial-over-power ansatz expressions, each associated with
a different early-order singularity, such as

fn ∼ FΓ (n+ γ )
χ n+γ as n→∞, (1.7)

where Γ is the gamma function defined in DLMF (2018), F, γ and χ are functions
that do not depend on n, and χ = 0 at the singularity in the early series terms.
They conclude that the correct late-term behaviour may be represented as the
sum of these ansatz expressions, each associated with a different singularity of
the leading-order solution. The global behaviour of the functions F, γ and χ may be
found by substituting this ansatz directly into the equations governing the terms of
the asymptotic series, and then matching to the local behaviour in the neighbourhood
of the singularity under consideration.

The late-order term behaviour given in (1.7) is related to applying a Wentzel–
Kramers–Brillouin (WKB) ansatz of the form Fe−χ/ε to the equation for f linearised
about the truncated expansion. The behaviour of χ , or the singulant, therefore plays
an important role in understanding the Stokes line behaviour. In fact, Dingle (1973)
notes that Stokes switching takes place on curves where the switching exponential
is maximally subdominant to the leading-order behaviour; this occurs where the
singulant is purely real and positive. Hence, the singulant provides a useful condition
to determine the possible location of Stokes lines:

Re(χ) > 0, Im(χ)= 0. (1.8a,b)

We also note another interesting class of curves, known as anti-Stokes lines. These
are curves across which an exponentially small solution contribution switches to
instead be exponentially large in the asymptotic limit. From the WKB ansatz of the
exponential contribution, it is apparent that anti-Stokes lines correspond to curves
satisfying

Re(χ)= 0. (1.9)

Once the form of the late-order terms is established, we may find the smallest term
in the series, and hence truncate the series optimally. This gives

f (x; ε)=
N−1∑
n=0

εnan(x)+ RN, (1.10)
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where N(x; ε) is the optimal truncation point, and RN is the now exponentially small
remainder term.

The method of Olde Daalhuis et al. (1995) now involves substituting the truncated
series expression back into the original problem, obtaining an equation for the
remainder term. The switching behaviour of this remainder is found by solving
the remainder equation in the neighbourhood of Stokes lines; in fact, the condition
(1.8) for the position of the Stokes lines can be found directly through this process.
This methodology is sufficient to determine the capillary wave behaviour in steady
three-dimensional flow over a submerged source.

However, this methodology alone is not enough to explain the behaviour seen in the
unsteady capillary wave problem. The exponential asymptotic methodology of Olde
Daalhuis et al. (1995) and Chapman et al. (1998) was developed for investigating
ordinary differential equations. Because the flow surface is two-dimensional, we
require the extension of these techniques to partial differential equations which was
developed by Chapman & Mortimer (2005).

Initially, the method is identical, however in some partial differential equations (and
indeed, in higher-order differential equations), further variants of Stokes switching may
occur. If the remainder itself is expanded as

RN ∼ e−χ/ε
∞∑

n=0

εnR(n)N as ε→ 0, (1.11)

then again applying the method of Olde Daalhuis et al. (1995) and Chapman et al.
(1998), we truncate optimally, giving

RN = e−χ/ε
M−1∑
n=0

εnR(n)N + SM, (1.12)

where SM is the new (doubly) exponentially subdominant remainder term. It is
obviously possible to formulate problems in which the remainder SM may be
expanded as another exponentially subdominant divergent asymptotic series, and
so on. Hence, we find that a hierarchy of increasingly exponentially subdominant
late-order contributions may be present in the asymptotic expression.

The unsteady capillary wave problem contains two distinct pairs of exponentials
in the asymptotic solution, related to steady and transient rippling behaviour, and
the switching interaction between these pairs plays an important role in describing
the solution. In this case, switching also occurs when one exponential component is
maximally subdominant to another exponential component. To find curves along which
an exponential component with singulant χ1 can switch a subdominant exponential
component with singulant χ2, the switching condition instead becomes

Re(χ2) >Re(χ1), Im(χ2)= Im(χ1). (1.13a,b)

Note that setting χ1 = 0, corresponding to the leading-order algebraic contribution to
the solution, reproduces the condition (1.8).

Finally, in order to fully describe the solution behaviour for the unsteady capillary
wave problem, we must also consider a further variant of Stokes switching behaviour,
known as higher-order Stokes phenomenon. Higher-order Stokes switching was first
observed by Berk, Nevis & Roberts (1982) and Aoki, Koike & Takei (2002), and
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explained in detail by Howls, Langman & Olde Daalhuis (2004), Body, King & Tew
(2005) and Chapman & Mortimer (2005). These studies found that higher-order Stokes
switching behaviour typically plays a role when there are three or more singulants
contributing to the solution (including the algebraic-order singulant, χ = 0).

When an ordinary Stokes line is crossed, an exponentially small contribution is
switched on. This small exponential term is multiplied by a prefactor known as a
Stokes switching parameter. When a higher-order Stokes line is crossed, this switching
parameter itself is switched on or off. The effect of this higher-order switching is
that ordinary Stokes lines themselves are switched on or off as higher-order Stokes
lines are crossed. This switching occurs at points on higher-order Stokes lines where
multiple ordinary Stokes lines intersect, known as Stokes crossing points. The practical
effect of this switching is that ordinary Stokes lines can terminate at Stokes crossing
points.

Howls et al. (2004) showed that when a problem contains three or more singulant
contributions, associated with χ1, χ2 and χ3, higher-order Stokes lines can follow
curves satisfying the criterion

Im
[
χ3 − χ2

χ3 − χ1

]
= 0. (1.14)

Unsteady free-surface flow, such as the unsteady gravity wave problem considered in
Lustri & Chapman (2014), does contain three interacting contributions (exponentially
small steady and transient ripples, and algebraic effects which have χ = 0); hence,
higher-order Stokes lines must play a role in the solution. It is therefore not sufficient
to find the ordinary Stokes lines in this problem, as the Stokes structure would be
incorrect. Instead we must also determine the higher-order Stokes line behaviour, and
therefore the location at which the ordinary Stokes lines are switched on and off. This
will permit us to determine the full asymptotic free-surface wave behaviour.

We note that the capillary wave problem considered in the present study is linear,
and that the solution can be written as a multiple integral. A number of exponential
asymptotic methods have been developed for the study of integral equations, including
Berry & Howls (1990), Berry (1991), Bennett et al. (2018) and elsewhere. It is
possible that these methods could be applied to obtain equivalent results from the
integral form of the solution; however, we elect to apply exponential asymptotic
analysis directly to the governing equations of the system.

2. Steady flow
2.1. Formulation

We consider the steady-state problem of uniform flow past a submerged point source
in three dimensions. We suppose that the strength of the source is small so that the
problem may be linearised.

2.1.1. Full problem
We consider a three-dimensional incompressible, irrotational, inviscid free-surface

flow of infinite depth with a submerged point source at depth H and upstream flow
velocity U. We normalise the fluid velocity with U and distance with a typical
length L, giving non-dimensionalised source depth h = H/L, shown schematically in
figure 1.
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Source
(0, 0, -h)Flow direction

x

z

z = ≈(x, y)

y

FIGURE 1. Prescribed fluid configuration for three-dimensional flow over a source. The
shaded region represents the position of the free surface ξ(x, y), and the cross represents
the position of the source. The flow region lies below the free surface, and the mean flow
is moving from left to right, with flow velocity U in the unscaled problem. The waves
form upstream from the obstacle, which is consistent with the theory of Whitham (1974)
for two-dimensional capillary waves. The fluid surface is not flat, but is depicted here as
such for illustrative purposes only.

