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Unlike the classical scaling relations for the mean-velocity profiles of wall-bounded
uniform turbulent flows (the law of the wall, the defect law and the log law), which
are predicated solely on dimensional analysis and similarity assumptions, scaling
relations for the turbulent-energy spectra have been informed by specific models
of wall turbulence, notably the attached-eddy hypothesis. In this paper, we use
dimensional analysis and similarity assumptions to derive three scaling relations for
the turbulent-energy spectra, namely the spectral analogues of the law of the wall,
the defect law and the log law. By design, each spectral analogue applies in the
same spatial domain as the attendant scaling relation for the mean-velocity profiles:
the spectral analogue of the law of the wall in the inner layer, the spectral analogue
of the defect law in the outer layer and the spectral analogue of the log law in the
overlap layer. In addition, as we are able to show without invoking any model of wall
turbulence, each spectral analogue applies in a specific spectral domain (the spectral
analogue of the law of the wall in the high-wavenumber spectral domain, where
viscosity is active, the spectral analogue of the defect law in the low-wavenumber
spectral domain, where viscosity is negligible, and the spectral analogue of the log
law in a transitional intermediate-wavenumber spectral domain, which may become
sizable only at ultra-high Reτ ), with the implication that there exist model-independent
one-to-one links between the spatial domains and the spectral domains. We test the
spectral analogues using experimental and computational data on pipe flow and
channel flow.

Key words: turbulent boundary layers, turbulent flows

1. Introduction
In the 1920s Prandtl and Kármán argued that the mean-velocity profiles (MVPs)

of wall-bounded uniform turbulent flows should satisfy three complementary
model-independent scaling relations, each in a specific spatial domain of application:
the law of the wall in the inner layer, the defect law in the outer layer and the log law

† Email address for correspondence: pinaki@oist.jp
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in the overlap layer (Tennekes & Lumley 1972). The law of the wall, the defect law
and the log law promptly came to be regarded as the classical scaling relations for the
MVPs, yet their theoretical underpinnings would not be fully clarified until the 1990s,
when Barenblatt et al. introduced to fluid mechanics the distinction between complete
and incomplete similarity. Then the log law was shown to rest on the assumption
of complete similarity in two dimensionless variables, and it was recognized that
the similarity in one of these dimensionless variables could be incomplete instead of
complete, resulting in an alternative scaling relation that is just as model independent
as the log law but might be in better keeping (as it was asserted) with experimental
data than the log law (Barenblatt 1993, 2003). Despite this major challenge to the
log law, the classical scaling relations have remained in textbooks all along, and it
appears to be broadly agreed that they express the most salient properties of the
MVPs (Smits, McKeon & Marusic 2011).

Meanwhile, a number of scaling relations have been put forward for the turbulent-
energy spectra of wall-bounded uniform turbulent flows. Best known are Perry et al.’s
‘inner scaling’, ‘outer scaling’ and ‘overlap scaling’ (Perry & Chong 1982; Perry,
Henbest & Chong 1986). The overlap scaling involves turbulent-energy spectra that
are inversely proportional to the wavenumber, and has received the most attention;
whether it is valid or not, however, remains an unresolved question (Smits et al. 2011).
Regardless of their names (which might suggest otherwise), the scaling relations of
Perry et al. apply in the overlap layer (that is, the spatial domain of application of
the log law). Perry et al. have also put forward a scaling relation that applies in
the outer layer (Perry et al. 1986), but, curiously, no one appears to have proposed
a scaling relation that applies in the inner layer. In any event, from the outlook
of this paper, the existing scaling relations for the turbulent-energy spectra share a
cardinal trait: they are all model dependent in that their respective spectral domains of
application have been ascertained via the attached-eddy hypothesis, a model of wall
turbulence that entails the existence of specific links between spatial domains and
spectral domains (Perry & Chong 1982; Perry et al. 1986; Perry & Marusic 1995;
Smits et al. 2011). Thus, for example, Perry et al.’s inner scaling, outer scaling
and overlap scaling apply within the intermediate range of wavenumbers that the
attached-eddy hypothesis pairs with the overlap layer.

Here, we seek to formulate a set of model-independent scaling relations for the
turbulent-energy spectra of wall-bounded uniform turbulent flows. For guidance, we
carry out a step-by-step derivation of the law of the wall, the defect law and the
log law using dimensional analysis and suitable assumptions of complete similarity.
We then follow the same steps and make the same assumptions to derive analogous
scaling relations for the turbulent-energy spectra. We start with a review of the concept
of complete similarity.

