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SUMMARY
To achieve desired configuration, a scheme for state
adjustment of a redundant robot manipulator with no
end-effector task explicitly assigned and referred to as a
state-adjustment scheme is proposed in this paper. Owing
to the physical limits in an actual robot manipulator,
both joint and joint-velocity limits are incorporated into
the proposed scheme for practical purposes. In addition,
the proposed state-adjustment scheme is formulated as
a quadratic program and resolved at the joint-velocity
level. A numerical computing algorithm based on the
conversion technique of the quadratic program to linear
variational inequalities is presented to address the robot
state-adjustment scheme. By employing the state-adjustment
scheme, the robot manipulator can automatically move to
the desired configuration from any initial configuration with
the movement kept within its physical limits. Computer
simulation and experimental results using a practical six-link
planar robot manipulator with variable joint-velocity limits
further verify the realizability, effectiveness, accuracy, and
flexibility of the proposed state-adjustment scheme.

KEYWORDS: Redundant robot manipulator; State adjust-
ment; Physical limits; Quadratic programming; Numerical
computing algorithm.

1. Introduction
A manipulator is said to be redundant when more degrees
of freedom (DOF) are available than necessary for a given
end-effector path-following task. This definition implies that
redundancy can be established simply with respect to some
particular tasks.1 For nonredundant manipulators, the joint
motion is uniquely determined by a prescribed end-effector
primary task, and thus, there are no redundant freedoms
left for executing secondary tasks, such as handling joint
physical limits, environmental constraints, and configuration
singularities. In contrast, redundant manipulators have wider
operational space and meet more functional constraints
because an infinite number of feasible joint configurations
can be available. Thus, they have been widely applied in
areas, such as for cleanup and remediation of nuclear and
hazardous materials, and in space or sea exploration.1–14

Hence, a number of studies have been carried out on the
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redundant manipulators, and much attention has been paid to
motion planning and control of robot manipulators.1–19

A redundancy-resolution scheme is a method or algorithm
that selects a joint-space solution from an infinite number
of possible solutions given the end-effector primary task
of following a desired workspace trajectory. This kind of
selection is usually used to accomplish secondary tasks
for robot manipulators or to generate an optimal solution
and achieve some performance criteria. The redundancy-
resolution scheme often makes use of optimization
techniques, especially quadratic programming (QP). More
specifically, such quadratic programs are equivalent to
systems of linear variational inequalities (LVIs), which can
then be solved by many algorithms, methods, and techniques
efficiently, such as numerical methods20, 21 and recurrent
neural networks.4, 8, 17–19, 22

One of the important issues in controlling actual robot ma-
nipulators is the state-adjustment problem, that is, from one
state to another. State adjustment appears in many situations.
For example, to initialize the execution of a new end-effector
task, a robot manipulator has to move from an arbitrary state
to the desired starting state of a new task. In addition, in robot
motion planning, different end-effector tasks often require
different starting joint states.4–11, 16–19 Thus, adjusting the
state of the robot manipulator from the final state of the
previous task to the desired starting state of the next task is
necessary. Furthermore, in repetitive motion planning,12, 23

the task of multiple cycles has to start from the same initial
states; nevertheless, due to the existence of nonrepetitive
phenomena, the consistency of the initial and final states
usually cannot be guaranteed. To complete the repetitive
motion task, the states should be adjusted at the end of every
cycle. To the best of the authors’ knowledge, the QP-based
method of state adjustment, which theoretically guarantees
that the resultant movement is within the manipulator’s
physical limits, has not been investigated in present literature.
Moreover, the state adjustment of robot manipulator can be
done manually by adjusting the joints one by one, but it is
evidently much less effective and more time consuming than
an automatic state-adjustment scheme. Therefore, the manual
scheme is not suitable for highly automated operations and
manufacturing, unless it is necessary. In addition, a method
of speed-limited trapezoidal trajectories can be designed for
the state adjustment, which is discussed in detail in Appendix
A. However, such a method is less accurate and less desirable
because of its open-loop design property.
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To make the robot manipulator execute tasks more
readily and efficiently, a scheme for state adjustment of
the redundant robot manipulator with no end-effector task
explicitly assigned, called a state-adjustment scheme, is
proposed and then unified into a quadratic program. Based
on the conversion technique of QP to LVI, a numerical
computing algorithm is developed and employed to solve
the quadratic program, as well as the original robot scheme.
It should be noted that because the numerical computing
algorithm adopts the core equations (i.e., Eqs. (4)–(7)) of
ref. [20], it is simply termed E47 numerical computing
algorithm for presentation convenience. The remainder
of this paper is organized into five sections. Section 2
presents the preliminaries and state-adjustment scheme for
physically constrained robot manipulators. The scheme is
then reformulated into a quadratic program. In Section 3,
the LVI-based E47 numerical computing algorithm, as a
QP solver, is developed for solving the proposed state-
adjustment scheme for robot manipulators. In addition,
a pulse-conversion algorithm is presented to convert the
resultant joint angles and joint velocities to the motor-driven
pulses for controlling the manipulator. Section 4 illustrates
the computer simulation results, which are obtained using
the proposed state-adjustment scheme, together with the
corresponding motion and error analyses. The experimental
results based on the same physical robot manipulator are
provided in Section 5. Section 6 concludes the paper with
final remarks. Before ending this introductory section, it is
worth pointing out that this paper has the following new
contributions:

� In this paper, a state-adjustment scheme with no end-
effector task explicitly assigned is proposed. By employing
this scheme, the robot manipulator can be adjusted safely
from one state to another with the movement kept within
its physical limits, including joint and joint-velocity limits.

� The proposed state-adjustment scheme can be unified into
a quadratic program, which can then be solved readily
using numerical algorithms or neural networks. This step
guarantees the realizability, effectiveness, and accuracy of
the proposed state-adjustment scheme.

