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This paper describes a computational investigation of multimode instability growth and
multimaterial mixing induced by multiple shock waves in a high-energy-density (HED)
environment, where pressures exceed 1 Mbar. The simulations are based on a series
of experiments performed at the National Ignition Facility (NIF) and designed as an
HED analogue of non-HED shock-tube studies of the Richtmyer–Meshkov instability and
turbulent mixing. A three-dimensional computational modelling framework is presented.
It treats many complications absent from canonical non-HED shock-tube flows, including
distinct ion and free-electron internal energies, non-ideal equations of state, radiation
transport and plasma-state mass diffusivities, viscosities and thermal conductivities. The
simulations are tuned to the available NIF data, and traditional statistical quantities of
turbulence are analysed. Integrated measures of turbulent kinetic energy and enstrophy
both increase by over an order of magnitude due to reshock. Large contributions to
enstrophy production during reshock are seen from both the baroclinic source and
enstrophy–dilatation terms, highlighting the significance of fluid compressibility in the
HED regime. Dimensional analysis reveals that Reynolds numbers and diffusive Péclet
numbers in the HED flow are similar to those in a canonical non-HED analogue,
but conductive Péclet numbers are much smaller in the HED flow due to efficient
thermal conduction by free electrons. It is shown that the mechanism of electron thermal
conduction significantly softens local spanwise gradients of both temperature and density,
which causes a minor but non-negligible decrease in enstrophy production and small-scale
mixing relative to a flow without this mechanism.
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1. Introduction and background

Shock-induced multimaterial mixing is an important canonical process in fluid mechanics.
It occurs in many flows of contemporary physics and engineering interest, such as capsule
implosions for inertial confinement fusion (ICF), fuel–air combustion in scramjet-powered
hypersonic vehicles and supernovae explosions. When the interface between two
different-density fluids is shocked, initial perturbations grow via the Richtmyer–Meshkov
(RM) instability (Richtmyer 1960; Meshkov 1969; Brouillette 2002). The RM instability
can be compared with the Rayleigh–Taylor (RT) instability (Rayleigh 1883; Taylor
1950; Sharp 1984), which occurs whenever a low-density fluid is accelerated towards a
high-density fluid. In complex flows, both the RM and RT instabilities (and others) may
contribute to interpenetration and mixing.

For an archetypal flow driven by these instabilities, with small initial perturbations at a
single light–heavy fluid interface, the evolution can be roughly divided into four phases.
First, in the linear growth phase, described by linear theory (Chandrasekhar 1961; Atzeni &
Meyer-ter-Vehn 2004), amplitudes {ηi} remain small relative to wavelengths {λi}, and the
spectral modes evolve independently. Second, in the nonlinear growth phase, the {ηi} are
no longer small compared to the {λi}, but there is little interaction between different modes.
Third, in the transitional phase, coupling between different modes becomes significant and
vortical structures form. Fourth, in the turbulent phase, the flow exhibits chaos and a broad
spectrum of length scales. The process of turbulent mixing can itself be divided into three
sub-phases: entrainment, stirring and molecular mixing (Eckart 1948; Dimotakis 2000).
Recent comprehensive reviews of the RM and RT instabilities and their association with
mixing are available (Zhou 2017a,b; Zhou et al. 2019).

This paper discusses a computational investigation of shock-induced mixing at high
energy density (HED), a term referring to thermodynamic pressures greater than
1 Mbar (Drake 2018). The flows under consideration were realized in a series of
experiments or shots at the National Ignition Facility (NIF) (Moses et al. 2009) as
part of the experimental–computational Reshock Campaign introduced by Nagel et al.
(2017). In each experiment, two opposing laser-driven shock waves propagated through a
millimetre-scale target package, which included a multimode rippled interface between
two different-density solid materials. The solids were converted to plasmas, and the
interface was impacted by a first shock and a subsequent reshock. Observations were made
of the resulting mixing layer using X-ray radiography. In this paper, we present the design
and analysis of a set of idealized three-dimensional (3-D) simulations of these experiments
using the radiation hydrodynamics code ARES. We demonstrate that the simulations are
consistent with the available experimental data. Then, we examine the evolution of key
fluid-mechanical quantities in the simulated mixing layers, elucidating the unique physics
of mixing at extreme conditions.