2. Complete similarity

Consider a dimensionless function f (x1, . . . , xn), where x1, . . . , xn are dimensionless
variables. Function f is said to be completely similar in xi for xi→ 0 (or xi→∞) if
there exists a finite (that is, bounded and non-zero) function f1(x1, . . . , xi−1, xi+1, . . . , xn)

such that limxi→0 f (x1, . . . , xn)= f1(x1, . . . , xi−1, xi+1, . . . , xn) (or limxi→∞ f (x1, . . . , xn)=
f1(x1, . . . , xi−1, xi+1, . . . , xn)) (Barenblatt 2003). Suppose now that f is completely
similar in xi for xi→ 0 (or xi→∞); in this case, we can substitute f1(x1, . . . , xi−1,

xi+1, . . . , xn) for f (x1, . . . , xn) and expect the substitution to be valid if |xi| � 1
(or xi � 1). (Note that ‘|xi| � 1’ (or ‘xi � 1’) is but a sufficient condition for the
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substitution to be valid. Thus, if f is independent of xi, for example, we can substitute
f1 ≡ limxi→0 f for f and the substitution will be valid for all xi, not just for |xi| � 1.)
The law of the wall, the defect law and the log law can be predicated on suitable
assumptions of complete similarity, as reviewed in the section that follows, which
will serve as a roadmap for the formulation of analogous spectral scaling relations
in § 4.

3. Scaling relations for the turbulent mean-velocity profiles
We focus for concreteness on a turbulent channel flow. Here 2δ is the distance

between the walls of the channel, τw is the shear stress at the walls, ρ is the density
of the fluid and ν is the kinematic viscosity of the fluid. The coordinates are x
(streamwise), y (wall-normal) and z (spanwise); and u, v and w are the corresponding
instantaneous velocities. At any given distance y from a wall, we can compute
the mean velocity U (that is, the time-averaged value of u) and the spectrum of the
turbulent energy, E(k). (Here, E stands for a generic one-dimensional turbulent-energy
spectrum at the distance y from the wall, and k stands for a generic wavenumber.
The specific realizations of E(k) are Euu(kx), Euu(kz), Evv(kx), Evv(kz), Eww(kx) and
Eww(kz).) In this section we concern ourselves with U.

Consider the six dimensional variables U′≡ ∂U/∂y, y, δ, τw, ρ and ν. (Note that U
is not Galilean-invariant, thus the choice of U′.) From Buckingham’s Π -theorem
and the dimensional equations [U′] = [y]−1[τw]1/2[ρ]−1/2, [δ] = [y][τw]0[ρ]0 and
[ν] = [y]1[τw]1/2[ρ]−1/2, we conclude that the functional relation among the six
dimensional variables can be expressed as an equivalent functional relation among
three dimensionless variables (yU′/uτ , y/δ and y/δv, where uτ is the frictional velocity,
uτ ≡ (τw/ρ)

1/2 and δv is the viscous length scale, δv ≡ ν/uτ ), in the form

yU′

uτ
= F(y/δ, y/δv). (3.1)

We can readily derive a version of (3.1) suitable for application in the viscous layer.
Note that τw = ρνU′(0) or, equivalently, U′(0)= uτ/δv. For U′(y) to be continuous at
the wall (y= 0), it must be that U′(y)∼ uτ/δv as y→ 0 (where uτ/δv is the first term
of the Taylor expansion of U′(y) about y= 0) and, therefore, that F(y/δ, y/δv)∼ y/δv
as y/δ→ 0 and y/δv→ 0 (the set of limits associated with the viscous layer). Thus,
for the viscous layer, a version of (3.1) can be written in the form yU′/uτ = y/δv
or, after integration with boundary condition U(0)= 0, in the form U/uτ = y/δv. We
shall presently derive versions of (3.1) suitable for application in three other spatial
domains: the inner layer y� δ, the outer layer y� δv and the overlap layer δv� y� δ.

We start with the inner layer. We assume that F in (3.1) is completely similar in
y/δ for y/δ→ 0, and write yU′/uτ = F1(y/δv). It follows that

U
uτ
= I(y/δv), (3.2)

where I(x) ≡ ∫ x
0 ξ
−1F1(ξ) dξ . (Note that, from our discussion of the viscous layer,

ξ−1F1(ξ) ∼ 1 as ξ → 0.) Equation (3.2) is the law of the wall, a version of (3.1)
suitable for application in the inner layer y� δ. (Here ‘y� δ’ is a sufficient condition.)
The velocity profile of creeping channel flow, U/uτ = (y/δv)(2− y/δ)/2, simplifies in
the limit y/δ→ 0 to U/uτ = y/δv, which is in keeping with (3.2), as we expect it to be
when the sufficient condition y� δ is satisfied, regardless of the value of the frictional
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Reynolds number Reτ ≡ δ/δv. Nevertheless, from the identity y/δv= (y/δ)Reτ , y/δv can
remain finite as y/δ→ 0 if and only if Reτ →∞. (In creeping channel flow, where
Reτ remains small, y/δ→ 0 necessitates y/δv→ 0, and the inner layer is coextensive
with the viscous layer.) Thus, the law of the wall can be said to signify that, for
any finite y/δv, the dimensionless velocity U/uτ becomes independent of Reτ (and
therefore of y/δ) at large Reτ . (To show formally that Reτ � 1 is another sufficient
condition for the law of the wall to apply, we express (3.1) in the alternative form
yU′/uτ = F2(Reτ , y/δv), assume that F2 is completely similar in Reτ for Reτ →∞,
and write yU′/uτ = F3(y/δv) or, after integration, U/uτ = F4(y/δv), which can also be
written as U/uτ = I(y/δv), valid for Reτ � 1.)

