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Abstract

Degree distribution is a fundamental property of networks. While mean degree provides a

standard measure of scale, there are several commonly used shape measures. Widespread

use of a single shape measure would enable comparisons between networks and facilitate

investigations about the relationship between degree distribution properties and other network

features. This paper describes five candidate measures of heterogeneity and recommends the

Gini coefficient. It has theoretical advantages over many of the previously proposed measures,

is meaningful for the broad range of distribution shapes seen in different types of networks,

and has several accessible interpretations. While this paper focuses on degree, the distribution

of other node-based network properties could also be described with Gini coefficients.
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1 Introduction

Standard measures of network properties are important for many types of analysis. A

detailed examination of a specific network that investigates the relationship between

network location and influence is likely to report various network measures including

size, existence of cliques, or other features of interest. While these measures are useful

in understanding the specific network, it is not always clear how to compare values

between networks so as to assess whether the network is unusual in some way.

Researchers who consider patterns over multiple networks, such as the relationship

between a particular structural feature of a network and behavior of the network as

a whole, require measures that are valid for any network of interest and comparable

over a broad variety of networks.

For degree, the scale of a network (of given size) can be described and compared

using the degree mean or density. However, degree distributions with the same mean

can have very different shapes. Presenting the cumulative degree distribution in full

(such as displayed at Newman 2003, Figure 3.2) is informative for a single network

or comparison between a small number of networks, but is unwieldy for comparing

many networks. A common shape measure would facilitate network comparison,

classification of networks into similar types, and description of the relationship

between shape of the degree distribution and other properties of the network.

This paper assesses five commonly used statistics for the shape of distributions.

As the standard statistical measure of central tendency, variance is particularly well

known and its properties with respect to degree distributions have been examined
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in Snijders (1981). Three other statistics are well established in network science:

power law exponent (Barabási & Albert 1999), centralization (Freeman 1978), and

hierarchization (Coleman 1964). However, these statistics are popular within specific

disciplines; for example, power law exponent is popular with researchers working

with strongly skewed, large, technologically supported information networks such as

World Wide Web links or email address books (Newman 2003), while centralization

is included as an available measure in social network analysis software such as

UCINET and the sna R package. The final statistic assessed is the Gini coefficient.

This is a standard heterogeneity measure for income and wealth distributions (which

are typically strongly skewed) but has received only limited attention in network

science, with the most theoretical analysis focusing on its relationship with the power

law exponent (Hu & Wang 2008) and sporadic use for specific applications (such as

in Lopes et al. 2011).

The first section of the paper provides the structure necessary to compare the

measures. The main body of the paper then presents each measure and assesses its

performance against desirable theoretical properties. The final section summarizes

the theoretical analysis and compares the measures empirically, using both real world

and constructed networks. The paper recommends the Gini coefficient as the most

suitable shape measure for degree distributions, because it has desirable theoretical

properties, is appropriate for any shaped distribution, and has several useful and

intuitive interpretations.

2 Analysis framework

While there has not been a comprehensive examination of degree distribution shape

measures and their properties, individual measures have been assessed on specific

properties. For example, Snijders (1981) preferred degree variance over centralization

because the latter focuses entirely on a single node and is insensitive to other high

degree nodes. Similarly, Hu & Wang (2008, p. 3771) propose the Gini coefficient

because it “is superior to some other parameters in characterizing heterogeneity, such

as variance or standard deviation, since . . . they demand that two networks studied

should have the same average degree.”

A systematic identification of desirable properties and comparison of measures

has, however, been conducted for income inequality (Dalton 1920; Allison 1978;

Cowell 2000). Three of these properties are equally relevant for comparing potential

degree distribution shape measures: transfer, addition, and replication. These are

considered in Section 2.1.

In addition, measures must be valid and sensitive over a broad range of distri-

bution shapes. Several real-world networks taken from the literature and artificial

networks constructed with well-established algorithms are used to demonstrate the

measures empirically. These networks were selected for the diversity of their degree

distribution shapes and are described in Section 2.2.