Denoting the (non-dimensional) position of the free surface by z= ξ(x, y), the (non-
dimensional) velocity potential satisfies

∇2φ = 0, −∞< z< ξ(x, y), (2.1a,b)

with kinematic and dynamic boundary conditions

ξxφx + ξyφy = φz, z= ξ(x, y), (2.2)
1
2(|∇φ|2 − 1)+ εκ = 0, z= ξ(x, y), (2.3)

where κ represents the curvature of the free surface, positive if the centre of curvature
lies in the fluid region, and the inverse Weber number ε = σ/ρLU2, where σ

represents the surface tension parameter and ρ represents the fluid density. The
curvature is given by

κ =−∇s ·

[
∇sξ√

1+ |∇sξ |2

]
, (2.4)

where ∇s represents the surface gradient of the flow. We are concerned with the free-
surface behaviour in the limit 0< ε� 1, in which the surface-tension effects become
small. Since the flow is uniform in the far field, φx→ 1 there, while at the source

φ ∼ δ

4π
√

x2 + y2 + (z+ h)2
as (x, y, z)→ (0, 0,−h). (2.5)

We will be concerned with the limit 0 < δ � ε, so that the disturbance to the free
stream is weak and the equations may be linearised in δ. The asymptotic expressions
obtained in this study therefore a useful approximation to the full nonlinear problem
in regimes which satisfy the condition that 0< δ� ε� 1.

Finally, we incorporate a radiation condition which states that the steady surface
capillary waves must propagate upstream.
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FIGURE 2. Surface plot of the modified free-surface position ξ − ξ (0), where ξ (0) is the
leading-order free-surface profile given in (2.17), with h= 1 and ε= 0.2, with flow in the
positive x-direction. The figure depicts capillary waves extending behind the disturbance in
the direction of the flow origin, in addition to lower-order algebraic effects ahead of the
disturbance. The contrast is increased in a circular region in order to make the position
of the capillary waves visually distinguishable.

2.1.2. Linearisation
We linearise about uniform flow by setting

φ = x+ δφ̃, ξ = δξ̃ , (2.6a,b)

to give, at leading order in δ

∇2φ̃ = 0, −∞< z< 0, (2.7)
φ̃z − ξ̃x = 0, z= 0, (2.8)

φ̃x − ε(ξ̃xx + ξ̃yy)= 0, z= 0, (2.9)

where the boundary conditions are now applied on the fixed surface z=0. The far-field
conditions imply that φ̃→ 0 as x2 + y2 + z2→∞, while near the source

φ̃ ∼ 1

4π
√

x2 + y2 + (z+ h)2
as (x, y, z)→ (0, 0,−h). (2.10)

With the addition of a radiation condition, specifying that capillary waves must
propagate upstream from the source, the system described in (2.7)–(2.10) completely
specifies the linearised version of the three-dimensional problem shown in figure 1.
We can solve the linearised problem numerically using a modified version of the
algorithm from Lustri & Chapman (2013, 2014) to obtain free-surface profiles such
as that illustrated in figure 2.

We analytically continue the free surface such that x, y ∈ C, with the free surface
still satisfying z= 0. This does not change the form of (2.7)–(2.10), but it does mean
that the two-dimensional physical free surface is now a subset of a four-dimensional
complexified free surface.
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2.2. Series expression
Following the approach of Lustri & Chapman (2013), we first expand the fluid
potential and free-surface position as a power series in ε,

φ̃ ∼
∞∑

n=0

εnφ(n), ξ̃ ∼
∞∑

n=0

εnξ (n), (2.11a,b)

to give for n > 0,

∇2φ(n) = 0, −∞< z< 0, (2.12)
φ(n)z − ξ (n)x = 0, z= 0, (2.13)

φ(n)x − ξ (n−1)
xx − ξ (n−1)

yy = 0, z= 0, (2.14)

with the convention that φ(−1) = 0. The far-field behaviour tends to zero at all orders
of n, and the singularity condition (2.10) is applied to the leading-order expression,
giving

φ(0) ∼ 1

4π
√

x2 + y2 + (z+ h)2
as (x, y, z)→ (0, 0,−h). (2.15)

The leading-order solution is given by

φ(0) = 1

4π
√

x2 + y2 + (z+ h)2
− 1

4π
√

x2 + y2 + (z− h)2
, (2.16)

ξ (0) =− xh

2π(y2 + h2)
√

x2 + y2 + h2
− 1

2π(y2 + h2)
, (2.17)

where the leading-order free-surface behaviour is set to be undisturbed far ahead of
the source.

Through repeated iteration of (2.13)–(2.14), we find that the position of singularities
in subsequent terms of the series (2.11) remains constant, while the power of the
singularity increases at each order, as we expect for such singular perturbation
problems (see Chapman & Vanden-Broeck 2006).

2.3. Late-order terms
In order to optimally truncate the asymptotic series prescribed in (2.11), we must
determine the form of the late-order terms. To accomplish this, we make a factorial-
over-power ansatz (see Chapman et al. 1998), having the form

φ(n) ∼ Φ(x, y, z)Γ (n+ γ )
χ(x, y, z)n+γ

, ξ (n) ∼ Ξ(x, y)Γ (n+ γ )
χ(x, y, 0)n+γ

, as n→∞, (2.18a,b)

where γ is a constant. In order that (2.18) is the power series developed in § 2.2, we
require that the singulant, χ , satisfies

χ = 0 on x2 + y2 + (z± h)2 = 0, (2.19)

where the sign chosen depends upon which of the two singularities is being
considered. For complex values of x, y and z, this defines a four-dimensional
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hypersurface. Irrespective of which singularity is under consideration, this hypersurface
intersects the four-dimensional complexified free surface on the two-dimensional
hypersurface satisfying x2 + y2 + h2 = 0.

It is important to note that the expression for ξ (n) is restricted to z = 0, as it
describes the free-surface position. This does not pose a problem for the subsequent
analysis, but does ensure that care must be taken at each stage to determine whether
we are considering the full flow region, or just the free surface.