� The proposed state-adjustment scheme is implemented on
a novel planar manipulator, of which the joint-velocity
limits are functions of joint angles and thus are time
varying. In other words, the proposed scheme is tested on
an actual robot with variable joint-velocity limits (VJVLs).

� Zero-initial-velocity boundary constraints based on simple
sine-type functions (termed a continuation technique) are
designed and incorporated into the unified QP formulation
to guarantee that the initial joint velocity is zero, which is
more suitable for practical applications.

� An E47 numerical computing algorithm based on LVI
conversion is developed to solve the time-varying QP
problem constrained by the aforementioned time-varying
joint-velocity limits, which is a new and successful
attempt. In addition, the E47 algorithm has global linear
convergence to optimal QP solutions and is capable of
handling general QP problems in an inverse-free manner.

� Computer simulation results based on the practical VJVL
robot manipulator are illustrated to demonstrate the

accuracy and flexibility of the proposed state-adjustment
scheme. More importantly, a corresponding experiment
that further demonstrates the realizability and effectiveness
of the proposed state-adjustment scheme on the actual
redundant robot is conducted.

2. Preliminaries, Scheme Formulation, and Robot
Manipulator
References [4–11, 16–19] show that in robot motion
planning, different tasks are possibly required to start from
different initial joint angles. Thus, adjusting the state of
the manipulator from one configuration to another before
performing the next task is necessary. In addition to this
case, the repetitive motion planning12 often requires state
adjustment because of the existence of the nonrepetitive
motion problem. According to previous research on QP-
based redundancy-resolution and planning,17, 22 a novel state-
adjustment scheme, which minimizes the joint displacement
between the current and the desired states, is proposed. The
state-adjustment scheme is thus formulated as follows:

minimize
1

2
((θ̇ + z)T(θ̇ + z)) with z = λ(θ − θd), (1)

subject to θ− ≤ θ ≤ θ+, (2)

θ̇− ≤ θ̇ ≤ θ̇+, (3)

where θ ∈ Rn denotes the joint-space vector of the
manipulator, θ̇ ∈ Rn denotes the joint-velocity vector defined
as the time derivative of θ , and θd ∈ Rn denotes the desired
state (or the target state). Design parameter λ > 0 is used
to scale the convergence rate of the state-adjustment scheme
and superscript T denotes the transpose of a matrix/vector. In
addition, θ± and θ̇± denote the upper and lower limits of the
joint-angle and joint-velocity vectors, respectively.

The minimization of the performance index (θ̇ + z)T(θ̇ +
z)/2 (i.e., Eq. (1)) of the state-adjustment scheme with a
global exponential convergence feature can be described in
the following theorem:

Theorem 1. Without considering the physical joint limits,
starting from any initial state θ(0), the state vector θ(t)
of the minimization (1) converges to the desired state θd.
Moreover, the exponential convergence can be achieved for
the minimization (1) with convergence rate λ. In addition,
the joint-velocity vector θ̇ (t) globally and exponentially
converges to zero with convergence rate λ, and the initial
joint velocity θ̇ (0) is −λ[θ(0) − θd].

Proof. By following the neural-dynamic method by Zhang
et al.,23, 24 the proof is given as the following steps. Step 1.
The following vector-valued error function e(t) ∈ Rn is
defined:

e(t) := θ(t) − θd. (4)

Step 2. To make the error-function (4) converge to zero, the
time derivative ė(t) of e(t) can be23, 24

ė(t) := de(t)

dt
= −λe(t). (5)
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Step 3. As the time derivative of Eq. (4) is ė(t) = θ̇ (t),
substituting it into Eq. (5) yields

θ̇(t) = −λe(t) = −λ[θ(t) − θd], (6)

that is, θ̇ (t) + λ[θ(t) − θd] = 0, which is the theoretical
solution of the minimization (1). On the other hand, it follows
from Eq. (5) that e(t) = e(0) exp(−λt), and

θ(t) − θd = [θ(0) − θd] exp(−λt). (7)

Then, the θd-difference ratio δ(t) is defined as follows:

δ(t) := ‖θ(t) − θd‖2

‖θ(0) − θd‖2
= exp (−λt), (8)

where ‖ · ‖2 denotes the two norm of a vector; that is, θ(t)
converges globally and exponentially to θd with convergence
rate λ.

Moreover, by differentiating Eq. (7) with respect to time
t , the explicit expression about joint velocity θ̇ is as follows:

θ̇ (t) = −λ[θ(0) − θd] exp (−λt). (9)

Based on Eq. (9), joint velocity θ̇ (t) globally and
exponentially converges to zero with the convergence rate
being λ as well, and the initial joint velocity θ̇ (0) is
−λ[θ(0) − θd]. In practice, however, in view of potential
requirements on robot motion planning and control (such
as joint limits and joint-velocity limits), minimizing ‖θ̇(t) +
λ[θ(t) − θd]‖2

2/2 is better than forcing θ̇(t) + λ[θ(t) − θd] =
0 directly, and minimizing ‖θ̇(t) + λ[θ(t) − θd]‖2

2/2 is just
Eq. (1). The proof is now complete. �

Hence, in view of Theorem 1, with joint limits θ±
and joint-velocity limits θ̇± included, the state-adjustment
scheme is formulated as Eqs. (1)–(3). Furthermore, using
the constraint-combining technique,9–12 joint physical limits
(2) and (3) can be combined and handled via the following
bound constraint:

η− ≤ θ̇ ≤ η+, (10)

where the ith elements of η± are defined as η+
i =

min{θ̇+
i , κ(θ+

i − θi)} and η−
i = max{θ̇−

i , κ(θ−
i − θi)}, i =

1, 2, . . . , n, with design-parameter κ > 0 used to scale the
feasible region of θ̇ and set as 4 in the computer simulations
and experiment performed on the VJVL robot manipulator.