2.1 Desirable properties of a shape measure

The first property that should be held by a measure of heterogeneity is that it

does indeed measure heterogeneity. That is, as distributions become more (or less)
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unequal, the value of the measure should change in some consistent direction. This

idea is captured by the transfer principle, which states that rewiring edges from a

high degree node to a lower degree node should decrease heterogeneity, provided

that the transfer does not lead to a ranking reversal of the two nodes. In the limit,

this also implies that the minimum value is achieved when all nodes have the same

degree (or as close as possible if mean degree is not an integer).

The addition principle considers the effect of increasing the degree of all nodes by

the same absolute amount. There are two potentially appropriate consequences for

the inequality measure. From the perspective that inequality refers to absolute

differences (or variation about the mean), the measure should be unchanged.

Alternatively, from the perspective that inequality is relative, the measure should

decrease, on the basis that the differences between degrees are proportionally smaller

if the same number of edges is added to each node.

Finally, the heterogeneity statistic should not be affected by replication. That is,

the value of the shape statistic calculated over multiple instances of the same network

should equal the value for a single instance. This principle extends to non-integer

replications by considering the distribution based on the least common multiple of

the two network sizes, generated by appropriate numbers of replications of each of

the initial distributions.

2.2 Empirical and artificial degree distributions

In addition to the theoretical analysis, the heterogeneity measures are compared

for four real-world networks taken from the literature, two networks constructed

with well-established algorithms and a star network. The networks were selected to

emphasize differences in the measures, with substantial diversity in size and in shape

of degree distribution.

The four real-world distributions are:

• Friends: the number of friendship nominations received within a school study

(Rapoport & Horvath 1961, Table 5), with 859 nodes, mean in-degree of 6.84

and maximum in-degree of 29.

• Yeast: the yeast protein interaction network described in Jeong et al. (2001),

with 2,114 nodes, mean in-degree of 2.12 and maximum in-degree of 56.

• Collaborators: collaborations between authors on the condensed matter archive

from January to March 2005 (updated version of Newman 2001), with 40,421

nodes, mean degree of 8.69 and maximum degree of 278.

• WWW: hyperlinks between domains in the World Wide Web (Albert et al.

1999), with 325,729 nodes, mean in-degree of 4.60 and maximum in-degree of

10,721.

The three artificial networks are of the same size and two have a common mean

degree so as to emphasize the differences arising from shape. The random graph

and preferential attachment algorithms are well established for generating artificial

networks with very different degree distributions. The three generated distributions

are:

• BA1000: a single instance generated with the preferential attachment algorithm

described in Barabási & Albert (1999), with three edges per added node and
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Fig. 1. Cumulative distribution for real-world and generated degree distributions, with degree

displayed as proportion of maximum degree. Except for the Friends and ER1000 networks,

the maximum degree is over five times the degree values for almost all other nodes. (color

online)

a complete initial network with three nodes. This network has 1,000 nodes,

mean degree of 5.99 and maximum degree of 116.

• ER1000: a single instance generated with the fixed number of edges algorithm

described in Erdös & Rényi (1960), matched to the BA1000 network size and

number of edges. This network has 1,000 nodes, mean degree of 5.99 and

maximum degree of 16.

• Star1000: a star network with 1,000 nodes, one central node with a single edge

to the other 999 nodes and no other edges. This network has mean degree of

2.00 and maximum degree of 999.

The degree distribution for each of these seven networks is shown in Figure 1, with

degree rescaled to a proportion of its network specific maximum and truncated at

20%. The ER1000 and Friends networks have a clearly different degree distribution

from the other five networks, with the latter group so skewed that almost all

the nodes have been accounted for by 20% of the maximum degree. The WWW

and Star1000 networks substantially overlap and are more extreme than the other

three.

2.3 Notation and assumptions

Network size or number of nodes is denoted by N; and k is used as a general

indicator of degree, with ki for the degree of node i, Nk for the number of nodes

with degree k, μk for mean degree and pk = Nk/N for the proportion of nodes with

degree k (for empirical distributions) or probability of a given node having degree k
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(for ideal distributions). The notation in equations taken from references is adapted

accordingly.1

The networks are assumed to be simple, so self edges and multiple edges are

not permitted and the maximum degree is given by N − 1. Three of the real-world

networks (Friends, Yeast, and WWW) are directed, and the in-degree distribution is

used for each. Despite the use of directed networks to generate example distributions,

for those measures where there is a different calculation method for undirected and

directed networks, this paper uses the undirected method in all cases. That is,

these in-degree distributions are interpreted as degree distributions from undirected

networks even if such a network is not realizable. This is for consistency, so as to

provide a basis for comparison and more effectively demonstrate the properties of

the candidate measures over different distribution shapes.