2.3.1. Calculating the singulant
Applying the ansatz expressions in (2.18) to the governing equation (2.12) and

taking the first two orders as n→∞ gives

χ 2
x + χ 2

y + χ 2
z = 0, (2.20)

2Φxχx + 2Φyχy + 2Φzχz =−(χxx + χyy + χzz), (2.21)

while the boundary conditions on z= 0 become, to leading order,

−χzΦ + χxΞ = 0, (2.22)
χxΦ + (χ 2

x + χ 2
y )Ξ = 0. (2.23)

The system in (2.22)–(2.23) has non-zero solutions when

χ 2
x =−χz(χ

2
x + χ 2

y ), (2.24)

which gives the result

χz =− χ 2
x

χ 2
x + χ 2

y

. (2.25)

Using (2.25), we find a relationship between Φ and Ξ by rearranging (2.22) to obtain

Ξ =− χx

χ 2
x + χ 2

y

Φ. (2.26)

Applying (2.25) to (2.20) evaluated on z = 0 gives a singulant equation for χ on
the free surface,

χ 4
x + (χ 2

x + χ 2
y )

3 = 0. (2.27)

Here though, because the singularity lies below the fluid surface, we must solve
(2.27) for complex x and y with the boundary condition

χ = 0 on x2 + y2 + h2 = 0. (2.28)

Parametrising (2.28) as

x0 = s, y0 =±i
√

s2 + h2, χ0 = 0, (2.29a−c)

and solving (2.27) using Charpit’s method (see Ockendon et al. 1999) gives

χ =±9x(x2 + y2)s3 + h(2h2 + 9x2 − 6y2)s2 + 6x(y2 − h2)s− 4h(h2 + y2)

3(2h2 + 3x2)
, (2.30)
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FIGURE 3. Singulants obtained by solving (2.27) with boundary data (2.28). The
remaining singulant expressions are given by −χS1,2, as well as ±χ S1,2, where the
bar denotes complex conjugation. The flow direction is indicated on each plot. The
contributions associated with ±χS2, ±χ S2, as well as −χS1 and −χ S1, will either produce
waves directly downstream from the source, or contain no Stokes switching behaviour
at all; hence, these singulants cannot generate exponentially small wave behaviour.
Conversely, surface behaviour associated with χS1 and χ S1 will produce exponentially
small waves in the upstream far field which are switched on across the Stokes line
satisfying Im(χ)= 0. Note that there is no switching across the curve y= 0, x> 0 even
though Im(χ)= 0 there because Re(χ) < 0 in this region.

where s is a solution to

9(x2 + y2)s4 + 12xhs3 + (4h2 + 9x2 + 12y2)s2 + 12xhs+ 4(h2 + y2)= 0. (2.31)

Equations (2.30)–(2.31) give eight possible expressions for the singulant
(corresponding to the choice of sign in (2.30) and the four solutions to (2.31)).
These therefore give eight possible sets of late-order behaviour in the problem.

Contour plots illustrating the behaviour of the singulant terms are presented
in figure 3 for h = 1. To indicate that we are considering the steady behaviour,
we have labelled the singulants as χS1 and χS2, where the number indicates two
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different solutions from which all eight singulant expressions may be easily obtained.
Specifically, the eight expressions are given by ±χS1,2 and ±χ S1,2, where the bar
denotes complex conjugation. We also note that χS2 may be obtained by reflecting
χS1 in the y-axis.

We recall from the methodology description that Stokes switching of exponentially
small contributions to the solution occurs across curves known as Stokes lines, which
must satisfy the condition on the singulant given in (1.8). As we have obtained explicit
expressions for the singulant, we are able to determine the location of the Stokes lines
in the solution, illustrated in figure 3 for χS1 and χS2. The Stokes lines are illustrated
by bold curves in the plots of Im(χ) in figure 3. While we used the condition (1.8)
to identify the Stokes line locations, it appears also as a consequence of the matched
asymptotic analysis, which may be seen in appendix B.

We may also determine the location of anti-Stokes lines using (1.9), which are
depicted as bold curves on the plots of Re(χ) in this figure. These curves are
important, as we know that the corresponding exponential contribution must be
inactive in any region containing anti-Stokes lines, as otherwise it would become
exponentially large (and therefore dominant) as the anti-Stokes lines are crossed.

From figure 3, we therefore see that any free-surface behaviour associated with
χS2 or χ S2 must be switched on in the downstream region, and hence produce
capillary waves in the downstream far field, which violates the radiation condition.
Furthermore, both −χS2 or −χ S2 have Re(χ) < 0 across the Stokes line (satisfying
Im(χ)= 0), and hence no Stokes switching can occur. This is also true of −χS1 and
−χ S1. Consequently, none of these singulant contributions will produce exponentially
small free-surface capillary waves.

However, χS1 and χ S1 have Re(χ) > 0 across the Stokes line, as well as in the
entire region in which the associated exponentially small wave behaviour is switched
on. Additionally, the wave behaviour is upstream from the obstacle. From this, we
conclude that the capillary wave behaviour on the free surface is caused by the late-
order terms associated with χS1 and χ S1. The full Stokes structure of the solution is
therefore depicted in figure 3(a).

Comparing the Stokes structure in figure 3(a) with the numerical free-surface plot in
figure 2, we see that the region upstream of the Stokes line in which the exponentially
small ripples are present in the solution corresponds to the numerically calculated
ripples in the surface plot. There are other features in the numerical plot which do
not correspond to exponentially small ripples, and are present on both sides of the
Stokes line; these features are not waves, but rather non-wave-like disturbances to the
undisturbed flow found at algebraic orders of ε in the small-surface-tension limit.

As χS1 and χ S1 are the only contributions to the steady capillary wave behaviour,
we will subsequently denote these as χS and χ S respectively.

2.3.2. Calculating the prefactor
In order to obtain a complete expression for the late-order terms (2.18), we require

an expression for the prefactors, Φ and Ξ . To find the prefactor equation, we consider
the next order in (2.13)–(2.14) as n→∞. Expanding the prefactors in the form of a
power series in n as n→∞,

Φ =Φ0 + 1
n
Φ1 + · · ·, Ξ =Ξ0 + 1

n
Ξ1 + · · · (2.32a,b)
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Capillary waves due to a submerged source 683

and applying the late-order ansatz to (2.20)–(2.23) now gives

−χzΦ1 + χxΞ1 =−Φ0,z +Ξ0,x, (2.33)
χxΦ1 + (χ 2

x + χ 2
y )Ξ1 =Φ0,x + 2χxΞ0,x + 2χyΞ0,y + (χxx + χyy)Ξ0. (2.34)

This system only has non-trivial solutions for Φ1 and Ξ1 when

χx(Φ0,z −Ξ0,x)= χz(Φ0,x + 2χxΞ0,x + 2χyΞ0,y + (χxx + χyy)Ξ0). (2.35)

Since we are presently interested in the leading-order behaviour of the prefactor, for
ease of notation we now omit the subscripts and denote Ξ0 by Ξ and Φ0 by Φ. This
gives

Φz =Ξx + χz

χx
(Φx + 2χxΞx + 2χyΞy + (χxx + χyy)Ξ). (2.36)

Now, to solve the prefactor equation (2.21), we use this result, as well as (2.25),
to express the original equation entirely in terms of x and y derivatives. The resultant
expression has the same ray equations as the singulant. Hence, we can express the
prefactor equation using the characteristic variable of the singulant, s, which is given
in terms of physical variables in (2.31). To fully determine the prefactor, we must
subsequently match the solution of the prefactor equation to the behaviour of the flow
in the neighbourhood of the singularity, as described in Chapman et al. (1998). This
analysis is performed in appendix A, and gives

Φ = s
√

2
4π3/2h3/2

×
[

1− 3h4(4s4 + 6s2h2 − 3h4)(s− x)
s3(3s2 + 2h2)(2s4 + 3h4)

]s2(24s8+34s6h2+36s4h4+35h6s2+14h8)/2h6(3h4−6s2h2−4s4)

,

(2.37)

where s is the solution of (2.31) corresponding to the singulant illustrated in figure 3.
Finally, to find γ , we ensure that the strength of the singularity in the late-order

behaviour φ(n), given in (2.18) is consistent with the leading-order behaviour φ(0),
which has strength 1/2. It is clear from the recurrence relation (2.14) that the strength
of the singularity will increase by one between φ(n−1) and φ(n). This implies that near
the singularity at x2 + y2 + h2 = 0,

ΦΓ (γ )

χ γ
→ α(x, y)
(x2 + y2 + h2)1/2

, (2.38)

where α is of order one in the limit. From (2.37), we see that the prefactor is also
order one in this limit, while the local analysis near the singularity (A 9) showed that
1/χ will be a singularity with strength one at x2+ y2+ h2= 0. Consequently, matching
the order of the expressions in (2.38) gives γ = 1/2.