Consider next the outer layer. We assume that F in (3.1) is completely similar in
y/δv for y/δv→∞, and write yU′/uτ = F5(y/δ). It follows that

Uδ −U
uτ

=O(y/δ), (3.3)

where Uδ is the mean velocity at the midplane of the flow (y = δ) and O(x) ≡∫ x
1 F5(ξ)ξ

−1 dξ . Equation (3.3) is the defect law, a version of (3.1) suitable for
application in the outer layer y� δv. (Here ‘y� δv’ is a sufficient condition.) Now,
from the identity y/δ = (y/δv)Re−1

τ , y/δ can remain finite as y/δv→∞ if and only
if Reτ → ∞. Thus, the defect law can be said to signify that, for any finite y/δ,
the dimensionless defect velocity (Uδ − U)/uτ becomes independent of Reτ (and
therefore of y/δv) at large Reτ . (To show formally that ‘Reτ � 1’ is another sufficient
condition for the defect law to apply, we express (3.1) in the alternative form
yU′/uτ =F6(y/δ,Reτ ), assume that F6 is completely similar in Reτ for Reτ→∞, and
write yU′/uτ = F7(y/δ) or, after integration, (Uδ − U)/uτ = F8(y/δ), which can also
be written as (Uδ −U)/uτ =O(y/δ), valid for Reτ � 1.)

Consider last the overlap layer, where y/δ→0 and y/δv→∞. Under the assumption
that F in (3.1) is completely similar in y/δ and y/δv for y/δ→ 0 and y/δv→∞, we
can write yU′/uτ = (κ)−1, where κ is a dimensionless constant known as the Kármán
constant. It follows that

U
uτ
= 1
κ

ln
y
δv
+ B, (3.4)

where B is another dimensionless constant. Equation (3.4) is the log law, a version of
(3.1) suitable for application in the overlap layer δv� y� δ. (Here ‘δv� y� δ’ is a
sufficient condition.)

It bears emphasis that it is possible to have a well-developed turbulent inner layer
and a well-developed outer layer and no overlap layer. Suppose, for example, that we
write the inner-layer condition y/δ� 1 and the outer-layer condition y/δv� 1 in the
widely used nominal form y/δ < 0.1 and y/δv> 50, respectively. In this case, the distal
edge of the inner layer, yd

I , can be computed as yd
I = 0.1δ, and the proximate edge of

the outer layer, y p
O, can be computed as y p

O = 50δv. By setting yd
I = y p

O, we conclude
that for Reτ = 500 the overlap layer consists of one point – the only point that is
shared in common by the inner layer and the outer layer. For the overlap layer to
extend over one decade, so that yd

I = 10y p
O, it must be that Reτ = 5000.

4. Scaling relations for the turbulent-energy spectra
Consider the seven dimensional variables E, k, y, δ, τw, ρ and ν. From Buckingham’s

Π -theorem and the dimensional equations [E] = [k]−1[τw]1[ρ]−1, [y] = [k]−1[τw]0[ρ]0,
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[δ] = [k]−1[τw]0[ρ]0 and [ν] = [k]−1[τw]1/2[ρ]−1/2, we conclude that the functional
relation among the seven dimensional variables can be expressed as an equivalent
functional relation among four dimensionless variables (kE/u2

τ , ky, kδ and kδv), in the
form kE/u2

τ =F0(ky, kδ, kδv), which can also be written as

kE
u2
τ

=F (ky, y/δ, y/δv). (4.1)

4.1. Inner layer
For the inner layer, we assume that F is completely similar in y/δ for y/δ→ 0, and
write

kE
u2
τ

=I (ky, y/δv). (4.2)

This is the spectral analogue of the law of the wall, a version of (4.1) suitable for
application in the inner layer y� δ. (Here ‘y� δ’ is a sufficient condition.) Now, we
have seen that y/δv can remain finite as y/δ→ 0 if and only if Reτ→∞. (To show
formally that ‘Reτ � 1’ is another sufficient condition for the spectral analogue of
the law of the wall to apply, we can proceed as we did to show the equivalent result
for the law of the wall.) Further, from the identity ky = (kδ)(y/δ), ky can remain
finite as y/δ→ 0 if and only if kδ→∞, with the implication that the inner layer
y� δ is linked to the high-wavenumber domain k � 1/δ (or ky� y/δ). Thus, the
spectral analogue of the law of the wall can be said to signify that, for any finite y/δv,
the dimensionless spectrum kE/u2

τ becomes independent of Reτ for ky� (y/δv)Re−1
τ

(a sufficient condition). (To show formally that ‘kδ � 1’ is yet another sufficient
condition for the spectral analogue of the law of wall to apply, we express (4.1) in
the alternative form kE/u2