3 Candidate measures of distribution shape

Five broad shape measures are described; each normalized (where applicable)

to facilitate comparability over networks of different sizes. The first two are

hierarchization and centralization, which were developed specifically for social

networks. The next two are variance and power law exponent, which apply standard

statistical techniques to degree distributions. The final measure is the Gini coefficient,

used predominantly to measure inequality of income or wealth, but applicable to

any distribution.

3.1 Coleman’s hierarchization

Coleman (1964, pp. 434–441) developed two related hierarchization indices specif-

ically for degree distributions. While they were defined only for directed networks,

applying the same equations to undirected networks does not change their qualitative

behavior. The first compared the network of interest to a multinomial distribution

null model and is not discussed here. The second extends the concept of entropy

as a measure of choice developed in Shannon (1948). In the context of networks,

such choice is the degree values realized from edges “choosing” two nodes for its

ends. The index h2 is entropy normalized against the maximum possible conditional

on the number of nodes and edges. It has a value between 0 and 1 and is given

by

h2 =
Smax − S

Smax − Smin
where S is entropy (1a)

=
loge N +

∑N
i=1

ki
Nμk

loge
ki

Nμk

loge N − 0
(1b)

=

∑max k
k=0 Nkk loge k − Nμk loge μk

Nμk loge N
(1c)

Entropy is not suitable because a transfer may introduce a new degree value in the

distribution and potentially increase the value of entropy even where heterogeneity

1 Notation adaptation may also include algebraic manipulation, such as where the original equation
uses density rather than mean degree. Derivations are available from the author.
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is reduced. Normalizing to maximum entropy corrects this problem and h2 respects

the transfer principle. However, this respect is at the expense of breaching the

replication principle; because there is more choice available with additional nodes

and edges, the maximum entropy is larger and the value of h2 is reduced for the

replicated distribution.

3.2 Freeman’s centralization

A different approach was taken by Freeman (1978) in his classic study of different

types of node centrality, including degree. He argued that the network measure of

centralization should describe the extent to which a single node is more central than

the others and dominates the network, normalized with respect to the maximum

possible value for a network of the same size (which occurs for a star network).

One weakness of this measure is that the feasible range of values for any

network is conditional also on the mean degree, which makes it difficult to use

to compare heterogeneity between different networks. This was addressed in Butts

(2006, Equation (36)) by instead normalizing to the maximum feasible given N and

μk , so that centralization has a potential range of 0 to 1 for any degree distribution:

C =
kmax − �μk�

μk + min
[
(N − 1) − μk, μk

(
N
2

− 1
)] − �μk� (2)

A more significant weakness is that centralization is concerned only with the

highest degree node compared to the average, whereas real-world networks can

show more subtle degree heterogeneity with “a vaguely outlined center, consisting of

more than one point; or there are several centers; or just a gradual transition from

more central to more peripheral points” (Snijders 1981, p. 164). The consequence of

this focus on a single node is that C breaches the transfer principle, even with the

normalization, because centralization is unaffected by redistribution of edges within

a network provided the maximum degree is unaffected. C also breaches the addition

property; increasing the degree of every node can actually increase its value in some

situations where one of the denominator terms (N − 1 − μk) decreases.

3.3 Variance

Variance (σ2
k ) and its square root, standard deviation, are well-established statistical

measures of deviation from the average for any distribution. Despite its ubiquity, the

application of variance to degree was not specifically considered until Snijders (1981)

proposed it as a more sensitive measure than Freeman’s centralization index as it

takes into account the full distribution rather than only the maximum and mean.

That paper also investigated properties such as maximum variance and expected

value of degree variance for different types of networks.

Snijders (1981, p. 172) proposed the index J , constructed as the standard deviation

of degree normalized to the maximum possible for a network of the given size and

density.2 There are two general network structures with maximum degree variance:

2 Other indices proposed in Snijders (1981) are not pursued further in this paper as they measured
difference from a null model assuming random distribution of the given number of edges between
the given number of nodes rather than reference to a baseline of all nodes with equal degree.
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the star network (or its complement), where one node has a single edge with each

of the other nodes; and a network with all the edges concentrated into a complete

subnetwork with leftover nodes as isolates. There is no single equation for J because

of the need to select between these two possible maxima and realizability issues.