We have therefore completely described the late-order terms given in (2.18), where
(2.26) is used to determine the value of Ξ .

In appendix B, we use the form of the late-order terms ansatz in (2.18) in order
to apply the matched asymptotic expansion methodology of Olde Daalhuis et al.
(1995). We optimally truncate the asymptotic series, and then find an equation for the
exponentially small truncation remainder. Using this expression, we determine where
the exponentially small remainder varies rapidly, which corresponds to the location
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of Stokes lines. If we had not applied the condition in (1.8), this would have been
necessary to determine the Stokes structure of the solution. Finally, we use matched
asymptotic expansions in the neighbourhood of the Stokes lines in order to determine
the quantity that is switched on as the Stokes lines are crossed.

Using this method, we find that the exponentially small contributions to the fluid
potential (denoted φexp) and free-surface position (denoted ξexp) are switched on across
the Stokes line, and in regions in which they are active, they are given by

φexp ∼ 2πiΦ√
ε

e−χS/ε + c.c., ξexp ∼ 2πiΞ√
ε

e−χS/ε + c.c., (2.39a,b)

where c.c. denotes the complex conjugate contribution. In particular, the expression
for ξexp contains exponentially small oscillations representing the capillary ripples on
the free surface.

2.4. Results and comparison
Evaluating the amplitude of the waves using ξexp from (2.39) along y= 0 gives

ξexp ∼ i√
2πε(4h− 3ix)

e−(h−ix)/ε + c.c., ε→ 0. (2.40)

In the limit that x becomes large and negative, we find that the amplitude of the
capillary waves along y= 0 is given by

Amplitude∼ 2e−h/ε

√
6πε|x| , x→−∞, ε→ 0. (2.41)

This provides us with the means to check the accuracy of our approximation. We can
compare the amplitude of the asymptotic results with those of numerically calculated
free-surface profiles, calculated using an adaption of the method described Lustri &
Chapman (2013).

In figure 4, we illustrate the scaled numerical amplitude (circles) against the
asymptotic prediction from (2.41), computed for h = 1 over a range of ε values. It
is apparent that there is strong agreement between the numerical and the asymptotic
results. For values of ε smaller than those depicted, it becomes numerically
challenging to compute the wave behaviour, due to the very small amplitude of
the resulting waves.

We see that the asymptotic prediction agrees with the numerically computed results
even when ε is not extremely small. This implies that the wave approximation
obtained in this study is useful even outside the flow regime in which the asymptotic
analysis is formally valid.

3. Unsteady flow
3.1. Formulation

In this section, we consider the same flow configuration described in § 2; however,
we permit the system to vary in time. We prescribe the initial state of the flow and
investigate the resultant unsteady behaviour.
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FIGURE 4. Numerical (dots) verses scaled asymptotic (line) amplitude of capillary waves
in the far field (x→−∞) along y= 0 for h= 1.

3.1.1. Full problem
We again consider three-dimensional potential flow with infinite depth and a

submerged point source at depth H and upstream flow velocity U. We normalise
the fluid velocity with U and distance by with an unspecified length L, giving
non-dimensionalised source depth h=H/L.

Denoting the (non-dimensional) position of the free surface by z = ξ(x, y, t), the
(non-dimensional) velocity potential again satisfies Laplace’s equation (2.1), however
the kinematic and dynamic boundary conditions respectively become

ξxφx + ξyφy + ξt = φz, z= ξ(x, y, t), (3.1)
φt + 1

2(φt + |∇φ|2 − 1)+ εκ = 0, z= ξ(x, y, t), (3.2)

where ε again denotes the inverse Weber number, and κ the curvature of the surface.
The far-field conditions are identical to those in § 2. The source condition is given by
(2.5). As the problem is unsteady, we do not require a radiation condition, but rather
specify that the free surface must be waveless in the far field. Finally, we require
an initial condition, as in Lustri & Chapman (2014), we specify that the initial state
is given by the leading-order solution to the steady problem, given in (2.16)–(2.17).
Hence the initial behaviour takes the form

φ(x, y, z, 0)= δ

4π
√

x2 + y2 + (z+ h)2
− δ

4π
√

x2 + y2 + (z− h)2
, (3.3)

ξ(x, y, 0)=− δxh

2π(y2 + h2)
√

x2 + y2 + h2
− δ

2π(y2 + h2)
. (3.4)

The reason for this choice of initial condition is that it enables us to focus on wave
generation rather than the bulk flow adjusting to the presence of the source; in
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FIGURE 5. Surface plot of the modified free-surface position ξ − ξ (0), where ξ (0) is the
leading-order free-surface profile given in (2.17), with h = 1 and ε = 0.2. The initial
condition of the flow is given by ξ = ξ (0), and therefore ξ − ξ (0) = 0. This image
corresponds to t = 40. Flow is in the positive x-direction. We can see capillary waves
extending upstream from the obstacle, however they have not propagated to the negative
edge of the displayed region. In order to show the position of the wavefront clearly, the
contrast has been increased in a circular region of the figure.

particular it guarantees that the leading-order solution is steady, and hence that the
leading-order behaviour φ(0)(x, y, z, t)= φ(x, y, z, 0) and ξ (0)(x, y, t)= ξ(x, y, 0). Note
that it does not imply that any subsequent order is steady.

3.1.2. Linearisation
We again linearise about uniform flow, and find that the governing equation (2.7)

is valid in the unsteady problem. However, the boundary conditions become

φ̃z − ξ̃x − ξ̃t = 0, z= 0, (3.5)
φ̃x + φ̃t − ε(ξ̃xx + ξ̃yy)= 0, z= 0, (3.6)

where the boundary conditions are again applied on the fixed surface z= 0. The far-
field conditions imply that φ̃→ 0 as x2 + y2 + z2→∞, while near the source, (2.10)
still holds. The initial condition is still given by (3.3)–(3.4).

We again analytically continue the free surface such that x, y ∈ C, with the free
surface still satisfying z = 0. We do not, however, need to analytically continue t
in this problem. Continuation does not change the form of (2.7)–(2.10), but it does
mean that the three-physical free surface (with two spatial and one time dimensions)
is now a subset of a five-dimensional complexified free surface. We can again solve
the linearised problem numerically using the method from Lustri & Chapman (2014),
to obtain numerical free-surface profiles such as that illustrated in figure 5.

3.1.3. Series expression
Again, we expand the fluid potential and free-surface position as a power series in ε.

The governing equation is given by (2.12), while the boundary conditions become for
n > 0,

φ(n)z − ξ (n)x − ξ (n)t = 0, z= 0, (3.7)

φ(n)x + φ(n)t − ξ (n−1)
xx − ξ (n−1)

yy = 0, z= 0, (3.8)
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again with the convention that ξ (−1) = 0. The far-field behaviour tends to zero at
all orders of n, and the singularity condition (2.10) is applied to the leading-order
expression, giving the source condition in (2.15). The initial condition is obtained
using (3.3)–(3.4). As the leading-order behaviour is steady, we find that φ(0) =
φ(0)(x, y, z, 0) and ξ (0) = ξ (0)(x, y, 0).