τ =F1(ky, kδ, y/δv), assume that F1 is completely similar
in kδ for kδ →∞, and write kE/u2

τ = F2(ky, y/δv), which can also be written as
kE/u2

τ =I (ky, y/δv), valid for kδ� 1.)
To test the spectral analogue of the law of the wall, we start by selecting a few

values of y/δv. In a separate panel for each value of y/δv, we plot a few curves
kxEuu/u2

τ versus kxy, corresponding to different values of Reτ , and verify that these
curves collapse onto a master curve at high kxy. (Note that function I of (4.2)
depends on both y/δv and ky, and the master curve may therefore be different for
different values of y/δv.) For figure 1(a), we use experimental data on pipe flow and
channel flow at high Reτ (Ng et al. 2011). (We make no distinction between channel
flow and pipe flow because we expect turbulence to be independent of the type
of flow in the inner layer.) For figure 1(b), we use computational direct numerical
simulation (DNS) data on channel flow at moderate Reτ (del Álamo et al. 2004;
Hoyas & Jiménez 2006).

A quick glance through the individual panels of figure 1 indicates that the curves in
any given panel tend to collapse onto a master curve at high kxy, and thus provides a
cursory verification of the spectral analogue of the law of the wall. (An exception must
be made for the two panels at the bottom of figure 1, where the curves do not collapse
onto a master curve except perhaps at the very highest values of kxy for which data are
available. Note, however, that those panels correspond to y/δv ≈ 570, a value of y/δv
that falls outside the inner layer, even at Reτ = 3000.) For a more detailed verification,
we concentrate on an individual panel and check that the first curve to peel off from
the master curve, as kxy is lessened, is the curve for the lowest value of Reτ , which
is followed in turn by the curve for the second-lowest value of Reτ , and so forth.
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FIGURE 1. Test of the spectral analogue of the law of the wall at moderate and high
Reτ . The unscaled dimensional spectra in SI units (insets) are scaled (and rendered
dimensionless) in accord with (4.2). (a) Experimental data on channel flow (—) and
pipe flow (– –) for Reτ = 1000 (blue), 2000 (red) and 3000 (black) (from Ng et al.
2011). (b) Computational data on channel flow (– · –) for Reτ = 550 (grey), 934
(blue) and 2003 (red) (from del Álamo et al. 2004; Hoyas & Jiménez 2006, available
at http://torroja.dmt.upm.es/channels/data/). Values of y/δv as indicated. Note that in this
and all other figures we use a logarithmic scale for the coordinate (y-axis) of our plots;
thus the gap, as seen in a plot, between a curve Y and a curve Y + δY (where δY is
the absolute discrepancy between the curves) represents the relative discrepancy between
the curves, δY/Y (that is to say, ln(Y + δY)− ln Y ≈ δY/Y) – see supplementary material
available at http://dx.doi.org/10.1017/jfm.2014.497.
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FIGURE 2. Further test of the spectral analogue of the law of the wall at moderate
Reτ . The unscaled dimensional spectra in SI units (insets) are scaled (and rendered
dimensionless) in accord with (4.2). Computational data on channel flow for Reτ = 550
(grey), 934 (blue) and 2003 (red) (from del Álamo et al. 2004; Hoyas & Jiménez 2006,
available at http://torroja.dmt.upm.es/channels/data/). Values of y/δv as indicated.

In other words, for a given y/δv, a higher Reτ corresponds to a lower kxy at peel-
off. This trend is consistent with the condition kxy� (y/δv)Re−1

τ , whereby the high-
wavenumber domain of application of the spectral analogue of the law of the wall is
expected to broaden as Reτ is increased.

A second trend, also consistent with the condition kxy � (y/δv)Re−1
τ , can be

discerned in either of the two columns of figure 1. For a given Reτ , an increase in
y/δv corresponds to an increase in kxy at peel-off, and to a concomitant narrowing of
the high-wavenumber domain of application of the spectral analogue of law of the
wall.

On the basis of figure 1, we propose ‘kxy & 10(y/δv)Re−1
τ ’ as a nominal form of

‘kxy� (y/δv)Re−1
τ ’. This nominal form appears to be applicable, at least tentatively, to

Euu(kx).
From the computational data, it is possible to compute any realization of E(k), not

just Euu(kx). Encouraged by the second column of figure 1, which shows that the
spectral analogue of the law of the wall holds even at moderate values of Reτ , at
least for Euu(kx), we use the same computational data (del Álamo et al. 2004; Hoyas
& Jiménez 2006) to prepare figure 2. (Figures including all possible realizations of
E(k) can be seen in the supplementary material.)