With decision variable vector x := θ̇ ∈ Rn,10, 11 the pro-
posed state-adjustment scheme (1)–(3) is now reformulated
as the following quadratic program:

minimize
1

2
xTWx + zTx, (11)

subject to η− ≤ x ≤ η+, (12)

where coefficients W := I and z = λ(θ − θd). According to
Theorem 1, the initial joint velocity θ̇(0) = −λ[θ(0) − θd]
could be very large (even reaching the values of joint-
velocity limits sometimes), which is difficult or impossible

Table I. Physical parameters of the 6-DOF MDPR robot
manipulator.

i θ−
i (rad) θ+

i (rad) li (m) ai (m) bi (m)

1 0.000 4.587 0.301 – –
2 0.000 0.816 0.290 0.250 0.080
3 0.035 0.621 0.230 0.250 0.080
4 0.052 0.599 0.225 0.190 0.080
5 0.035 0.599 0.214 0.185 0.080
6 0.000 0.445 0.103 0.174 0.080

in practice or causes mechanical damage to the robot. To
prevent the occurrence of such a large initial joint velocity,
the continuation technique is used by imposing a zero-
initial-velocity constraint x−(t) ≤ x ≤ x+(t) (i.e., x−(t) ≤
θ̇ ≤ x+(t)) with

x−(t) = sin(πt/2τ )η−, x+(t) = sin(πt/2τ )η+,

where τ > 0 is the task duration, that is, time t ∈ [0, τ ].
Hence, the above QP problem (11) and (12) is finally
modified as the following time-varying quadratic program,
with z(t), x±(t), and x(t) all time varying:

minimize
1

2
xT(t)Wx(t) + zT(t)x(t), (13)

subject to x−(t) ≤ x(t) ≤ x+(t). (14)

By imposing the zero-initial-velocity constraint depicted in
Eq. (14), the zero initial velocity of the motion is guaranteed
and is now acceptable in practical applications.

In the ensuing computer simulations and experiment, the
proposed state-adjustment scheme is verified on a novel
6-DOF motor-driven push-rod (MDPR) redundant robot
manipulator. Figure 1(a) shows the manipulator, which is
planar and has six links, with its corresponding three-
dimensional (3D) model shown in Fig. 1(b). The first joint is
a simple pivot joint. The second to the sixth joints differ from
the first joint and are driven by their corresponding push rods.
Each joint structure is a triangle, as shown in Fig. 1(c), with
three edges of the triangle shown in Fig. 1(d) and denoted by
ai+1, bi+1, and ci+1 (i = 1, 2, . . . , 5). The length of the ith
link is defined as li (i = 1, 2, . . . , 6) in Fig. 1(d). In addition,
the values of the physical parameters of the robot manipulator
are given in Table I. To meet the requirement of a wide-range
operational space, the first joint is designed to be driven by
a high-torque servomotor. The second to the sixth joints are
driven by stepping motors for easy-to-control purposes. To
reduce the weight of the robot manipulator, the links are made
of aluminum alloy. The robot hardware system is composed
of the 6-DOF MDPR manipulator and a personal computer
(with a Pentium (R) Dual-Core E5300 2.60 GHz CPU, 4 GB
DDR3 memory, and a Windows XP Professional operating
system), which sends instructions and data to the manipulator
motion-control module, that is, a six-axis motion-control
card of peripheral component interconnect. The manipulator
motion-control module converts the data into actual pulse
signals to drive the motors according to the instructions.
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Fig. 1. (Colour online) 6-DOF MDPR redundant robot manipulator and its joint structure. (a) The 6-DOF MDPR redundant robot
manipulator. (b) The 3D model of the 6-DOF MDPR manipulator. (c) The (i + 1)th joint structure, i = 1, 2, . . . , 5. (d) The (i + 1)th joint
structure model.

For the 6-DOF MDPR robot manipulator, the VJVLs θ̇±(θ)
are obtained from θ̇−(θ) ≤ θ̇ ≤ θ̇+(θ), which change with
joint vector θ (i.e., being functions of θ), by analyzing the
joint-structure shown in Fig. 1(d) (i.e., following the law of
cosines). More specifically, with i = 1, 2, . . . , 5, the formula
is as follows:

−25π/24 ≤ θ̇1 ≤ 25π/24, θ̇−
i+1(θi+1) ≤ θ̇i+1 ≤ θ̇+

i+1(θi+1),

where

θ̇−
i+1(θi+1) =

v−
i+1si+1

√
a2

i+1 + b2
i+1 + 2ai+1bi+1 sin θi+1

ai+1bi+1 cos θi+1
,

(15)

θ̇+
i+1(θi+1) =

v+
i+1si+1

√
a2

i+1 + b2
i+1 + 2ai+1bi+1 sin θi+1

ai+1bi+1 cos θi+1
,

(16)

with v−
i+1 and v+

i+1 denoting the negative and positive
rotation-rate limits of the (i + 1)th stepping motor, and si+1

denoting the elongation rate of the (i + 1)th push rod (i.e., the
elongation length when the motor moves a full turn). For this
manipulator hardware system, −v−

i+1 = v+
i+1 = |vi+1|max =

10 rot/s and si+1 = 2.5 × 10−3 m/rot. The above VJVL
results (i.e., Eqs. (15) and (16)) show that the joint-velocity
limits θ̇±

i+1 are nonlinearly related to the joint angle θi+1.