3.2. Late-order terms
In order to optimally truncate the asymptotic series prescribed in (2.11), we must
determine the form of the late-order terms. To accomplish this, we make the new
unsteady factorial-over-power ansatz (Chapman et al. 1998)

φ(n) ∼ Φ(x, y, z, t)Γ (n+ γ )
χ(x, y, z, t)n+γ

, ξ (n) ∼ Ξ(x, y, t)Γ (n+ γ )
χ(x, y, 0, t)n+γ

, as n→∞, (3.9a,b)

which varies now in t, as well as the spatial dimensions. A nearly identical analysis
to § 2.3.1 gives the singulant equation on the free surface as

(χx + χt)
4 + (χ 2

x + χ 2
y )

3 = 0. (3.10)

In considering the unsteady flow problem, we will restrict our attention to the
singulants, ignoring the prefactor equation, and use the singulant behaviour to
determine the position of Stokes lines and wave regions on the free surface.

3.2.1. Calculating the singulant
To determine the singulant behaviour on the free surface, we note that the

leading-order behaviour does have singularities on the analytically continued free
surface located at x2 + y2 + (z ± h)2 = 0 for all time, and that these are identical to
those described in (§ 3.2.1). As a consequence, wave behaviour associated with χ1 and
χ 1 will be present on the free surface. The presence of these waves is unsurprising,
as the steady wave behaviour satisfies (2.8)–(2.9), as well as the governing equation.

However, we do see from figure 3 that these singulants lead to wave behaviour far
upstream of the obstacle, which violates the prescribed (waveless) far-field condition.
Consequently, we infer that there must be another wave contribution, which introduces
more complicated Stokes line behaviour into the unsteady problem.

Specifically, we note that a second singularity is present in the unsteady problem,
introduced in the unsteady second-order terms. As in Chapman (1996) and Lustri
& Chapman (2014), we require that all characteristics pass through the disturbance
located at x2 + y2 + (z ± h)2 = 0 when t = 0. As in Lustri & Chapman (2014), we
observe that this singularity corresponds to the instantaneous initial change introduced
into the flow at t= 0. Hence, we apply the boundary conditions

x0 = s, y0 =±i
√

s2 + h2, χ0 = 0, t= 0. (3.11a−d)

The singulant equation (3.10) may again be solved using Charpit’s method, however
the analysis is simpler if we note that the solution may be expressed in a reduced set
of coordinates

τ = t, ρ =
√
(x− t)2 + y2, (3.12a,b)

implying that the solution is radially symmetric about the propagating point x= t. This
is consistent with the boundary data and reduces the singulant equation (3.10) to

χ 4
τ + χ 6

p = 0, (3.13)
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FIGURE 6. Singulant behaviour χU , obtained by solving (3.13) with boundary data (3.14).
The expression is scaled by t2 and presented in a frame moving with the flow, so that
the resultant behaviour is constant in time. The remaining singulant expressions associated
with unsteady behaviour are given by −χU , as well as ±χU . We see that Stokes switching
is possible for χU as Re(χ) > 0 across the Stokes line satisfying Re(χ)= 0. There is an
anti-Stokes line inside the Stokes line, meaning that any surface wave behaviour would
become exponentially large as this line is crossed. Consequently, we conclude that the
unsteady exponentially small contribution cannot be present inside the Stokes line, and
must instead be switched on outside. The same is true of the contribution associated with
χU . However, Re(−χU) and Re(−χU) are both negative as the Stokes line is crossed, and
hence these singulants cannot produce any Stokes switching on the free surface.

with the boundary conditions becoming

τ0 = 0, ρ0 =±ih, χ0 = 0. (3.14a−c)

Solving this much simpler equation using Charpit’s method gives four non-zero
solutions, which take the form

χ =±4i(ρ ± ih)3

27τ 2
, (3.15)

where the signs may be chosen independently. We will refer to the solution with the
first sign being positive and the second being negative as χU, and hence the remaining
possible singulant expressions are given by −χU and ±χU. We illustrate this singulant
behaviour in figure 6. Importantly, we see from (3.15) that

Re(χU)= 0 on ρ = h√
3
, Im(χU)= 0 on ρ =√3h. (3.16a,b)

The first of these conditions describes the location of anti-Stokes lines, while the
second describes the location of Stokes lines. These may be seen clearly in figure 6,
where the anti-Stokes and Stokes lines are described by concentric circles about
x = t. Importantly, the anti-Stokes lines are always contained within the Stokes
lines, meaning that any waves contained within the Stokes line circle will produce
exponentially large behaviour on the free surface. Consequently, we conclude the free
surface can only contain wave behaviour outside the Stokes lines.
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Capillary waves due to a submerged source 689

Furthermore, we see that only χU and χU have Re(χ) > 0 as the Stokes line
is crossed. Therefore, it is only these contributions that will be switched across
the Stokes lines. Hence, inside the Stokes line, there are no exponentially small
free-surface waves associated with the unsteady contribution, but as the Stokes line
is crossed, waves associated with χU and χU will be switched on.

3.3. Stokes line interactions
We have shown that there are two sets of Stokes line behaviours on the free surface,
associated with χS, χU and their complex conjugate expressions, across which
the leading-order behaviour switched on exponentially small contributions to the
free-surface behaviour. However, to fully describe the free-surface behaviour, we
must consider Stokes lines caused by the interaction between χS and χU, as well as
the interaction between χ S and χU. In this section, we will restrict our attention to
χS and χU, noting that the same switching behaviour will be demonstrated by the
complex conjugate expressions.

In previous analyses of the Stokes structure of partial differential equations (Howls
et al. 2004; Chapman & Mortimer 2005), it was found that Stokes switching may
also occur when one exponentially subdominant contribution switches on a further
subdominant contribution. Hence, we find that Stokes switching also occurs on curves
satisfying Im(χS) = Im(χU) and Re(χU) < Re(χS), across which the capillary wave
behaviour associated with χU is switched on.

Consequently, the complete Stokes structure contains three sets of equal phase lines,
which are illustrated in figure 7 for t = 5 and h = 1, although the equal phase line
following y= 0 has been omitted, as it was established in § 2 to be inactive. We have
also illustrated the anti-Stokes line along which Re(χS)=Re(χU).

It is not possible, however, for all potential Stokes lines to be active throughout
the domain. We recall from Howls et al. (2004), and Chapman & Mortimer (2005)
that Stokes lines may become inactive as they cross higher-order Stokes lines, which
satisfy (1.14). The position of higher-order Stokes lines is obtained by allowing χ1=
χS, χ2 = χU, and χ3 = 0, which corresponds to algebraic contributions to the surface
behaviour.

Higher-order Stokes lines contain important points known as Stokes crossing
points (SCP), at which three different Stokes lines intersect. Importantly, ordinary
Stokes lines can terminate at these points. For simplicity, we do not illustrate the
full higher-order Stokes line in figure 7, and instead show only SCP, represented as
circles. Noting that Stokes lines can terminate at Stokes crossing points, we determine
that the region in which the unsteady ripple and steady waves are present are those
indicated in figure 8, again for h= 1, over a range of times.