In figure 2(c), a phenomenon is apparent that might seem impossible to reconcile
with the condition kxy� (y/δv)Re−1

τ : the curves for Reτ = 550, 934 and 2003 collapse
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onto a master curve not only at high kxy, where that condition is satisfied, but also at
low kxy. Note, however, that ‘kxy� (y/δv)Re−1

τ ’ is merely a sufficient condition for
the spectral analogue of the law of the wall to apply. It is not a necessary condition.
Thus, the phenomenon remains consistent with the spectral analogue of the law of
the wall. We shall encounter a similar phenomenon later on, in a discussion of the
spectral analogue of the defect law.

An alternative form of the spectral analogue of the law of the wall (4.2) may be
written as

kE
u2
τ

=I a(kδv, y/δv), (4.3)

where
I a(kδv, y/δv)≡I (kδv × y/δv, y/δv). (4.4)

4.2. Outer layer
For the outer layer we assume that F in (4.1) is completely similar in y/δv for
y/δv→∞, and write

kE
u2
τ

=O(ky, y/δ). (4.5)

This is the spectral analogue of the defect law, a version of (4.1) suitable for
application in the outer layer y� δv. (Here ‘y� δv’ is a sufficient condition.) Now,
y/δ can remain finite as y/δv → ∞ if and only if Reτ → ∞. (To show formally
that ‘Reτ � 1’ is another sufficient condition for the spectral analogue of the defect
law to apply, we can proceed as we did to show the equivalent result for the
defect law.) Further, from the identity ky = (kδv)(y/δv), ky can remain finite as
y/δv→∞ if and only if kδv→ 0, with the implication that the outer layer y� δv is
linked to the low-wavenumber domain k� 1/δv (or ky� y/δv). Thus, the analogue
of the defect law can be said to signify that, for any given y/δ, the dimensionless
spectrum kE/u2

τ becomes independent of Reτ for ky� (y/δ)Reτ (a sufficient condition).
(To show formally that ‘kδv � 1’ is yet another sufficient condition for the spectral
analogue of the defect law to apply, we express (4.1) in the alternative form
kE/u2

τ =F3(ky, y/δ, kδv), assume that F3 is completely similar in kδv for kδv→ 0,
and write kE/u2

τ = F4(ky, y/δ), which can also be written as kE/u2
τ = O(ky, y/δ),

valid for kδv� 1.)
To test the spectral analogue of the defect law, we start by selecting a few values

of y/δ. In a separate panel for each value of y/δ, we plot a few curves kxEuu/u2
τ

versus kxy, corresponding to different values of Reτ , and verify that these curves
collapse onto a master curve at low kxy. (Note that function O of (4.5) depends on
both y/δ and ky, and the master curve may therefore be different for different values
of y/δ.) For figures 3 and 4, which correspond to y/δ≈ 0.1 and y/δ≈ 1, respectively,
we use experimental data on pipe flow at high and ultra-high Reτ (McKeon &
Morrison 2007; Rosenberg et al. 2013). For figure 5(a), we use experimental data on
pipe flow at high Reτ (Ng et al. 2011). For figure 5(b), we use experimental data on
channel flow at high Reτ (Ng et al. 2011).

A quick glance through the individual panels of figures 3–5 indicates that the curves
in any given panel tend to collapse onto a master curve at low kxy, and thus provides
a cursory verification of the spectral analogue of the defect law. (An exception must
be made for the two panels at the top of figure 5. Note, however, that those panels
correspond to y/δ≈ 0.01, a value of y/δ that falls outside the outer layer.) For a more

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

49
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.497


506 C. Zúñiga Zamalloa, H. C.-H. Ng, P. Chakraborty and G. Gioia

10−3

10−5

100

10−2

10−2

10−1

10−1

100

100

102101

101

100 105

FIGURE 3. Test of the spectral analogue of the defect law at high and ultra-high Reτ . The
unscaled dimensional spectra in SI units (insets) are scaled (and rendered dimensionless)
in accord with (4.5). Experimental data on pipe flow for Reτ = 1985 (blue), 3350
(green), 8560 (cyan), 19 700 (magenta), 37 690 (red) and 98 190 (black) (from McKeon
& Morrison 2007; Rosenberg et al. 2013). Value of y/δ as indicated.

detailed verification, we start by focusing on the experimental data at high and ultra-
high Reτ (figures 3 and 4). In figure 3, we see that the first curve to peel off from
the master curve, as kxy is increased, is the curve for the lowest value of Reτ , which
is followed in turn by the curve for the second-lowest value of Reτ , and so forth. In
other words, for a given y/δ, an increase in Reτ corresponds to an increase in kxy
at peel-off. This trend is consistent with the condition kxy� (y/δ)Reτ , whereby the
low-wavenumber domain of application of the spectral analogue of the defect law is
expected to broaden as Reτ is increased.

A second trend, also consistent with the condition ky� (y/δ)Reτ , can be discerned
from a comparison of figure 3 with figure 4. For a given Reτ (Reτ =1985), an increase
in y/δ corresponds to an increase in kxy at peel-off, and to a concomitant broadening
of the low-wavenumber domain of application of the spectral analogue of the defect
law.