3. QP Solver and Control of Robot Manipulator
In this section, a numerical computing algorithm is developed
as an efficient QP solver for handling the bound-constraint
QP problem (13) and (14) based on the LVI conversion
and using the following design method.3 The developed
numerical computing algorithm is also applicable in solving
the QP problem (11) and (12). The motors of the robot
manipulator are driven by pulse signals. Thus, the sampling
gap is set to h = 0.01 s for the solution of the QP and the
generation of the pulse signals based on the experimental
experience of the author and precision requirement.
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3.1. E47 numerical computing algorithm
The QP problem (13) and (14) can first be converted into
an LVI, that is, (x − x∗)T(Wx∗ + z) ≥ 0 with x∗ being an
optimal solution of the QP problem. The derivation of such a
conversion is given in Appendix B. In addition, by defining
a set 	 = {u|x− ≤ u ≤ x+} ⊂ Rn, the QP problem (13) and
(14) is known to be equivalent to the following piecewise-
linear equation:

P	[x − (Wx + z)] − x = 0, (17)

where P	[·] is a piecewise-linear projection operator with
the ith element of P	[u] being defined as⎧⎪⎪⎨

⎪⎪⎩
x−

i if ui < x−
i ,

ui if x−
i ≤ ui ≤ x+

i ,

x+
i if ui > x+

i .

i ∈ {1, 2, . . . , n},

Following ref. [3], a set 	∗ ∈ Rn can be defined as the
solution set of piecewise-linear projection (17), that is, 	∗ =
{x∗|x∗ is a solution of Eq. (17)}. In addition, the related error
function of Eq. (17) is defined as

E(x) := x − P	[x − (Wx + z)]. (18)

Following ref. [20], the following vector is further defined as
the search direction to determine the zero point of piecewise-
linear equation (17):

g(x) = WTE(x) + (Wx + z). (19)

For the iteration index k = 0, 1, 2, . . . , if xk /∈ 	∗, the
recursive formula for the solution of piecewise-linear
equation (17) is as follows:

xk+1 = P	[xk − ρ(xk)g(xk)], (20)

with

ρ(x) = ‖E(x)‖2
2

‖(WT + I )E(x)‖2
2

≥ ‖E(x)‖2
2

‖(WT + I )‖2
2‖E(x)‖2

2

≥ 1

‖(WT + I )‖2
2

= 1

24
. (21)

In summary, Eqs. (18)–(21) constitute the so-called E47
numerical computing algorithm. By following refs. [20, 21],
the important lemma on the global convergence of the E47
algorithm, being an effective QP solver for Eqs. (13) and
(14), is obtained as follows.

Lemma. By starting with any initial state x0 ∈ Rn,
generated by the E47 numerical computing algorithm
depicted in Eqs. (18)–(21), the solution sequence {xk},
k = 1, 2, 3 . . ., satisfies

‖xk+1 − x∗‖2
2 ≤ ‖xk − x∗‖2

2 − ρ(xk)‖E(xk)‖2
2, ∀x∗ ∈ 	∗,

(22)
with ρ(xk) ≥ 1/24 resulting from Eq. (21), guaranteeing
the effective solution of piecewise-linear equation (17); that

is, the sequence {xk} converges globally and linearly to an
optimal solution x∗ of the QP optimization problem depicted
in Eqs. (13) and (14).

Proof. It can be generalized from refs. [20, 21].

3.2. Control of 6-DOF MDPR robot manipulator
As mentioned in the previous section, the motors of the robot
joints are driven by the pulse signals transmitted from the
host computer. Hence, the resultant joint variables (i.e., joint
angle θ and joint velocity θ̇ ) should thus be converted into
pulses per second (PPS) to control the manipulator. For the
first joint driven by a servomotor, the number of PPS is

PPS1 = γ θ̇1/(2π), (23)

where γ = 3.2 × 105 is the parameter related to the 6-DOF
MDPR robot manipulator. For the second through the sixth
joint driven by stepping motors, the structure of the (i + 1)th
joint is shown in Fig. 1(d); following the law of cosines, the
rotation rate of the (i + 1)th motor is as follows:

vi+1 = ai+1bi+1θ̇i+1 cos θi+1

si+1

√
a2

i+1 + b2
i+1 + 2ai+1bi+1 sin θi+1

,

with i = 1, 2, . . . , 5. As the stepping angles of the second
joint through the sixth joint are all 0.01π rad and the
subdividing multiples are all 32, the number of PPS for the
(i + 1)th joint (i = 1, 2, . . . , 5) is

PPSi+1 = (2π/(0.01π/32))vi+1

= 6400ai+1bi+1θ̇i+1 cos θi+1

si+1

√
a2

i+1 + b2
i+1 + 2ai+1bi+1 sin θi+1

. (24)

By exploiting Eqs. (23) and (24), the PPS signals are obtained
for controlling the robot manipulator.

4. Simulation Studies
In this section, the proposed state-adjustment scheme (1)–
(3) (i.e., correspondingly the QP Eqs. (11) and (12) or (13)
and (14)) and the E47 numerical computing algorithm (18)–
(21) are simulated for the state adjustment of the presented
6-DOF MDPR planar robot manipulator. Specifically, in
the simulations, the task of the manipulator is to adjust its
configuration from the initial state θ(0) = [1.2219, 0.3491,
0.5062, 0.0611, 0.0349, 0.0349]T to the desired state θd =
[0.3491, 0.3491, π/12, π/12, π/12, π/12]T in radians (both
of which could be set as any values within the joint limits)
without loss of generality. In addition, the simulation studies
are divided into two subsections. The first one discusses the
convergence property of the state-adjustment scheme (11)
and (12), which does not impose the zero-initial-velocity
constraint. On the other hand, the efficacy, flexibility, and
accuracy of the proposed state-adjustment scheme (13) and
(14), which impose the zero-initial-velocity constraint for
velocity-continuation purposes, are investigated in detail in
the second subsection.
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Table II. Joint-angle values in the situation of λ = 1 and τ = 30 s at different time t instants.

t (s) θ1 (rad) θ2 (rad) θ3 (rad) θ4 (rad) θ5 (rad) θ6 (rad)

0.5 0.87712 0.34910 0.40966 0.14037 0.12453 0.12453
1 0.66856 0.34910 0.35126 0.18833 0.17875 0.17875
2 0.46603 0.34910 0.29454 0.23491 0.23140 0.23140
3 0.39190 0.34910 0.27379 0.25196 0.25067 0.25067
6 0.35120 0.34910 0.26240 0.26132 0.26125 0.26125

10 0.34914 0.34910 0.26181 0.26180 0.26180 0.26180
15 0.34910 0.34910 0.26180 0.26180 0.26180 0.26180

4.1. State adjustment without zero-initial-velocity
constraint
In this subsection, the state-adjustment scheme (1)–(3)
without imposing the zero-initial-velocity constraint, that is,
correspondingly the QP Eqs. (11) and (12), is simulated based
on the 6-DOF robot manipulator. The simulation results are
shown in Figs. 2 and 3, as well as in Table II.