The Reshock Campaign was conceived as an HED analogue of studies of shock-induced
instabilities and mixing at non-HED conditions. Such studies include many important
experiments, several of which we highlight here. In each of the following examples, a
shock tube was filled with two initially separated gases of different density. The interface
between the gases was shocked, and measurements were made of the resulting mixing
layer using various diagnostic techniques such as schlieren photography or planar Mie
scattering. Reshock was due to reflection of the first shock off the tube endwall. Andronov
et al. (1976) conducted one of the earliest of these experiments, measuring the width of an
air–helium mixing layer over time. Vetter & Sturtevant (1995) diagnosed air–SF6 mixing
layers, finding that post-reshock mixing-layer growth rates were in good agreement with
the theoretical model of Mikaelian (1989) and were relatively insensitive to the initial
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Shocked HED mixing

configuration of an interfacial membrane. Houas & Chemouni (1996) investigated the
effect of membrane thickness using various combinations of gases. Poggi, Thorembey
& Rogriguez (1998) made novel measurements of instantaneous velocities in an SF6–air
mixing layer, reporting a substantial amplification of velocity fluctuations after reshock.
Leinov et al. (2009) examined air–SF6 mixing layers, demonstrating that post-reshock
growth rates were more sensitive to the strength of the reshock than to its time of arrival
at the singly shocked layer. All of the aforementioned examples used a membrane for
initial gas separation. Jacobs et al. (2013), building on work by Collins & Jacobs (2002),
performed a membrane-less experiment in which an air–SF6 interface was formed as
a flow stagnation surface in a vertical shock tube. Other membrane-less experiments
(Balakumar et al. 2008, 2012) investigated a thin SF6–acetone gas curtain suspended
in air. Balakumar et al. (2012) concluded that measured velocity fluctuations were
consistent with the hypothesis that post-reshock mixing acted to reduce first-shock-induced
anisotropy. Note that we have restricted our attention in this paragraph to shock-tube
experiments that included two or more shocks, i.e. at least one reshock.

Three-dimensional computational studies of non-HED shock-induced mixing have also
proliferated in the last two decades with advances in high-performance computing. We
mention several notable examples, each of which involved some attempt to resolve the
3-D evolution of an initially perturbed interface impacted by multiple shocks. Hill,
Pantano & Pullin (2006) conducted large-eddy simulations of the Vetter & Sturtevant
(1995) experiments, using a tuned centre-difference weighted essentially non-oscillatory
(TCD-WENO) hybrid method and the stretched-vortex subgrid-scale model. They
reported good agreement with the experimental data, and they conducted subsequent
studies of Atwood number effects (Lombardini et al. 2011) and Mach number effects
(Lombardini, Pullin & Meiron 2012). Schilling & Latini (2010), using a WENO scheme,
and Grinstein, Gowardhan & Wachtor (2011), using a Godunov-type method, each
modelled the Mach 1.50 Vetter & Sturtevant (1995) experiment. They each achieved good
experiment–simulation agreement and investigated sensitivity of simulated quantities to
properties of the initial perturbations. Thornber et al. (2011) and Hahn et al. (2011),
building on work by Thornber et al. (2010), used a Godunov-type method to simulate
reshocked mixing. They identified and analysed differences in flow evolution arising from
differences in the spectra of the initial perturbations. Malamud et al. (2014) modelled
the experiments of Leinov et al. (2009) using an arbitrary Lagrangian–Eulerian method.
Tritschler et al. (2014) compared simulations of the mixing of air and an SF6–acetone
blend using two numerical approaches: a compact difference scheme with artificial-fluid
transport terms added for numerical stability and a central-upwind WENO scheme. They
highlighted that the two methods agreed in their predictions of large-scale flow features,
but differed in their predictions of gradient-sensitive quantities such as enstrophy. Recent
computational studies of reshocked mixing were conducted by Li et al. (2019) and Wong,
Livescu & Lele (2019). Many of the simulations referenced here (Schilling & Latini
2010; Thornber et al. 2010, 2011; Grinstein et al. 2011; Hahn et al. 2011; Malamud et al.
2014) were implicit large-eddy simulations that did not include physical mass diffusivity,
viscosity or thermal conductivity.