On the basis of figures 3 and 4, we propose ‘kxy. 0.02(y/δ)Reτ ’ as a nominal form
of ‘kxy� (y/δ)Reτ ’. This nominal form appears to be applicable, at least tentatively,
to Euu(kx).

Next, we turn our attention to the experimental data at high Reτ (figure 5). In each
panel of figure 5 there are three curves, corresponding to Reτ = 1000, 2000 and 3000.
As might be expected from the condition kxy� (y/δ)Reτ , at low kxy the curves for
Reτ = 2000 and 3000 collapse onto a master curve whereas the curve for Reτ = 1000
remains distinct. Now, if we scan the curves from left to right, in the direction of
increasing kxy, we can verify that the curve for Reτ = 1000 eventually converges
onto the master curve, starting from a value of kxy that increases systematically
with y/δ. Close to the proximal edge of the outer layer, where y/δ ≈ 0.1, the curve
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FIGURE 4. Further test of the spectral analogue of the defect law at high and ultra-high
Reτ . The unscaled dimensional spectra in SI units (insets) are scaled (and rendered
dimensionless) in accord with (4.5). Experimental data on pipe flow for Reτ = 1985 (blue)
and 37 690 (red) (from Rosenberg et al. 2013). Value of y/δ as indicated.

for Reτ = 1000 fans out again immediately beyond the point of convergence. Deep in
the outer layer, where y/δ is relatively large, the curve for Reτ = 1000 fans out again
only after remaining on the master curve over a sizable range of values of kxy.

This phenomenon, whereby the curve for Reτ = 1000 satisfies the spectral analogue
of the defect law only at intermediate values of kxy, does not contradict the sufficient
condition kxy� (y/δ)Reτ . Thus, the phenomenon remains consistent with the spectral
analogue of the defect law. Yet the spectral analogue of the defect law is not rich
enough to explain the phenomenon. To explain the phenomenon, we must introduce
additional assumptions (and might have to commit to a particular model of wall
turbulence).

Let us assume, as a plausible example, that the turbulent power per unit mass of
fluid, ε, is independent of the viscosity and of the wavenumber over an intermediate
range of values of k, as in the phenomenological theory of turbulence (Tennekes &
Lumley 1972). To carry out a dimensional analysis of ε, we exclude the variables
ν and k and consider the five dimensional variables ε, y, δ, τw and ρ. From
Buckingham’s Π -theorem and the dimensional equations [ε] = [y]−1[τw]3/2[ρ]−3/2

and [δ] = [y]1[τw]0[ρ]0, we conclude that the functional relation among the five
dimensional variables can be expressed as an equivalent functional relation among two
dimensionless variables (εy/u3

τ and y/δ), in the form ε = (u3
τ/y)H(y/δ). In this case,

Kolmogorov’s turbulent-energy spectrum (which is usually written as E = Cε2/3k−5/3,
valid for 1/δ� k� 1/η, where C is Kolmogorov’s dimensionless constant and η is
Kolmogorov’s length scale, η= ν3/4ε−1/4) can be expressed in the form

kE
u2
τ

=C(ky)−2/3[H(y/δ)]2/3, (4.6)
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FIGURE 5. Further test of the spectral analogue of the defect law at high Reτ . The
unscaled dimensional spectra in SI units (insets) are scaled (and rendered dimensionless)
in accord with (4.5). Experimental data on (a) pipe flow (– –) and (b) channel flow (—)
for Reτ = 1000 (blue), 2000 (red) and 3000 (black) (from Ng et al. 2011). Values of y/δ
as indicated.
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which is valid over the ‘Kolmogorov spectral domain’, namely

y
δ
� ky� y

η
=
(y
δ

Reτ
)3/4 [H(y/δ)]1/4. (4.7)

Note that the scaling relation (4.6) is a special case of (4.5) (the spectral analogue
of the defect law), and that, for any given y/δ and at sufficiently high Reτ , the
entire Kolmogorov spectral domain is subsumed under the sufficient condition
ky � (y/δ)Reτ . Further, the lower limit of the Kolmogorov spectral domain, y/δ,
is consistent with the experimental data of figure 5, where we have seen that the
curve for Reτ = 1000 converges onto the master curve starting from a value of kxy
that increases systematically with y/δ. As we do not have an expression for H(y/δ),
it is hard to predict the manner in which the Kolmogorov spectral domain broadens
or shrinks as a function of y/δ. Nevertheless, for y/δ= 0.1 we might assume that the
mean velocity profile will not differ much from the log law, set H(y/δ)∝ 1− y/δ in
(4.7), and draw the conclusion that the Kolmogorov spectral domain shrinks rapidly
as the value of y/δ approaches 0.1 from above. This conclusion is consistent with the
experimental data of figure 5, where we have seen that, close to the proximal edge of
the outer layer, where y/δ≈ 0.1, the curve for Reτ = 1000 converges onto the master
curve only to fan out again almost immediately beyond the point of convergence. For
larger values of y/δ, the curve for Reτ = 1000 remains on the master curve over a
sizable range of values of kxy, and the slope of the master curve is in rough accord
with (4.6) (figure 5).