Figure 2 illustrates the transient behaviors of joint-angle
and joint-velocity variables of the 6-DOF MDPR robot

manipulator in the situation of λ = 1 and τ = 30 s. The
values of the joint angles and joint velocities exponentially
converge to their desired values. In addition, Table II
shows the joint-angle values at different time instants
(i.e., t = 0.5, 1, 2, 3, 6, 10, 15 s). With respect to Table II
and using Eq. (8), the quantified convergence results are
obtained that the θd-difference ratio δ(0.5) (i.e., at time instant
t = 0.5 s) is about 60.50% (which approximates exp(−0.5)),
δ(1) is about 36.60% (which approximates exp(−1)), δ(2)
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Fig. 2. (Colour online) Profiles of joint variables of the MDPR manipulator synthesized by the state-adjustment scheme (1)–(3) without
imposing the zero-initial-velocity constraint and with parameters λ = 1 and τ = 30 s.
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Fig. 3. (Colour online) Profiles of joint variables of the MDPR manipulator synthesized by the state-adjustment scheme (1)–(3) without
imposing the zero-initial-velocity constraint and with parameters λ = 2 and τ = 10 s.
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Table III. Joint-angle errors |ei(τ )| (i = 1, 2, . . . , 6) of the state-adjustment task for different λ and τ .

Test # joint 1 joint 2 joint 3 joint 4 joint 5 joint 6

Situation 1 (10−7 rad) 3.32930 3.32929 2.45206 2.45206 2.45206 2.45206
Situation 2 (10−5 rad) 7.40662 0.03329 3.84190 2.93454 3.76557 3.72127
Situation 3 (10−7 rad) 1.77145 1.66465 1.34676 1.10760 1.05763 1.06175

is about 13.40% (which approximates exp(−2)), δ(3) is
about 4.90% (which approximates exp(−3)), δ(6) is about
0.24% (which approximates exp(−6)), and δ(10) is about
0.00%, which implies that θ(t) actually achieves the desired
state θd from a practical viewpoint. These results confirm
the exponential convergence property of Eq. (1) analyzed
in Theorem 1. In addition, the initial joint velocity θ̇(0) =
[−0.8728, 0.0000, −0.2444, 0.2007, 0.2269, 0.2269]T rad/s
is the maximal joint velocity during the task, which can be
seen from the right subplot of Fig. 2.

For further investigation, a different value of λ (i.e.,
λ = 2) is set, and the simulation results are shown in
Fig. 3. As the value of λ increases from 1 to 2, the
initial velocity θ̇ (0) increases accordingly (compared to
the right subplot of Fig. 2), which verifies well θ̇(0) =
−λ(θ(0) − θd) (i.e., Eq. (6) with t = 0 s). As shown in the
right subplot of Fig. 3, some of the initial joint velocities,
for example, θ̇4(0), θ̇5(0), and θ̇6(0), meet the manipulator’s
physical limits, i.e., θ̇+

4 (0), θ̇+
5 (0), and θ̇+

6 (0), respectively.
This phenomenon can be observed because θ̇4(0) = 0.4014
rad/s, θ̇5(0) = 0.4538 rad/s, and θ̇6(0) = 0.4538 rad/s as
computed by Eq. (6) are larger than the joint-velocity limits
θ̇+

4 (0) = 0.3470 rad/s, θ̇+
5 (0) = 0.3450 rad/s and θ̇+

6 (0) =
0.3487 rad/s as computed by Eq. (16), respectively. The
above simulations also substantiate the avoidance feature of
joint physical limits of the state-adjustment scheme.

4.2. State adjustment with zero-initial-velocity constraint
Based on the aforementioned simulation results, the initial
joint velocities are nonzero, which may be less desirable for
practical applications. As proposed in Section 2, the zero-

initial-velocity constraint can be imposed to make the initial
joint-velocity zero, which is more acceptable in practice.
In this subsection, the state-adjustment scheme (1)–(3) is
simulated with the zero-initial-velocity constraint imposed,
that is, QP Eqs. (13) and (14), for the state adjustment of the
6-DOF robot manipulator. The computer-simulation results
are illustrated in Table III (where the final error of the ith joint
|ei(τ )| = |θi(τ ) − θdi | (i = 1, 2, . . . , 6) with | · | denoting the
absolute value of a scalar), as well as in Figs. 4–7.

As synthesized by the state-adjustment scheme (1)–(3)
with the zero-initial-velocity constraint imposed, Fig. 4
shows the simulated motion trajectories of the 6-DOF MDPR
manipulator when it executes a state-adjustment task. The
arrow appearing in the figure shows the motion direction.
More specifically, the left subplot of Fig. 4 reflects the motion
process and change in joint velocity (i.e., from slowness to
fastness and then to slowness), whereas the right subplot
of Fig. 4 shows the motion trajectories of joints during the
task execution. As shown in Fig. 4, the motion velocities are
conformable to the zero-initial-velocity constraint (14) and
that the joint trajectories are smooth, which are suitable for
practical applications. For further investigation, comparison,
and illustration, the state-adjustment scheme (1)–(3) is
simulated using different situations (i.e., with different values
of λ and τ ).