In this figure, we see that dashed curve satisfying Im(χS) = Im(χU) does not
contribute to the free-surface behaviour. This is because the steady wave contribution
would exponentially dominate (and therefore switch) the unsteady ripple across this
curve. However, the capillary wave contribution is switched off along the inner
curve, and therefore is not present in this region, and therefore no Stokes switching
occurs. We therefore find that the free-surface wave behaviour consists of an unsteady
ripple present outside a circular region of growing radius, and an expanding region
containing steady waves that spreads outwards from (x, y)= (0, 0). For small values of
t, the steady wave region disappears entirely. As t→∞, the radius of this expanding
region becomes infinite, and the steady wave behaviour is equivalent to that obtained
for the steady problem in § 2.
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Re(çU) > Re(çS)

Im(çU) = Im(çS)
Re(çS) > Re(çU)

−5

0

5−5 0

FIGURE 7. Relevant Stokes lines present on the free surface for t = 5 and h = 1. The
wide grey and black curves are the Stokes lines associated with the steady and unsteady
contributions (satisfying Im(χS)= 0 and Im(χU)= 0) respectively. The solid narrow curve
is a Stokes line across which the unsteady contribution switches the steady contribution
(satisfying Im(χS)= Im(χU) and Re(χU) >Re(χS)). The dashed narrow curves are Stokes
lines across which the steady contribution would switch the unsteady contribution, however
these contributions are inactive. The filled circles are Stokes crossing points, at which
Stokes lines terminate. The empty circles are potential Stokes crossing points where at
least one of the contributions is inactive, and therefore nothing occurs.

By solving
Im(χS)= Im(χU), (3.17)

we can determine the position of the expanding capillary wavefront. This becomes

x= 4((t− x)2 − 3h2)
√
(t− x)2

27t2
. (3.18)

We recall that on y = 0, the singulant is given by χS = h ± ix for x < 0. If we
define a moving frame η = x + t/2, and equate Im(χS) with the imaginary part of
the corresponding unsteady singulant from (3.15), we find that

0= 2(h2 − η2)

3t
+O(t−2) as t→∞. (3.19)

Matching this expression at O(t−1) as t→∞ gives the boundary of the expanding
capillary wave region on y= 0 as one of η= h or η=−h in this limit. We see from
figure 7 that the active Stokes line is located at the interior of these two points, and
therefore that the front position tends to η→ h as t→∞, or

x∼−t/2+ h as t→∞. (3.20)
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FIGURE 8. Regions of the free surface containing exponentially small contributions to the
surface behaviour for h= 1 and (a) t= 5, (b) t= 3, (c) t= 10 and (d) t= 20. In the white
region, no contributions are present. In the light grey region, the expanding ripple centred
about x = t is present, while in the dark grey region, both the unsteady ripple and the
steady waves are present on the free surface. The arrows in (a) indicate the direction in
which the Stokes lines move over time. The waveless region has constant radius of

√
3h

and is present downstream from the obstacle. The region containing steady waves tends
to an expanding circular region with a narrow section removed.

3.4. Results and comparison
In figure 9, we compare these results to numerical computations, obtained using the
numerical scheme adapted from the algorithm detailed in Lustri & Chapman (2014).
In this figure we show that the expanding front matches the position obtained by
solving Im(χS)= Im(χU) exactly. In each case, we expect that the waves will switch
on as the Stokes line is crossed, and consequently that the waves have half-amplitude
at this point, and rapidly decay as it is crossed. This is consistent with the computed
free-surface behaviour. We see that the position of the Stokes line accurately describes
the boundary of the capillary wave region, and therefore the propagation of these
capillary waves.

Finally, in figure 10, we show the full computed two-dimensional system for t= 20
and ε = 0.15, with the position of the Stokes line overlaid. We see that the capillary
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FIGURE 9. Results for ε = 0.15 at (a) t= 10, (b) t= 20, (c) t= 30, (d) t= 40, (e) t= 50
and ( f ) t= 60. The x position of the Stokes line is marked by a vertical grey stripe. This
is where waves should be half-amplitude, decaying exponentially as this line is crossed.
The axes are only shown on the first figure of each row, but are identical for each figure.
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FIGURE 10. Modified free surface at t = 20, with ε = 0.15, obtained numerically. The
dashed curve illustrates the Stokes curve. The black and white solid curves denote the
point at which each wave takes half of the maximum wave amplitude for that particular
wave trough. It can be seen that each of the indicated troughs reduces to half amplitude
approximately as the Stokes line is crossed. There is some visible wave behaviour outside
this region, due to the fact that Stokes switching behaviour is smooth for finite ε.

waves are clearly switched on in the interior of the predicted Stokes line, decaying to
half of the maximum wave amplitude at the Stokes line, and rapidly decaying away
as the Stokes line is crossed into the exterior region.
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4. Discussion and conclusions
4.1. Conclusions

In this investigation, we calculated the behaviour of steady and unsteady capillary
waves on the free surface of flow over a point source in three dimensions in the low-
surface-tension limit. We considered the source to be weak, and therefore linearised
the problem about the undisturbed solution. In the analysis of the unsteady capillary
wave problem, the flow was initially set to be waveless.

We subsequently applied exponential asymptotic techniques in order to determine
the behaviour of the resultant capillary waves. By analysing the Stokes switching
behaviour present in the solution to the problem, we were able to determine the form
of the waves on the free surface. Examples of this behaviour are illustrated in figure 2
for the steady flow problem, and figure 5 for the unsteady flow problem. We note that
the steady wave behaviour seen in figure 2, with the behaviour illustrated in figure 3(a)
is qualitatively similar to the flow induced by a whirligig beetle in figure 2 of Tucker
(1969).

In the steady case, the far-field amplitude of these capillary waves was compared to
numerical solutions to the linearised equations in figure 4. The numerical results were
obtained by formulating the solution to the linearised system as an integral equation
using methods similar to those given in Lustri & Chapman (2013), and evaluating the
integral numerically. The comparison showed agreement between the asymptotic and
numerical wave amplitudes.

We then considered the behaviour of unsteady capillary waves, in order to determine
how these waves propagate over time. We found that there is a transient component
of the surface behaviour generated by the initial disturbance. This transient surface
behaviour switched on capillary waves across a second-generation Stokes line, which
moves in space as t increases. We also determined the location of higher-order Stokes
phenomenon, which determined locations at which Stokes curves terminate; this was
required in order to complete the Stokes structure of the unsteady problem, illustrated
in figure 7. This analysis showed that the steady capillary waves are restricted to a
circular region of increasing size, with the downstream region removed.

Finally, we compared the position of the spreading wavefront predicted by the
asymptotics with numerical solutions to the unsteady problem. The numerical solutions
were obtained by formulating an integral expression for the surface behaviour in a
similar fashion to Lustri & Chapman (2014) and computing the solution to the
integrals. The results are seen in figures 9 and 10, and show agreement between the
asymptotic and numerical results.

The natural next step in this investigation is to study the Stokes structure that
appears in systems in which both gravity and capillary waves play an important
role. Following the work of Trinh & Chapman (2013a,b), we expect that the
behaviour of surface waves in these systems requires determining not only the
individual gravity and capillary wave contributions, but also the higher-order and
second-generation Stokes interactions within the system. A brief analysis of the
combined gravity–capillary wave problem is included in appendix C, in which
the singulant equation is obtained; however, solving this singulant equation is a
challenging numerical problem that is beyond the scope of this study.

