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We report a new interferometric method to study the interactions between two gas
bubbles undergoing small-amplitude oscillations in a liquid, based on the extension of
a previously developed one-bubble set-up. Nanometric oscillations of millimetre-sized
supported bubbles are excited acoustically; the response of each bubble is recorded
interferometrically, as a function of the mutual distance (from quasi-contact to greater
than the bubbles radii). The interferometric nature of the technique and the resonant
nature of the vibration modes enable the accurate measurement of the amplitude
(with sub-nanometric sensitivity), frequency and mutual phase of oscillation, whose
variations over the bubble–bubble distance range allow the interactions to be probed.
The bubbles oscillate at the same frequencies, exhibiting a low-frequency, in-phase and a
high-frequency, out-of-phase resonance peak, whose separation is a function of distance,
in good agreement with the theory for free interacting bubbles. The technique, here
demonstrated for the volume modes of air bubbles in water, can be extended to other
gas–liquid and liquid–liquid interfaces, bare or adsorbate-covered, as well as to shape
oscillations.

Key words: bubble dynamics, multiphase flow

1. Introduction

Gas bubbles in a liquid display incredibly rich physics, a remarkable example being their
resonant response to oscillating fields (Leighton 2012). Rather than isolated, they tend
to appear in complex aggregates like clusters, filaments and clouds, whose structures
are dictated by the pressure field in the surrounding fluid (Mettin 2005; Lauterborn &
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Kurz 2010). Technological applications span from acoustical oceanography to the
materials, food and pharmaceutical industry, to medicine (Leighton 2004). Here, the
monitoring and control of bubble ensembles is a crucial point, entailing a proper
understanding of the bubble–bubble interaction mechanism.

An extensive amount of literature on the interaction between two or many oscillating
bubbles under the effect of an external perturbation has amassed since the pioneering
studies by C.A. and V.F.K. Bjerknes (Bjerknes 1906, 1909, 1915). However, a deep
understanding of the subject is hampered by the complexity of the non-linear dynamics
of these collective systems. Moreover, theoretical and experimental works have generally
been conducted separately. From a theoretical standpoint, the literature has focused mainly
on two nearby bubbles undergoing radial oscillations excited by a spatially homogeneous
field (see e.g. Ida 2002; Pelekasis et al. 2004; Zeravcic, Lohse & Van Saarloos 2011;
Doinikov & Bouakaz 2015; Doinikov et al. 2019; Pandey 2019). Most models have
addressed the case where the distance between the centres of the bubbles significantly
exceeds the sum of their radii. More complex is the case of close inter-bubble distances,
where the angular dependence in the description of the fluid velocity field cannot be
neglected in the calculations. In the works by Maksimov (Maksimov & Yusupov 2016;
Maksimov & Polovinka 2018), analytic expressions for this regime have been obtained
by symmetry approaches (Maksimov 2018) involving the use of specific (bi-spherical)
coordinate systems. In typical experiments, volume modes of micrometre-sized bubbles
are excited by high-intensity ultrasound pulses, mimicking the set-ups used in applications.
The recorded backscatter waves, extremely sensitive to the interaction forces among the
bubbles, provide a ‘fingerprint’ of the interacting system (see, for instance, Foldy 1945;
Kapodistrias & Dahl 2000; Ma & Zhao 2021). Excitation frequencies lie in the range of
102 kHz; detected frequencies decrease with the number of bubbles. The close-distance
regime has been addressed by several numerical and experimental studies (Bremond et al.
2005, 2006; Deane & Stokes 2008; Manasseh, Riboux & Risso 2008; Fong et al. 2009;
Chew et al. 2011; Wiedemair et al. 2014), including the case of coalescence (Deane
& Stokes 2008; Manasseh et al. 2008) or the proximity of solid boundaries (Bremond
et al. 2005, 2006; Chew et al. 2011). Experiments on larger (millimetric) bubbles have
been performed as well (Hsiao, Devaud & Bacri 2001; Fong et al. 2009; Chew et al.
2011; Combriat et al. 2020). However, well-controlled experiments are difficult to devise.
A major pitfall is the lack of control on bubble positions, and hence on inter-bubble
distances, as well as geometry of larger ensembles; this issue is generally addressed by
tethering the bubbles to solid supports (Hsiao et al. 2001; Chew et al. 2011; Combriat
et al. 2020; Boughzala et al. 2021) or by optical trapping (Garbin et al. 2007). In the case
of micrometric bubbles, coalescence and/or dissolution are common phenomena, which
can be limited, for instance, by stabilising adsorbed shells on the bubbles (Van der Meer
et al. 2007). Finally, the pressure fields generally applied for the acoustic/optical detection
often lead to shape deformations related to instability phenomena (Versluis et al. 2010;
Guédra et al. 2016).