Situation 1: λ = 1 and τ = 30 s

Figure 5 illustrates the transient behaviors of joint-angle
and joint-velocity variables with λ = 1 and τ = 30 s. As
shown in the left subplot of Fig. 5, all joints rapidly
converge to their desired state (i.e., θd). Specifically, θ1(t)
converges to 0.3491 rad, and θ3(t) through θ6(t) all converge
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Fig. 4. (Colour online) Motion trajectories of the MDPR manipulator synthesized by the state-adjustment scheme (1)–(3) with zero-initial-
velocity constraint imposed (i.e., QP Eqs. (13)–(14)) and with λ = 1 and τ = 10 s.
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Fig. 5. (Colour online) Profiles of joint variables of the MDPR manipulator synthesized by the state-adjustment scheme (1)–(3) with
zero-initial-velocity constraint imposed (i.e., QP Eqs. (13) and (14)) and with λ = 1 and τ = 30 s.
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zero-initial-velocity constraint imposed (i.e., QP Eqs. (13) and (14)) and with λ = 1 and τ = 10 s.
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Fig. 7. (Colour online) Profiles of joint variables of the MDPR manipulator synthesized by the state-adjustment scheme (1)–(3) with
zero-initial-velocity constraint imposed (i.e., QP Eqs. (13) and (14)) and with λ = 2 and τ = 10 s.
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Fig. 8. (Colour online) PPS converted from θ and θ̇ for controlling the robot manipulator.

to π/12 rad. Meanwhile, θ2(t) remains unchanged during
the task execution because of θ2(0) = θd2. Correspondingly,
as seen from the right subplot of Fig. 5, the joint velocity
evidently starts from zero and finally approaches zero within
10 s. As shown in Table III, the maximal joint-angle error in
this situation is 3.32930 × 10−7 rad, which is very close to
zero, when the execution time t arrives at 30 s. These results
demonstrate the efficacy of the proposed state-adjustment
scheme QP Eqs. (13) and (14) on the motion control of the
robots.

Situation 2: λ = 1 and τ = 10 s

As illustrated in the previous situation, the state-
adjustment task can be completed in 10 s. Hence, 30 s may
be too “time consuming” for the state-adjustment task. Thus,
the task duration τ is decreased from 30 to 10 s to investigate
the proposed state-adjustment scheme (13) and (14) further.
Figure 6 illustrates the profiles of joint variables synthesized
by (13) and (14) with λ = 1 and τ = 10 s. As shown in the
left subplot of Fig. 6, the joint-angle variables converge to
the desired values within 6.5 s and were shorter than 10 s
shown in Fig. 5. The right subplot of Fig. 6 also shows that
the joint velocity θ̇ (t) starts from zero, then becomes larger to
meet the short time requirement and finally returns to zero,
where the maximal joint-velocity magnitude is about 0.58
rad/s. These results substantiate the view that the proposed
scheme is flexible for the state-adjustment task, especially
under the short time requirement (i.e., τ = 10 s).

Situation 3: λ = 2 and τ = 10 s

As shown in Table III, the maximal joint-angle error of
Situation 2 is 7.40662 × 10−5 rad, which is larger than that of
Situation 1. Hence, if the task duration τ is simply decreased
to satisfy a shorter execution time requirement, the joint-
angle error may increase slightly. To improve the precision

while using the short task-execution time, the value of the
design parameter λ can be readily increased. Figure 7 shows
the profiles of joint variables synthesized by the proposed
state-adjustment scheme (13) and (14) with λ = 2 and τ =
10 s. As shown in the left subplot of Fig. 7, the joint-angle
variables converge to the desired values within 5.0 s, which
is less than 6.5 s shown in Fig. 6. In addition, as seen from the
right subplot of Fig. 7, starting from zero, the joint-velocity
variables are larger in magnitude than those in Fig. 6 to meet
the short time requirement (i.e., θ̇ converges to zero in shorter
time). As shown in Table III, the proposed state-adjustment
scheme with λ = 2 generates a considerably smaller joint-
angle error of the state-adjustment task, that is, the maximal
joint-angle error is 1.77145 × 10−7 rad.

In summary, the above simulation results, as well as
the corresponding analysis, demonstrate the exponential
convergence property of the minimization (1) and related
joint variables. By imposing the zero-initial-velocity
constraint, the initial joint velocity of the motion can be
guaranteed to be zero. By choosing λ and τ appropriately, a
higher precision and shorter execution time can be achieved.
These results show the efficacy, flexibility, and accuracy of
the proposed state-adjustment scheme (13) and (14) for the
configuration control of redundant robot manipulators.

5. Experiment Results
In this section, the experimental test of the proposed
state-adjustment scheme (13) and (14) and E47 numerical
computing algorithm (18)–(21) are performed on the actual
6-DOF MDPR robot manipulator shown in Fig. 1. The initial
joint-angle vector is set the same as before, that is, θ(0) =
[1.222, 0.349, 0.506, 0.061, 0.035, 0.035]T rad. To avoid a
too large motion scope and to take pictures conveniently,
the desired value of θ1 is set to a more appropriate one that
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Fig. 9. (Colour online) Motion transients of the physical 6-DOF MDPR robot manipulator from initial state θ (0) to desired state θd
synthesized by the state-adjustment scheme (13) and (14) with τ = 10 s. (a) The initial state. (b) An intermediate state. (c) An intermediate
state. (d) An intermediate state. (e) An intermediate state. (f) An intermediate state. (g) An intermediate state. (h) The final state.

would allow the robot manipulator to maintain its smaller
motion scope of the robot manipulator. Thus, the desired
joint-angle vector θd of the physical robot manipulator is
set as [1.135, 0.349, π/12, π/12, π/12, π/12]T in radians.
In addition, the task duration τ = 10 s and design parameter
λ = 1.