Instead, the maximum standard deviation of degree for a given number of nodes and

edges is calculated using the algorithm (see Snijders 1981, pp. 167–168 for details):

• Let T1 be the largest integer for which T1(T1 −1) � Nμk (that is, total degree);

• Let E1 be the leftover edges E1 = [Nμk−T1(T1−1)]/2;

• Let T2 be the largest integer for which T2(T2 − 1) � N(N − 1) − Nμk;

• Let E2 be the equivalent leftover edges E2 = [N(N−1)−Nμk−T2(T2−1)]/2;

• Use Equation (3) to calculate standard deviation of degree for the two networks

constructed with a complete subnetwork of size Ti and Ei leftover edges (for

i = 1, 2) and the larger value is the maximum standard deviation of degree for

the original network.

With this maximum calculated, J follows:

σmax =

√
Ti(Ti − 1)2 + Ei(2Ti + Ei − 1)

N
− (Ti(Ti − 1) + 2Ei)2

N2
(3)

and then normalize:

J =
σk

σmax
(4)

This measure complies with both the transfer and addition properties, with the

value of J changing in the appropriate direction. However, like h2, normalizing

against the maximum leads to a breach of the replication property because the

maximum variance increases as there are more nodes and edges available and J

consequently decreases.

The simplest standardization of variance that meets the transfer, addition, and

replication principles is the coefficient of variation, the ratio of the standard deviation

to the mean:

Vk =
σk

μk
=

√
1
N

∑N
i=1 (ki − μk)

2

μk
(5)

Coefficient of variation has a range of 0 (homogeneous) to ∞ (though lower

for realized networks). As degree is always non-negative, Vk can be interpreted as

relative variability.

3.4 Fitted function parameter

The other common statistical approach to distribution characterization is to fit the

coefficients or parameters of some function that represents the idealized probability

density. In the literature concerning very large social and information networks such

as email address books, citations, and web page links, degree is treated as continuous

and the functional form fitted to the degree distribution is typically the power law
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(Brinkmeier & Schank 2005). That is, the degree for each node is given by the

probability:

pk = Ck−α with k > 0 (6)

where α is the parameter of the distribution and referred to as the power exponent.

The constant C is completely determined by α and the requirement that probabilities

over all degrees k sum to 1.

In practice, the power law is fitted to only the higher degree part of the distribution

because the function diverges as k → 0 and would substantially overestimate the

number of low degree nodes if applied to all degrees. Identifying an appropriate

minimum k from which to apply the power law is somewhat arbitrary but has little

impact on the value of the power exponent. A more serious flaw is that rigorous tests

suggest that at least some of the network degree (and other) distributions identified

in the literature as following power laws may be better described with some other

skewed functional form such as the lognormal distribution (Newman 2005; Clauset

et al. 2009).

Fitting the correct function limits the usefulness of this approach because coeffi-

cients can be compared only between distributions with the same functional form.

Nevertheless, the derived power law exponent allows degree distributions of other

shapes to be compared if the power law functional form is considered as simply

an approximation, though there is no formal standard for acceptability of a fit. In

addition, care must be taken to use a robust estimator as the “obvious” logarithmic

transformation and least squares regression can lead to substantial error (Clauset

et al. 2009). Typical values for α for degree distributions range between 1.5 and 3.0

(Newman 2003, Figure 3.2), with a larger value leading to a faster reduction in the

probability of higher degree nodes and therefore less heterogeneity.

Assuming that a power law function can be fitted to all of the degree distributions

required, the power law exponent satisfies the transfer, addition, and replication

properties. Thus, it can provide meaningful comparisons between the heterogeneity

of such distributions.

3.5 Gini coefficient

The Gini coefficient is a widely used inequality (or heterogeneity) measure developed

for the skewed distributions of income and wealth, with an extensive body of

theoretical support and over 100 years of use (Allison 1978; Cowell 2000). However,

it has received limited attention in network science with the exception of Hu & Wang

(2008), who proposed its use for degree distributions and examined its relationship

with the power law exponent.