Appendix A. Finding the prefactor
A.1. Prefactor equation

In order to solve the prefactor equation (2.21), we will express the equation on the
free surface entirely in terms of x and y derivatives. This will result in an equation
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that has the exact same ray structure as the singulant equation (2.27), and hence the
solution may be obtained in terms of the same characteristic variables. To accomplish
this, we must eliminate the z derivatives from all relevant quantities. Equations (2.25)
and (2.36) give appropriate expressions for χz and Φz respectively, however we must
still consider the second derivative terms that will appear in the equation.

Taking derivatives of (2.25) and rearranging gives

χxz =− 2χxχxx

χ 2
x + χ 2

y

+ 2χ 2
x (χxχxx + χyχxy)

(χ 2
x + χ 2

y )
2

, (A 1)

χyz =− 2χxχxy

χ 2
x + χ 2

y

+ 2χ 2
x (χxχxy + χyχyy)

(χ 2
x + χ 2

y )
2

, (A 2)

χzz =
4χ 2

x χ
2
y (χxxχ

2
y − 2χxχyχxy + χ 2

x χyy)

(χ 2
x + χ 2

y )
4

. (A 3)

Using (A 1)–(A 3), as well as (2.25), (2.26) and (2.36) we are finally able to write
the prefactor equation (2.21) in terms of x and y derivatives on z= 0 as

[4χ 3
x + 6χx(χ

2
x + χ 2

y )]Φx + [6χy(χ
2
x + χ 2

y )]Φy =G(x, y)Φ, (A 4)

where

G(x, y) =
[

6χ 2
x χ

2
y (χ

2
x − χ 2

y )

(χ 2
x + χ 2

y )
2
− (χ 2

x + χ 2
y )

2

]
χxx

+
[

8χ 3
x χy(χ

2
x − 2χ 2

y )

(χ 2
x + χ 2

y )
2

]
χxy +

[
2χ 4

x (χ
2
x − 5χ 2

y )

(χ 2
x + χ 2

y )
2
− (χ 2

x + χ 2
y )

2

]
χyy. (A 5)

This equation may be solved using the method of characteristics, giving the ray
equations (with characteristic variable u) as

dx
du
= 4χ 3

x + 6χx(χ
2
x + χ 2

y )
2,

dy
du
= 6χy(χ

2
x + χ 2

y )
2,

dΦ
du
=G(x, y)Φ. (A 6a−c)

The first two of these equations govern the ray paths, and importantly, are identical
to the ray equations associated with (2.27). This allows (A 6) to be written in terms
of the associated Charpit variables, and solved to give

Φ(s, u)= Φ(s, 0)

×
[

1+ 6s6u(4s4 + 6s2h2 − 3h4)

h7(2s4 + 3h4)

]s2(24s8+34s6h2+36s4h4+35h6s2+14h8)/6h6(3h4−6s2h2−4s4)

,

(A 7)
where the characteristic variable u is given by

u=− h11(s− x)
2s9(3s2 + 2)

. (A 8)

Selecting the corresponding expression for s in terms of x and y from (2.31) gives
the solution in terms of the physical coordinates x and y. To find an expression for
Φ(s, 0), the behaviour of the system in the neighbourhood of u= 0 must be computed
and matched to this outer solution.
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A.2. Inner problem
To solve the inner problem, we first consider the behaviour of χL1 near the singularity
at x2 + y2 + (z+ h)2 = 0, which takes the form

χL1 ∼ x2

2h3
(x2 + y2 + (z+ h)2). (A 9)

In the prefactor equation (2.37), we see that the unknown coefficient is a function
of s. From (2.29), it follows that s∼ x near the singularity at t= 0. Hence, we define
a system of inner coordinates given by

εσ1 = x2

2h3
(x2 + y2 + (z+ h)2), εσ2 = x2

2h3
(x2 + y2 + (z− h)2), λ= x. (A 10a−c)

To leading order in ε, the linearised governing equation (2.7) becomes (omitting the
bars)

3σ1φσ1σ1 + 3σ2φσ2σ2 + λφλσ2 + λφλσ1 = 0, (A 11)

where terms containing derivatives with respect to both σ1 and σ2 were disregarded
due to the form of the inner expansion, (A 15). Similarly, the boundary conditions
(2.8)–(2.9) become

hφσ1 − hφσ2 − λξσ1 − λξσ2 = 0 on σ1 = σ2, (A 12)
hφσ1 + hφσ2 − λξσ1σ1 − λξσ2σ2 = 0 on σ1 = σ2. (A 13)

Finally, by expressing the leading-order behaviour (2.16) in terms of the local
variables, we find that

φ(0) ∼ λ
√

2

8πh3/2ε1/2σ
1/2
1

− λ
√

2

8πh3/2ε1/2σ
1/2
2

. (A 14)

We now define the series expansion near the singularity on the complexified free
surface as

φ ∼
∞∑

n=0

[
an(λ)Γ (n+ 1/2)

σ
n+1/2
1

+ bn(λ)Γ (n+ 1/2)

σ
n+1/2
2

]
, ξ ∼

∞∑
n=0

[
2cn(λ)Γ (n+ 1/2)

σ
n+1/2
1

]
,

(A 15a,b)
where the latter expression is only valid on the free surface itself, on which σ1 = σ2.
The factor of two is included for subsequent algebraic convenience, and has no effect
on the solution to the problem as cn is unknown at this stage. From (A 14), we have

a0(λ)= λ
√

2
8πh3/2

, b0(λ)=− λ
√

2
8πh3/2

. (A 16a,b)

We are interested in the behaviour of the terms on the complexified free surface in
the neighbourhood of the singularity at x2 + y2 + h2 = 0. Consequently, we apply the
series expression to (A 12) on the surface (defined by σ1= σ2) and match in the limit
that σ1 (and therefore σ2) tend to zero, giving

−h(an − bn)− 2λcn = 0, n > 0. (A 17)
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Applying the series expansion to (A 13) and matching in the same limit gives

−h(n+ 3/2)(an + bn)+ 2cn+1 = 0, n > 0. (A 18)

We are interested in the behaviour on the complexified free surface; however,
restricting the domain in this fashion means that it is impossible to distinguish
between the contributions from the series in σ1 and the series in σ2. However, we see
that the two contributions have equal magnitude in (A 14). As the singular behaviour
of the problem is preserved in all higher orders (Dingle 1973), we conclude that this
must be true of the contributions at all subsequent orders. We therefore specify that
|an| = |bn| in order to maintain consistency with the leading-order behaviour. This
may only be accomplished if we divide the two equations given in (A 17)–(A 18) into
four equations such that

−han − λcn = 0, −h(n+ 1/2)an + λcn+1 = 0,
hbn − λcn = 0, −h(n+ 1/2)bn + λcn+1 = 0.