A thorough understanding of bubble–bubble interactions calls for simple and controlled
systems, as well as precise and tunable techniques, thereby enabling direct comparison
with theory. In this article we propose a new method for measuring the interactions
between two nearby oscillating bubbles of millimetric dimension. Volume modes
of nanometric amplitude are excited by an underwater piezoceramic and detected
interferometrically. The interaction strength can be evaluated from the variations in the
oscillation spectra (especially resonance frequencies) as a function of the inter-bubble
distance, enabling comparison with the existing theory (Maksimov & Yusupov 2016).
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Our technique allows the detection of bubble oscillations with unprecedented
(sub-nanometric) sensitivity, keeping full control of all the physico-chemical parameters
of the system, from distances larger than the bubble radii to quasi-contact (see also
supplementary material available at https://doi.org/10.1017/jfm.2022.333, § 5). Thanks to
the high sensitivity of the interferometric technique, the exciting pressure field can be kept
very low, which is an advantage for theoretical comparison.

2. Method

The proposed method is based on the extension of an interferometric technique developed
in the framework of studies of single oscillating gas bubbles and drops (Corti, Bonomo
& Raudino 2012; Corti, Pannuzzo & Raudino 2014, 2015; Cantu’, Raudino & Corti 2017;
Raudino, Raciti & Corti 2017; Corti et al. 2018). While the detection principle remains
unaltered, the main novelty is the independent detection of the two bubbles, set at finely
regulated mutual distances, whose interactions are evaluated from the variations in the
resonance features along the distance. Measurements rely on the property of air–water (or
oil–water) interfaces to behave like the mirrors of a confocal Fabry–Perot interferometer,
due to the difference in refractive indices between the inner and the outer media. As such,
when a Gaussian laser beam is focused on the bubble, an interference pattern is formed
in the backward direction, which depends on the optical path length inside the bubble,
i.e. on its local radius (Corti et al. 2012) (see inset of figure 1). In fact, due to the closed
geometry of the bubble, a discrete set of vibration modes are excited: in figure 1, the peaks
on the left side refer to the shape (non-spherical) modes, l, with typical resonances lying in
the range of 102 Hz for bubbles of approximately 1 mm in diameter; the higher-frequency
mode, falling in the 103 Hz range, corresponds to the volume or breathing (spherical,
l = 0) mode. While no significant differences arise between volume and shape modes
for what concerns their detection, the latter are excited differently and give rise to more
complex interacting behaviours. In this article we will focus on the coupling between
spherical oscillating bubbles, to provide proof of principle, leaving the shape modes to
a future article. Notice that the technique can also be applied to interacting oil drops and
to adsorbant-covered (e.g. surfactants, proteins) bubbles/drops, as for the single-bubble
case (Corti et al. 2018; Brocca et al. 2019).

Air bubbles, of the order of 1 mm in diameter, are formed at the top of a stainless-steel
hollow electrode protruding from the bottom of the measurement cell and are subsequently
set against an upper, solid gold-plated electrode (see figure 2). The cell, made of
polymethyl methacrylate, has a volume of approximately 1 mL and is filled with fresh
milli-Q water at 20 ◦C. The external pressure is 1 × 105 Pa. The distance between the
electrodes, and hence the bubbles, is regulated over a range of 5 mm via micrometer screws
and a piezoelectric transducer for the shortest distances. Bubble radii are measured from
the image formed by a high-resolution digital camera, by comparison with the precisely
known upper electrodes diameter, with an accuracy of 10 μm. Bubble distances D, as
defined in figure 2, are measured with an accuracy of 5 μm mostly dictated by the difficulty
in the experimental determination of the contact position. Volume oscillations of both
bubbles are excited by a waterproof piezoelectric transducer (Thorlabs TA0505D024W)
set at the bottom of the cell (see figure 2), generating a frequency-swept pressure field in
the range of the expected resonances. The driving force of acoustic excitation is related to
the compressibility of the gas phase; any surface charge density present on the bubble
will only affect its interfacial properties, without entering the excitation process. The
amplitude of the applied field is rather uniform along the bubble–bubble distance range
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Figure 1. Vibrational spectrum of a single bubble (radius: 0.85 mm) in ultra-pure water, showing both shape
and volume modes. The spectrum is obtained with a 0.01 V sweeping sine voltage applied to the piezoelectric
transducer glued to the cell bottom (vertical oscillation amplitude of the order of 1 nm). The inset summarises
the detection principle: a laser beam focused on the bubble undergoes reflections at the curved interfaces (points
S1 and S2), which generate an interference pattern in the backward direction.