An alternative form of the spectral analogue of the defect law (4.5) may be written
as

kE
u2
τ

=Oa(kδ, y/δ), (4.8)

where
Oa(kδ, y/δ)≡O(kδ× y/δ, y/δ). (4.9)

4.3. Overlap layer
For the overlap layer we assume that F in (4.1) is completely similar in y/δ and y/δv
for y/δ→ 0 and y/δv→∞, and write

kE
u2
τ

= V (ky). (4.10)

This is the spectral analogue of the log law, a version of (4.1) suitable for application
in the overlap layer δv � y � δ and the intermediate-wavenumber spectral domain
1/δ� k� 1/δv (or y/δ� ky� y/δv). It coincides with the ‘inner scaling’ of Perry
et al. and can be said to signify that, for any given point in the overlap layer, the
dimensionless spectrum kE/u2

τ becomes independent of Reτ for y/δ � ky� y/δv at
large Reτ .

To test the spectral analogue of the log law, we use experimental data on pipe flow
at ultra-high Reτ (Rosenberg et al. 2013) to plot curves kEuu/u2

τ versus kxy for a large
number of points in the overlap layer (figure 6). The spectral analogue of the log law
appears to hold over a narrow range of intermediate values of kxy close to kxy≈ 1, a
conclusion that is in accord with the test of Perry et al.’s inner scaling carried out by
Morrison et al. (2004). (An ancillary discussion of the spectral analogue of the log
law can be found in appendix A.)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

49
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.497


510 C. Zúñiga Zamalloa, H. C.-H. Ng, P. Chakraborty and G. Gioia

10−2

10−10

10−5

100

10−1 100

100

101 102

10−2

100

FIGURE 6. Test of the spectral analogue of the log law at ultra-high Reτ . The unscaled
dimensional spectra in SI units (insets) are scaled (and rendered dimensionless) in accord
with (4.10). Experimental data on pipe flow for Reτ =3334 (blue), 20 250 (red) and 37 690
(black) (from Rosenberg et al. 2013). All data from the overlap layer (50δv 6 y 6 0.1δ).

5. Discussion

We have derived three scaling relations for the turbulent-energy spectra of
wall-bounded uniform turbulent flows. Each of these scaling relations is the spectral
analogue of one the classical scaling relations for the MVPs (the law of the wall, the
defect law and the log law). The spectral analogues and their respective spatial and
spectral domains of application are summarized in table 1.

The spectral analogues of the law of the wall, the defect law and the log law
might be fittingly termed the ‘inner scaling’, the ‘outer scaling’ and the ‘overlap
scaling’, respectively, on the basis of their respective spatial domains of application.
Nevertheless, the spectral analogues should be distinguished from Perry et al.’s inner
scaling, outer scaling and overlap scaling, all three of which, their prevalent names
notwithstanding, apply in the overlap layer.

The spectral analogue of the log law is the same as Perry et al.’s inner scaling,
which has been widely used to display spectra from the overlap layer. Such spectra
corresponding to several different values of Reτ may be plotted in the form of curves
kE/u2

τ versus ky (one curve for each value of Reτ ). Then, as per the spectral analogue
of the log law, the curves should fall onto a master curve at intermediate values of ky.

Unlike the inner and outer scalings of Perry et al., the spectral analogues of the
law of the wall and the defect law can be used to display spectra from the inner and
outer layers, respectively. Thus, for example, spectra corresponding to a fixed value of
y/δv and several values of Reτ (where y/δv . 0.1Reτ so as to satisfy the inner-layer
condition) may be plotted in the form of curves kE/u2

τ versus ky (one curve for each
value of Reτ ). Then, as per the spectral analogue of the law of the wall, the curves
should fall on a master curve at high ky; in particular, the curve corresponding to
a specific value of Reτ should coincide with the master curve for ky & 10(y/δv)Re−1

τ
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Spectral analogue Expression Spatial domain Spectral domain

Of the law of the wall kE/u2
t =I (ky, y/δv) Inner layer High ky

Of the defect law kE/u2
t =O(ky, y/δ) Outer layer Low ky

Of the log law kE/u2
t = V (ky) Overlap layer Intermediate ky

TABLE 1. Spectral analogues. Here, ‘inner layer’ corresponds to the sufficient condition
y/δv � Reτ (nominally y/δv . 0.1Reτ ), ‘outer layer’ to y/δ � Re−1

τ (nominally y/δ &
50Re−1

τ ), ‘overlap layer’ to δv � y� δ (nominally 50δv . y . 0.1δ), ‘high ky’ to ky�
(y/δv)Re−1

τ (nominally ky & 10(y/δv)Re−1
τ ), ‘low ky’ to ky � (y/δ)Reτ (nominally ky .