By exploiting the E47 numerical computing algorithm
(18)–(21) to solve the proposed state-adjustment scheme (13)
and (14), the joint variables (i.e., θ and θ̇ ) are obtained. Using
Eqs. (23) and (24), the joint variables are converted into

PPS for controlling the 6-DOF MDPR robot manipulator,
as shown in Fig. 8. With the zero-initial-velocity constraint
imposed, the initial PPS of each joint is zero. The plots of
PPS are step-like because the E47 numerical computing
algorithm (18)–(21) is a discrete-time QP solver and the
sampling gap h = 0.01 s. The state adjustment of the
robot manipulator can be achieved by sending the PPS to
drive the motors. Figure 9 shows the motion transients of
the physical 6-DOF MDPR robot manipulator during the
state-adjustment task execution from the initial state θ(0) to
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Fig. 10. (Colour online) Relationship between joint-velocity limits θ̇± and joint angle θ .
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the final state θ(τ ) with τ = 10 s. As seen from the figure,
all joints of the robot manipulator move toward their desired
states (i.e., the element values of θd). Joint 2 of the robot
manipulator remains still during the state-adjustment task
execution, which fits well with the fact that its desired state
θd2 equals the initial one θ2(0). Moreover, corresponding
to Fig. 8, the change in joint velocity is from slowness to
fastness and then to slowness (i.e., the dynamic effects of
the robot manipulator during the state adjustment), which
is similar to the reflection of the left subplot of Fig. 4
(i.e., the sparser the trajectories of the manipulator are,
the faster the manipulator moves because all the sampling
gaps between every two adjacent trajectories are the same).
These results further substantiate the realizability and
effectiveness of the proposed state-adjustment scheme
(13) and (14). Similar to those in Table III and as shown
in the corresponding computer simulation, the final error
[|e1(τ )|, . . . , |e6(τ )|]T between θ(τ ) and θd is 10−5 ×
[0.46534, 0.01664, 3.82939, 2.94700, 3.77802, 3.73372]T

in radians, and the maximal joint-angle error in this situation
(i.e., with λ = 1, τ = 10 s and the above θ(0) and θd) is
3.82939 × 10−5 rad, both of which are small and acceptable
in practice.

6. Conclusions
In this paper, a QP-based state-adjustment scheme (13)
and (14) with no end-effector task explicitly assigned is
proposed and investigated to achieve a desired configuration
for robot manipulators. The scheme incorporates the joint
physical limits and is formulated as a solvable quadratic
program. Being a velocity-continuation technique, the zero-
initial-velocity constraint is discussed and employed for
the proposed state-adjustment scheme. The state-adjustment
scheme and the resultant QP problem (13) and (14) are
solved effectively using a so-called E47 numerical computing
algorithm (18)–(21) at the joint-velocity level. Both computer
simulation and experiment results based on a 6-DOF
DMPR robot manipulator demonstrate the realizability,
effectiveness, flexibility, and accuracy of the proposed state-
adjustment scheme (1)–(3) (or correspondingly, QP Eqs. (13)
and (14)).
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Appendix A
From Section 2, VJVLs θ̇± of the 6-DOF MDPR robot
manipulator are functions of θ , which is illustrated in Fig. 10
for convenience. According to Eqs. (15) and (16), θ̇+ and
θ̇− are symmetric to each other (illustrated in Fig. 10),
and the minimum value of the upper VJVL is θ̇+

min =

[3.27000, 0.32811, 0.32811, 0.33907, 0.34047, 0.343947]T

rad/s. Thus, a method of speed-limited trapezoidal
trajectories can be designed as a displacement-related
trapezoid-velocity method, with the joint velocity limited by
±θ̇+

min. Such a design method is based on the displacement
(i.e., the angle-change value between the initial and
desired joint states). For example, when the task of the robot
manipulator is to adjust its configuration from the initial state
θ(0) = [1.2219, 0.3491, 0.5062, 0.0611, 0.0349, 0.0349]T

in radians to the desired state θd = [0.3491,

0.3491, π/12, π/12, π/12, π/12]T in radians, the method
of speed-limited trapezoidal trajectories is thus designed
based on the value of (θd − θ(0)). For better understanding
and further discussion, the state adjustment of the first
joint is taken as an example. Evidently, the first joint
requires adjusting from 1.2219 rad to 0.3491 rad; that is, the
displacement of the first joint is −0.8728 rad for the state
adjustment. Then, using θdi to denote the ith element of θd

(i = 1, 2, . . . , 6), the displacement can be divided into three
parts for the generation of the trapezoidal velocity: (1) the first
part (i.e., (θd1 − θ1(0))/6 = −0.1455 rad) for acceleration,
(2) the second part (i.e., 2(θd1 − θ1(0))/3 = −0.5819
rad) for constant velocity, and (3) the last part (i.e.,
(θd1 − θ1(0))/6 = −0.1455 rad) for deceleration. Based
on the above analysis, for the ith joint of the manipulator
(with i = 1, 2, . . . , 6), the method for the generation of the
trapezoidal velocity is as follows:

θ̇i = φ(θ̇+
mini)

=
⎧⎨
⎩

sgn(θdi − θi(0))4θ̇+
mini ti/τ, for 0 ≤ ti < tiinc,

sgn(θdi − θi(0))4θ̇+
mini tiinc/τ, for tiinc ≤ ti ≤ 3tiinc,

sgn(θdi − θi(0))4θ̇+
mini(4tiinc − ti)/τ, for 3tiinc < ti ≤ 4tiinc,

(25)

where θ̇+
mini denotes the ith element of θ̇+

min, sgn(·) denotes
the signum function, and ti denotes the argument of θ̇i

corresponding to the state adjustment of the ith joint.
tiinc denotes the time for the acceleration, which can be
obtained by solving the integration equation

∫ tiinc

0 θ̇idti =
(θdi − θi(0))/6. τ is the task duration (set as τ = 10 s here)
and that if tiinc > τ/4, the task duration τ needs to be
increased for the state adjustment.