(supplementary material, § 2), and low enough to keep the oscillation amplitudes in the
range of a few nanometres, well above the sensitivity of the instrument (0.1 nm) and
well within the linear range of working conditions. The oscillation amplitudes of the
two bubbles are recorded by two independent interferometers, based on a He-Ne laser
source (Thorlabs HNL21L, 20 mW), coupled to a single-mode optical fibre (Thorlabs
FC632-50B-FC) and split into two fibres delivering approximately 5 mW laser power each.
The interferometric patterns are deflected toward two photomultiplier tubes (Hamamatsu
R2949), which read the central-fringe intensity through a small aperture. A full cycle
in the central-fringe brightness, that is, from bright to dark to bright again, is obtained
for an optical path variation of λ inside the bubble, namely a bubble radius change
of λ/4, λ = 633 nm being the wavelength of the He-Ne laser. The two photodetected
signals are measured synchronously by a two-channel digital signal analyser (SR785)
operating in swept-sine mode (see also supplementary material, § 3). The same swept-sine
voltage generated by the analyser for the spectra acquisition is used to feed the piezo
transducer in the cell. This way, the experimental set-up allows precise control of
phase relations among the signals coming from the oscillating bubbles (supplementary
material, § 3). At linear working conditions of each interferometer (Corti et al. 2012), the
photomultiplier output voltage is proportional to the bubble’s radius as it oscillates about
its equilibrium value (supplementary material, § 3). The absolute vibration amplitude is
then calculated by comparing the output voltage with the voltage span corresponding
to a full bright-to-dark span in the central interference fringe (79.1 nm, equal to λ/8).
The so-obtained amplitude-vs-frequency signals represent the oscillation spectra of the
interacting bubbles.

The differential nature of the interferometer allows a sensitivity of 0.1 nm in the
oscillation amplitude measurements (Raudino et al. 2017). The optical components
are carefully arranged so to avoid beam crossing or spurious reflections. To minimise
acoustic noise, the optical system is tightly mounted on a Newport table inside a sound
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1 mm

D

Figure 2. View of the measurement cell, with the piezo at the bottom, and detail of the two upper-anchored
bubbles. The closest distance between the walls of the bubbles (here, of approximately 100 μm) is denoted as
D.

insulating box and stands on a pneumatically stabilised table, whose legs are immersed in
sand basins. Presence of contaminants in the cell (or in water) is avoided by accurate
cleaning. The bubbles are stable for several hours, well above the time needed for our
experiments. Coalescence is not observed in the same time range. Such stability is well
reproducible provided pure and dust-free water is used. Bubbles as small as 200 μm
can be used with our set-up (supplementary material, § 4). Lastly, measurements were
performed with bubbles formed always at the cell mid plane, sufficiently far from the free
water surface and from the cell bottom, just to keep control of possible effects of acoustic
coupling of the bubble with other interfaces in the cell (Oguz & Prosperetti 1990, 1998;
Robinson et al. 2001). Experimentally, this effect was found to be small (supplementary
material, § 2).

3. Results and discussion

Measurements were taken using bubbles of similar radii, between 0.6 and 0.9 mm. The
larger bubble was denoted as Bubble 1 and the smaller as Bubble 2, the size ratio R2/R1 (Ri
being the static radius of Bubble i) ranging between 0.75 and 1.00. The distance D between
the bubble walls (defined as in figure 2) was varied from 10 μm up to 4000 μm, focusing
on the close-distance range. For each distance, the vibrational spectra of both bubbles
were acquired over 200 frequency points (each averaged over 20 cycles) and subsequently
analysed.