}
(A 19)

We will consider only the first two of these equations, noting that the remaining
equations imply that bn = (−1)nan. Eliminating cn from this system gives

an+1 = (n+ 1/2)an = a0Γ (n+ 1/2)
Γ (1/2)

. (A 20)

Hence, using the expression for a0 given in (A 16), we may match the local series
expression given in (A 15) with the prefactor given in (2.37). Noting that λ is the
local expression for s in the outer solution, and that Φ(s, 0) in the outer coordinates
matches with an(λ)+ bn(λ) in the inner coordinates, we find that

Φ(s, 0)= s
√

2
4π3/2h3/2

. (A 21)

Hence, we are able to completely describe the late-order behaviour of terms in (2.11),
with the complete expression given in (2.37).

Appendix B. Stokes smoothing
The asymptotic series given in (2.11) may be truncated to give

φ =
N−1∑
n=0

εnφ(n) + R(N), ξ =
N−1∑
n=0

εnξ (n) + S(N), (B 1a,b)

where N will be chosen in order to minimise the remainders R(N) and S(N). Applying
this series expression to (2.7) gives

∇2R(N) = 0, (B 2)

while the boundary conditions (2.8)–(2.9) become on z= 0,

R(N)z − S(N)x = 0, (B 3)
R(N)x + ε(S(N)xx + S(N)yy )=−εN(ξ (N−1)

xx − ξ (N−1)
yy ), (B 4)
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Capillary waves due to a submerged source 697

having made use of the relationship in (2.14) and the fact that φ(0)x = 0. The
homogeneous form of (B 2)–(B 4) is satisfied as ε→ 0 by

R(N) ∼Φe−χ/ε, S(N) ∼Ξe−χ/ε, (B 5a,b)

where χ is one of the singulants determined from (2.30)–(2.31).
We therefore set the remainder terms for the inhomogeneous problem to take the

form
R(N) = A(x, y, z)Φe−χ/ε, S(N) = B(x, y)Ξe−χ/ε, (B 6a,b)

where A and B are Stokes switching parameters. From (B 3), we see that A = B on
z= 0.

To determine the late-order term behaviour, we will require the first correction term
for the prefactors, and we therefore set

Φ =Φ0 + εΦ1 + · · ·, Ξ =Ξ0 + εΞ1 + · · ·. (B 7a,b)

Applying the remainder forms given in (B 6) to the boundary conditions, (B 3) and
(B 4), gives after some rearrangement

−AχxΞ1 + AχzΦ1 = AΞ0,x + AxΞ0 − AΦ0,z − AzΦ0, (B 8)

−AχxΦ1 + A(χ 2
x + χ 2

y )Ξ1 = 2AχxΞ0,x + 2AχyΞ0,y + 2AxχxΞ0

+ 2AyχyΞ0 + A(χxx + χyy)Ξ0

−AΦ0,x − AxΦ0 + εNeχ/ε(ξ (N−1)
xx + ξ (N−1)

yy ). (B 9)

Combining these expressions, and making use of (2.36) to eliminate terms and (2.14)
to simplify the right-hand side gives

AzΦ0 − AxΞ0 + 2AyχyΞ0 + 2AxχxΞ0 − AxΦ0 ∼−εNφ(N)x eχ/ε. (B 10)

As only the leading-order prefactor behaviour appears in the final expression, we will
no longer retain the subscripts. Applying the late-order ansatz gives

AzΦ − AxΞ + 2AyχyΞ + 2AxχxΞ − AxΦ ∼ εN χxΦΓ (N + 3/2)
χN+3/2

eχ/ε. (B 11)

Motivated by the homogeneous solution, we express the equation in terms of χ and y,
and apply (2.26) to obtain

Aχ = εNeχ/ε
Γ (N + 3/2)
χN+3/2

. (B 12)

The optimal truncation point is given by N ∼ |χ |/ε in the limit that ε→ 0. We write
χ = reiθ , with r and θ real so that N = r/ε + α, where α is necessary to make N an
integer. Since N depends on r but not θ , we write

∂

∂χ
=− ie−iθ

r
∂

∂θ
. (B 13)

Using Stirling’s formula on the resultant expression gives

Aθ ∼ i
√

2πr
ε

exp
(

r
ε
(eiθ − 1)− iθ

(
r
ε
+ α − 1

2

))
. (B 14)
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This variation is exponentially small, except in the neighbourhood of the Stokes line,
given by θ = 0, where it is algebraically large To investigate the rapid change in A in
the vicinity of the Stokes line, we set θ = ε1/2θ̂ , giving

Aθ̂ ∼ i

√
2πr
ε

e−rθ̂2/2, (B 15)

so that

A∼ i

√
2π

ε

∫ θ
√

r/ε

−∞
e−t2/2 dt+C, (B 16)

where C is constant. Thus, as the Stokes line is crossed, A rapidly increases from 0 to
2πiε−1/2. Using (B 6), we find the variation in the fluid potential, and we subsequently
use (B 3) to relate B to A, and therefore find the variation in the free-surface behaviour
as the Stokes line is crossed. The Stokes line variation for the potential and free-
surface position are respectively given by

[R(N)]+− =
2πiΦ√
ε

e−χS/ε, [S(N)]+− =
2πiΞ√
ε

e−χS/ε, (B 17a,b)

where we have reintroduced the specific singulant form, χS. Hence, if we determine
the prefactor and singulant behaviour associated with each contribution, (B 17) gives
an expression for the behaviour switched on across the appropriate Stokes line. The
combined expression for the exponentially small terms in regions where they are active
is therefore given by (2.39).

Appendix C. Gravity–capillary waves
The natural sequel to this work is to combine capillary and gravity waves, in order

to determine how the two wave contributions interact. It is likely that the Stokes
structure will be significantly more complicated than the Stokes structure for either
capillary or gravity waves alone. Previous work on the two-dimensional problem by
Trinh & Chapman (2013a,b) shows that the interaction between Stokes lines associated
with gravity and capillary waves plays an important role in the behaviour of waves
on the free surface.

Including both gravity and capillary effects in the analysis requires scaling both the
Weber number We= ρLU2/σ , and the Froude number F=U/

√
gL, where, as before,

σ is the surface tension, ρ is the fluid density, U is the background fluid velocity, L
is a representative length scale and g is the acceleration due to gravity.

As determined by Trinh & Chapman (2013a,b), we see that the scaling in which
both gravity and capillary waves play an important role is given by setting F2 = βε
and We−1=βτε2 as ε→ 0. The variables β and τ determine the relationship between
the Froude and Weber number.

This gives a system that is nearly identical to (2.1)–(2.5), with the dynamic
condition (2.3) now given by

βε

2
(|∇φ2| − 1)+ ξ = βτε2κ on z= ξ(x, y). (C 1)

After linearisation, this boundary condition becomes

βεφx + ξ = βτε2(ξxx + ξyy) on z= 0. (C 2)
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Capillary waves due to a submerged source 699

Applying late-order techniques to the linearised system in a similar fashion to § 2.3
yields the singulant equation

β2χ 4
x + (χ 2

x + χ 2
y )[βτ(χ 2

x + χ 2
y )− 1]2 = 0, (C 3)

with the boundary condition

χ = 0 on x2 + y2 + h2 = 0. (C 4)

We see that when τ = 0, this system gives the gravity wave singulant from Lustri &
Chapman (2013), while for τ = 1, the capillary wave singulant (2.27) is obtained in
the limit β→∞.

The Stokes surfaces can be obtained by obtaining the full set of solutions to this
system, and determining the Stokes surfaces. This is a challenging problem involving
complex ray tracking, as seen in Stone, Self & Howls (2017), and is beyond the scope
of the present study.
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