As synthesized by the displacement-related trapezoid-
velocity method, the simulation results of the manipulator
for the state adjustment are illustrated in Fig. 11, of
which the left subplot shows the joint-velocity profiles
and the right subplot shows the corresponding joint-
angle profiles. As seen from the figure, the velocity
trajectories are trapezoidal and the configuration of the
manipulator can be adjusted. However, the final state θ(τ ) is
[0.36124, 0.34910, 0.26151, 0.25952, 0.26370, 0.25990]T

in radians by exploiting the displacement-related
trapezoid-velocity method. Thus, the corresponding error
between θ(τ ) and θd is [|e1(τ )|, . . . , |e6(τ )|]T = 10−2 ×
[1.21400, 0.00000, 0.02894, 0.22794, 0.19006, 0.18994]T

in radians, which is larger than that of Situation
2 in Section 4.2 (i.e., 10−5 × [7.40662, 0.03329,

3.84190, 2.93454, 3.76557, 3.72127]T in radians). From
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Fig. 11. (Colour online) Profiles of joint variables of the 6-DOF MDPR robot manipulator synthesized by the displacement-related
trapezoid-velocity method.

the design process of the displacement-related trapezoid-
velocity method, such an undesirable error includes mainly
the computational round-off error and the corresponding
accumulated error. For example, for the first joint,
t1inc = 0.471620711823168 s can be obtained by solving the
integration equation

∫ t1inc

0 θ̇1dt1 = (θd1 − θ1(0))/6. As the
sampling gap is set as h = 0.01 s, t1inc has to be rounded
off and then t1inc = 0.47 s. Thus, t1inc decreases due to the
round-off operation, and θ̇1 also decreases correspondingly
(according to Eq. (25)). In addition, the accumulated error
(i.e., the sum of the errors in all sampling gaps) may be
large because of the open-loop design property of the
displacement-related trapezoid-velocity method. Therefore,
after the state adjustment, the error between θ(τ ) and θd is
less desirable and less acceptable for practical applications.
For the speed-limited trapezoidal trajectory method, the
maximum joint velocity is the constant velocity, which is
limited by ±θ̇+

min. Hence, such a design method (i.e., Eq.
(25)) can not make full use of the VJVL and decreases the
feasible region of θ̇ in essence.

Remarks. The proposed scheme in this paper differs
from the speed-limited trapezoidal trajectory method and
takes (θ − θd) as the criterion to be minimized. Thus, the
proposed scheme has θ-feedback property and can eliminate
the accumulated round-off error effectively. In addition, the
proposed scheme is subject to the bound constraint and makes
full use of the VJVL. Therefore, this paper employs the
proposed optimization scheme for the state adjustment of the
robot manipulator rather than the method of speed-limited
trapezoidal trajectories (e.g., Eq. (25)).

Appendix B
In this appendix, the bound-constraint QP problem (13) and
(14) is converted into an LVI problem via the following
design method.3 To find a primal equilibrium vector x∗ ∈
	 := {u|x− ≤ u ≤ x+} ⊂ Rn such that ∀x ∈ 	,

(x − x∗)T(Wx∗ + z) ≥ 0. (26)

Based on ref. [3], the Lagrangian dual problem of QP Eqs.
(13) and (14) can be derived as

maximize −1

2
xTWx + x−Tν− − x+Tν+, (27)

subject to Wx + z − ν− + ν+ = 0, (28)

ν− ≥ 0, ν+ ≥ 0, (29)

where ν− and ν+ are dual decision variable vectors defined
for the left and right parts of bound constraint (14),
respectively. Then, a necessary and sufficient condition for
the optimum point (x∗, ν−∗, ν+∗) of the primal QP problem
(13) and (14) and its dual QP problem (27)–(29) is

primal feasibility:

x− ≤ x∗ ≤ x+;

dual feasibility:

Wx∗ + z − ν−∗ + ν+∗ = 0, (30)

ν−∗ ≥ 0, ν+∗ ≥ 0;

complementarity:

ν−∗T(−x∗ + x−) = 0, (31)

ν+∗T(−x+ + x∗) = 0. (32)

To simplify the above necessary and sufficient condition
formulation, the dual decision variable vectors ν−∗ and ν+∗
in Eqs. (30)–(32) are further studied, which correspond to
the original bound constraint (14). Based on Eqs. (31) and
(32), ⎧⎪⎨

⎪⎩
x∗

i = x+
i if ν+∗

i > 0, ν−∗
i = 0,

x−
i < x∗

i < x+
i if ν+∗

i = 0, ν−∗
i = 0,

x∗
i = x−

i if ν+∗
i = 0, ν−∗

i > 0.

By defining ν∗ = ν−∗ − ν+∗, the ith component of vector
Wx∗ + z based on dual feasibility condition (30) and the
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above analysis is

[Wx∗ + z]i = ν∗
i

⎧⎨
⎩

< 0, x∗
i = x+

i ,

= 0, x∗
i ∈ (x−

i , x+
i ),

> 0, x∗
i = x−

i .

∀i ∈ {1, 2, . . . , n},

(33)

In addition, ∀x ∈ 	, the following results are obtained:

(xi − x∗
i )

{≤ 0, x∗
i = x+

i ,

∈ (x−
i − x+

i , x+
i − x−

i ), x∗
i ∈ (x−

i , x+
i ),

≥ 0, x∗
i = x−

i .

∀i ∈ {1, 2, . . . , n},

(34)

By combining Eqs. (33) and (34), the following LVI is
obtained; that is, to find an x∗ ∈ 	 such that

(x − x∗)T(Wx∗ + z) ≥ 0, ∀x ∈ 	. (35)

The above resultant LVI (35) is exactly (26), being the
converted result of QP Eqs. (13) and (14). The proof is now
complete.
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