The resonance frequency as a function of D is a descriptor of the bubble–bubble
interactions. In all our experiments, isolated bubbles exhibit a characteristic Lorentzian
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Figure 3. (a) Vibrational spectra of two interacting bubbles of almost identical radii (R1 = 770 μm, R2 =
765 μm), set at a face-to-face distance D of 160 μm (sweeping sine voltage 30 mV). The bubbles resonate at the
same frequencies, ν− and ν+, whose separation Δν is a function of D. (c) The corresponding relative phase of
oscillation between Bubbles 1 and 2. The ν− peak corresponds to in-phase oscillations (attractive interactions),
while the ν+ resonance is out of phase (repulsive interactions). This behaviour was observed for all the size
ratios investigated and at any D value, from quasi-contact to a couple of millimetres. At larger distances, the
frequency splitting vanishes and the two bubbles oscillate at frequencies close to their resonant frequencies ν0i
(experimental values: ν01 = 3903 Hz and ν02 = 3934 Hz). (b) Lower-peak ν− and (d) upper-peak ν+ resonance
frequencies of two interacting bubbles (R1 = 850 μm, R2 = 800 μm) as a function of distance D (measured
values: ν01 = 3569 Hz, ν02 = 3793 Hz).

resonance ν0i (with ν01 ≤ ν02) inversely proportional to their radii Ri, close to the natural
frequency of a free bubble (Minnaert 1933). When a second bubble is present in the cell,
two resonance peaks are observed, falling at frequencies ν− < ν01 and ν+ > ν02, identical
for both bubbles (see figure 3a). The values of ν± and their difference Δν depend on the
distance D: as D is increased, Δν decreases and the values of ν± slowly tend to ν02 and
ν01, respectively. The red shift of ν− with respect of ν01 (of the order of 100 Hz) is much
smaller than the blue shift of ν+ with respect to ν02 (of the order of 1000 Hz), as can be
seen from figure 3(b,d). The absolute amplitude of both peaks increases with the distance
and the relative amplitudes depend on both the distance and the size ratio between the
bubbles (data not shown here; as an example of amplitude measurements see figure 4S in
supplementary material, § 5, and discussion therein). At very large distance (not reached
in our experiments due the finite width of the cell, 10 mm) the second peak is expected
to disappear, with each bubble oscillating at its own resonant frequency ν0i. Finally, at
contact distance, whereby the bubbles ‘bounce’ off each other, the observed peaks lose
their typical Lorentzian shape (supplementary material, figure 6S).

Parallel to the oscillation spectra, the above-described interferometric apparatus allows
the measurement of the relative phase of oscillation between the two bubbles, from the
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‘cross spectrum’ of the Bubble 1 and Bubble 2 interferometric signals, as calculated by
the signal analyser. As an example, the behaviour of the oscillation amplitude and of the
relative phase as a function of the excitation frequency is illustrated in figure 3(a,c) for a
chosen value of distance D.

The data in figure 3 can be qualitatively interpreted in terms of coupled oscillators,
where the oscillation frequency is related to the interaction strength, while the relative
phase is related to the nature of the interactions (Kuramoto 2003). It can be seen
how resonance frequencies and relative phases give complementary information on the
system under study. In particular, the low-frequency ν− peaks are in phase (attractive
interactions) and the high-frequency ν+ peaks are out of phase (repulsive interactions),
while the slow decay of resonance frequencies ν± over bubble–bubble distance denotes
long-range coupling. However, a rigorous and reliable interpretation of our experiments
must take into account the role of the fluid coupling medium in the interactions. The
hydrodynamic model of two interacting bubbles undergoing volume oscillations proposed
by Maksimov and Yusupov (Maksimov & Yusupov 2016) is fit for purpose. A remarkable
feature of this model resides in the description of the close-distance regime, which is
not captured by conventional hydrodynamic models of bubble–bubble interactions (see,
for instance, Ida (2002) or the long-distance limit expression in Maksimov & Yusupov
(2016), equation (22)). Figure 4 reports the comparison between our experimental data
(circles) and model predictions (lines) for the case of two bubbles of almost identical
radii (Bubble 1, 770 μm; Bubble 2, 765 μm). Here, R/h is a normalised distance scale
(R being the average between the two radii and h the centre-to-centre distance between
the two bubbles), while Ω± are the averaged resonance frequencies of the upper and lower
peaks, normalised to the resonant frequency of the isolated bubbles ν0 (ν0 = (ν01 + ν02)/2
for the experimental data). The measured resonances are perfectly reproduced by the
close-distance model (full lines), while the long-distance model (dashed lines) starts to
deviate from the data already at face-to-face distances of the order of the bubble diameter.
The size ratio between the two bubbles has a strong impact on the resonance response,
as reported in figure 5. The experimental results are again in rather good agreement with
Maksimov and Yusupov’s close-distance model; discrepancies can be mostly attributed to
the accuracy in the measurement of bubble radii.