Adapted to degree distributions, the Gini coefficient is formally defined as the

normalized expected difference in degree between two randomly selected nodes,

given by (Gini 1912; Dalton 1920):

G =
1

μk

1

2N2

N∑
i=1

N∑
j=1

|ki − kj | (7)

An alternative definition relies on the Lorenz curve, which provides a visual

measure of inequality (Lorenz 1905). For degree distribution, the Lorenz curve plots
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Fig. 2. Lorenz curves of degree for real-world degree distributions (Friends, Yeast,

Collaborators, WWW) and networks generated with algorithms (ER1000, BA1000, Star1000).

The WWW and ER1000 distributions are the most and least extreme, respectively. (color

online)

the cumulative proportion of the nodes ordered by degree against the cumulative

proportion of the degree held by those nodes and also includes a (diagonal) reference

curve that indicates the Lorenz curve for a distribution where all nodes have the

same degree. A greater “bend” away from the reference curve indicates greater

inequality. Examples of Lorenz curves for the seven degree distributions described

in Section 2.2 are displayed in Figure 2.

It can be shown that G is the area bounded by the Lorenz and reference curves

divided by one half (reported at Dalton 1920, p. 354). The half is a normalization

factor, representing the size of the area for a distribution of maximum inequality.

This approach allows G to be calculated for a theoretical degree distribution provided

the mean is finite (Dorfman 1979).

The use of the Lorenz curve also provides an efficient computation method for G

for the degree distribution of an empirical network (Brown 1994):

G = 1 −
max k∑

g=min k

(
g∑

k=1

pk −
g−1∑
k=1

pk

) (
g∑

k=1

kpk +

g−1∑
k=1

kpk

)
(8)

where g and k iterate only through those degrees that exist in the network.3

Compliance with the properties of transfer, addition, and replication is a key

reason for the popularity of the Gini coefficient for describing income and wealth

distributions. It was developed specifically to compare these distributions in different

locations and over time.

3 There is no mathematical difference to iterate through all degree values, including those that are not
realized; it is simply less efficient.
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Table 1. Compliance of potential measures with principles.

Measure Transfer Addition Replication

desirable decrease not increase no change

Normalized Hierarchization (h2) Decrease Decrease Decrease

Normalized Centralization (C) Varies Varies Decrease

Coefficient of variation (Vk) Decrease Decrease No change

Normalized (by max) deviation (J) Decrease Decrease Decrease

Power law exponent (α) Decrease* Decrease No change

Gini coefficient (G) Decrease Decrease No change

* The numerical value of α increases with a transfer of degree away from high degree nodes,

and this indicates a decrease in heterogeneity.

4 Comparison of proposed measures

As discussed in the presentation of each measure, only coefficient of variation

(Vk) and the Gini coefficient (G) are valid for all distributions and have the

desired properties of consistency over changes in distributions arising from transfer,

addition, or replication (see Table 1). The power law exponent is effective for those

distributions that can be reasonably approximated by the power law functional

form, but this is a strong restriction and there are other measures available. The two

measures normalized by their theoretical maximum (h2 and J) breach the replication

requirements because replication increases the number of nodes and the edges that

can be distributed between them thereby increasing maximum heterogeneity.

There is no theoretical reason to prefer coefficient of variation (Vk) or the Gini

coefficient (G). However, there may be normative reasons and further insight can be

gained by examining the measure values empirically (see Table 2).

The theoretical weakness of h2, C, and J is clearly demonstrated by their values

for the larger networks. For all three, the combination of substantial heterogeneity

and moderate size for BA1000 results in values that are much higher than the

most heterogeneous WWW network, because the moderate size limits the potential

maximum that is being used for normalization. These three candidates are therefore

insufficiently independent of the network scale to be useful in comparing shapes of

degree distributions from different networks.

If the Lorenz curves do not intersect, ordering will be consistent (Allison 1978). For

the example networks, the curve for Star1000 crosses many of the other distributions

and the BA1000 and Friends pair also intersect. Table 2 is ordered by decreasing

values of Vk and G, except for Star1000 which ranks inconsistently between the two

measures.