0.02(y/δ)Reτ ), and ‘intermediate ky’ to y/δ� ky� y/δv (nominally 10y/δ. ky. 0.02y/δv).
The nominal forms of the sufficient conditions on ky are tentative, and might apply only
to Euu(kxy).

(table 1). The same procedure may be repeated for other values of y/δv, but the master
curve might differ for different values of y/δv (because function I depends on y/δv).
Similarly, spectra corresponding to a fixed value of y/δ and several values of Reτ
(where y/δ& 50Re−1

τ so as to satisfy the outer-layer condition) may be plotted in the
form of curves kE/u2

τ versus ky (one curve for each value of Reτ ). Then, as per the
spectral analogue of the defect law, the curves should fall on a master curve at low ky;
in particular, the curve corresponding to a specific value of Reτ should coincide with
the master curve for ky. 0.02(y/δ)Reτ (table 1). The same procedure may be repeated
for other values of y/δ, but the master curve might differ for different values of y/δ
(because function O depends on y/δ).

Tennekes & Lumley (1972) have conjectured that there is a ‘close analogy between
the spatial structure of turbulent boundary layers and the spectral structure of
turbulence’. The spectral analogues entail the existence of specific links between
spatial domains and spectral domains (table 1) and can thus be interpreted as concrete
realizations of Tennekes & Lumley’s ‘close analogy’. Further, we have derived the
spectral analogues and ascertained their respective domains of application, spatial
as well as spectral, by using only dimensional analysis and similarity assumptions,
without having recourse to any model of wall turbulence. Thus the spectral analogues,
unlike all existing scaling relations for the energy spectra, are model independent.
The attendant specific links between spatial domains and spectral domains are model
independent, too, and as such they can always be counted on to act as an internal
constraint in any model of wall turbulence that incorporates both the turbulent
MVP and the turbulent-energy spectra. Yet, with few exceptions (e.g. Gioia et al.
2010), models of wall turbulence (most notably the classical model of the turbulent
mean-velocity profile) ignore the turbulent-energy spectra altogether, even where
they account in detail for the spatial structure of turbulent boundary layers. If the
turbulent-energy spectra, on which much is known, are included as an integral part
of future models of wall turbulence, prospects may open up for gaining new insights
into an old but hardly exhausted problem. We hope that our findings will help spur
such models.

Acknowledgements
Financial support for this research was provided by the Okinawa Institute of

Science and Technology Graduate University. We thank I. Marusic for granting us
access to experimental data on pipe flow and channel flow. We thank P. Zandonade
and A. Bhattacharya for help with processing of DNS data on channel flow.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

49
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.497


512 C. Zúñiga Zamalloa, H. C.-H. Ng, P. Chakraborty and G. Gioia

Supplementary material
Supplementary material is available at http://dx.doi.org/10.1017/jfm.2014.497.

Appendix A. An ancillary discussion of the spectral analogue of the log law
It might be tempting to try to simplify the spectral analogue of the log law,

kE/u2
τ = V (ky) (4.10), to kE/u2

τ = const., valid in the overlap layer (and in the
attendant spectral domain), by arguing, for example, that function I a of the
alternative scaling relation (4.3) may be assumed to be completely similar in y/δv for
y/δv→∞. Under this new assumption, it would be possible to substitute a function
I V(kδv) for I a(kδv, y/δv) and to conclude that V (ky) = I V(kδv), a condition that
would immediately lead to ‘kE/u2

τ = const.’. Note, however, that even though both
sides of the equals sign in ‘V (ky) = I V(kδv)’ correspond ostensibly to the same
limits, y/δ→ 0 and y/δv →∞, in the case of the left-hand side y/δv →∞ while
ky remains finite (resulting in a function of ky, namely V ) whereas in the case
of the right-hand side y/δv → ∞ while kδv remains finite (resulting in a function
of kδv, namely I V), and it is not possible for both ky and kδv to remain finite
where y/δv→∞. In other words, the assumption of complete similarity in y/δv that
underlies the scaling relation kE/u2

τ = V (ky) is inconsistent with the assumption of
complete similarity in y/δv that underlies the scaling relation kE/u2

τ =I V(kδv), and
‘kE/u2

τ = const.’ was predicated on two mutually exclusive assumptions. In keeping
with this conclusion, if we proceed from (4.4) and compute limy/δv→∞ I a(kδv, y/δv)
as limy/δv→∞ I (kδv × y/δv, y/δv), then, under the prevailing assumption that I is
completely similar in y/δv for y/δv → ∞, the result will not be a constant but a
function of ky (regardless of the behaviour of kδv as y/δv→∞). It bears emphasis,
however, that kE/u2

τ might still be constant on a portion of the overlap layer and of
the attendant spectral domain. Interestingly, ‘kE/u2

τ = const.’ is Perry et al.’s ‘overlap
scaling’, which according to Perry et al. applies in a small segment of the spectral
domain of the spectral analogue of the log law (that is, a small segment of the
low-wavenumber spectral domain where viscosity is negligible).
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