It should be noticed that the model refers to unconstrained bubbles, while our
experiments were performed on tethered bubbles. However, we hypothesise that the
contact line effect is small in the case of acoustic excitation (where no surface charge
effects are involved) and bubbles of similar radii (no significant variations in contact
angle). Indeed, in all our experiments the single-bubble frequencies are approximately
10 % smaller than the Minnaert frequency for a free bubble (ν0 = √

3γ P0/ρ0/(2πR), γ

being the polytropic exponent of air, P0 and ρ0 the hydrostatic pressure and the density
of water at 20 ◦C), in line with the literature on constrained bubbles (see e.g. Blue 1967;
Maksimov 2005), the effect being of similar entity for every bubble radius investigated.

4. Conclusions

We have presented a new interferometric technique to investigate the interactions between
two oscillating gas bubbles in a liquid. An important feature of this technique lies in its
sensitivity. Oscillation amplitudes of the order of a few nanometres on millimetre-sized
bubbles are driven by extremely low pressure fields, yielding very well-resolved and
reproducible spectra. Thus nonlinearities can be disregarded, which is desirable for
theoretical comparisons. Interestingly, the technique also provides a direct measurement of
the relative phase of oscillation of the two bubbles. Two oscillating bubbles approaching
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Figure 4. Comparison of interferometric data (circles) obtained for two bubbles of almost identical radii (R1 =
770 μm, R2 = 765 μm) with theoretical models of long-distance (dashed lines) and short-distance (full lines)
interactions. Here, R = (R1 + R2)/2 is the averaged radius and h = 2R + D is the centre-to-centre distance
between the two bubbles. Resonance frequencies Ω± = ν±/ν0 (Ω− in red, Ω+ in blue) are normalised to the
average of the measured single-bubble resonant frequencies ν0 = (ν01 + ν02)/2. The theoretical curves were
calculated as reported in Maksimov & Yusupov (2016), applying equation (20) for short-distance interactions
and the simplified equation (22) for long-distance interactions.
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Figure 5. Normalised resonant frequencies Ω± = ν±/ν0i (i = 1, 2) vs normalised radius R1/h (h = R1 +
R2 + D being the centre-to-centre distance) for bubble size ratios R2/R1 around 0.8 and 1.0: (a) low-frequency
peaks; (b) high-frequency peaks. Full lines report the theoretical predictions from Maksimov and Yusupov’s
model (Maksimov & Yusupov 2016).

up to quasi-contact show a frequency splitting of resonances with respect to the isolated
bubbles, whose extent decreases with the bubble–bubble distance. The lower-frequency
peak corresponds to in-phase oscillations, while the higher-frequency peak to out-of-phase
oscillations. Measurements are in excellent agreement with the predictions of Maksimov’s
close-distance model, while long-distance models deviate from the experimental data
already at a face-to-face distance of the order of the bubble diameters.

The simple case of two interacting bubbles oscillating in their breathing mode provides
a proof of concept of the validity of the interferometric technique, besides validating
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the existing theory. Further applications may be interesting, such as the study of energy
dissipation along the interaction (related to the width of the resonance peaks), or of the
interaction between bubbles (or drops) oscillating in their surface modes. The latter, in
particular, constitutes an open field of research, where the availability of well-controlled
model experiments may help understand the mechanical communication between more
complex fluid bodies, such as fluctuating cells (Mathijssen et al. 2019).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.333.
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