Even where the two measures provide the same ranking, they have different

patterns of sensitivity. Using similarity of values in Table 2, Vk groups the BA1000

network with Yeast and Collaborators, while G groups it with the Friends network.

From Figure 1, it is apparent that the former is the more natural grouping and

this supports a preference for Vk . However, the actual degrees of the highest degree

influence Vk much more than G, which could lead to difficulties in comparing

distributions that are very heterogeneous as these high degree values may dominate

changes in the shape of the bulk of the distribution.
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Table 2. Degree heterogeneity measures for selected networks.

Network Size h2 C Vk J α* G

WWW (in) N = 325,729 μk = 4.6 0.132 0.03 8.5 0.047 2.1 0.71

Collaborators N = 40,421 μk = 8.7 0.055 0.01 1.5 0.031 – 0.55

Yeast (in) N = 2,114 μk = 2.1 0.072 0.03 1.4 0.066 2.4 0.51

BA1000 N = 1,000 μk = 6.0 0.357 0.11 1.2 0.209 3.0 0.37

Friends (in) N = 859 μk = 6.8 0.034 0.03 0.7 0.090 – 0.37

ER1000 N = 1,000 μk = 6.0 0.013 0.01 0.4 0.046 – 0.23

Star1000 N = 1,000 μk = 2.0 0.400 1.00 0.5 1.000 – 0.50

* A missing value for α indicates that it is not available in the literature, which may occur

because the power law functional form is inappropriate or because it may be appropriate

but was not reported. Unlike other measures in the table, a higher value indicates lower

heterogeneity.

The interpretation of the measure supports a preference for G. The interpretation

of G as the (normalized) expected difference in degree between two randomly selected

nodes is natural in the network context, where edges are connecting two nodes. In

contrast, Vk describes deviation from the center of the distribution and many degree

distributions have no meaningful center.

There are many other heterogeneity measures not considered in this paper.

However, they have more fundamental flaws than those included. For example,

an intuitive approach is to measure the distance between the cumulative degree dis-

tribution and the (homogeneous) delta distribution, with the Kolmogorov–Smirnov

statistic providing a distance measure (Massey 1951). However, the cumulative

probability distribution of the delta distribution is a step function at mean degree

and the maximum distance between the cumulative distributions will occur at the

mean degree. Hence, assuming the typical positive skew and that the network

is sufficiently large that degree can be considered continuous, the Kolmogorov–

Smirnov statistic is simply the proportion of nodes with degree less than or equal

to the mean degree. Another approach is to use diversity measures such as the

Herfindahl–Hirschman Index (Hirschman 1964). For degree distribution, this index

is the sum of the squared contributions from each node to total degree. However, it

is sensitive to the network size, as more nodes dilute the effect of each node’s degree.

5 Conclusions

A measure that describes the shape of the distribution, regardless of the functional

form of the distribution, would facilitate research to examine how the shape of the

distribution is related to other properties of the network or processes occurring over

the network. Properties of a simple network that could reasonably be expected to vary

with some measure of degree heterogeneity include maximum degree assortativity

(Hakimi 1962), expected degree assortativity (Newman 2002), and size of an epidemic

occurring on the network (Diekmann et al. 1990).

Both the coefficient of variation (Vk) and the Gini coefficient (G) are suitable

measures as they respond to redistribution in ways that facilitate valid comparisons

between networks of different sizes and mean degree. For both, a value of 0 indicates
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that all the nodes have equal degree and larger values indicate greater heterogeneity.

However, the coefficient of variation is difficult to interpret in the context of a highly

skewed distribution. In particular, its conceptual source is the width of the peak in a

distribution and such a peak may not exist for some networks. In contrast, the Gini

coefficient represents the difference between degrees for pairs of nodes, rather than

comparing a node’s degree to the mean degree. Thus, it can be easily interpreted

for distributions that are highly non-normal as well as normal distributions. The

Gini coefficient is therefore proposed as the most suitable shape measure for degree

distributions.

While this paper has focused on degree distribution, there are other network

properties that are calculated by node (or node pairs) but typically reported only as

mean over all nodes. These properties include clustering coefficient, betweenness, and

shortest path lengths (Newman 2003). The shape of these distributions could also

be described with Gini coefficients (with discretization) and values of this measure

could reasonably be expected to be linked to other network properties.
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