In recent decades, the construction of powerful lasers for ICF research has enabled a new
generation of experiments on shock-induced instabilities and mixing in the HED regime.
Some of the earliest of these experiments were conducted by Dimonte & Remington
(1993) and Peyser et al. (1995). Both teams made measurements of instability growth
resulting from single-shock impact on a perturbed interface between an ablator material
(e.g. beryllium or plastic) and a lower-density foam. The shock – which converted the solid
materials to plasmas – was driven by an X-ray bath, generated via laser irradiation of the
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interior of a cylindrical hohlraum. Dimonte & Remington (1993) claimed observations of
linear growth and saturation, while Peyser et al. (1995) claimed observations of nonlinear
growth. Both teams leveraged radiation hydrodynamics simulations for experimental
design and analysis. Numerous studies built upon the early work by Dimonte & Remington
(1993) and Peyser et al. (1995) using similar but increasingly sophisticated experimental
techniques (with increasingly powerful lasers) and numerical tools. Dimonte et al. (1996)
performed additional experiments with variations in the shock strength and Atwood
number. Holmes et al. (1999) further analysed the data from Dimonte et al. (1996) and
included comparisons with two-dimensional (2-D) simulations from three different codes.
Robey et al. (2003) presented experimental measurements and computations of instability
growth in a laser experiment. Their inquiry focused on questions regarding the transition
to turbulence. Glendinning et al. (2003) conducted a related set of experiments and
evaluated various analytic models for growth rates. All of the HED experiments cited
thus far in this paragraph used nominally single-mode sinusoidal initial perturbations,
except for the Peyser et al. (1995) experiments (which used sawtooth perturbations),
and all of them involved a single laser-driven shock. Malamud et al. (2013) and Di
Stefano et al. (2015) discussed experiments involving multimode perturbations, along with
supporting simulations. Welser-Sherrill et al. (2013) presented an experiment featuring
two independent halfraums, one to drive a first shock and one to drive a reshock.
The Reshock Campaign platform (Nagel et al. 2017) evolved from the designs by
Welser-Sherrill et al. (2013). Haines et al. (2013) conducted 3-D implicit large-eddy
simulations of the Welser-Sherrill et al. (2013) experiments. Recently, Desjardins et al.
(2019) presented a new experimental program to investigate mixing after three or more
shocks.

Ideally, an experimental analysis of transition and turbulence requires temporally
and spatially resolved measurements of fields like the fluid velocity and density (Pope
2000; Davidson 2015). Per this criterion and as of this writing, the diagnostics for
HED experiments are generally much less mature than those for non-HED shock-tube
experiments, reflecting the unique challenges of diagnostic development for HED science.
For example, in most of the NIF shots in the Reshock Campaign, the only measurement
that could be made with reasonable reliability was the total mixing-layer width at a single
instant in time per shot. Compared to their shock-tube analogues, HED experiments on
instabilities and mixing do offer the advantage (Nagel et al. 2017) of greater precision
when specifying the interface initial perturbation, which is typically machined into a solid
material. The Reshock Campaign also leveraged the ability to independently adjust the
first-shock and reshock strengths in its experiments.

This paper is organized in sections. Section 2 gives a detailed overview of our
computational investigation and its principal objectives. Section 3 discusses simulation
methodology, including governing equations, material properties, numerical methods and
procedures for tuning boundary and initial conditions to experimental data. Sections 4
and 5 present results and analyses of statistical quantities extracted from the simulations.
Section 6 summarizes conclusions. Supporting methodological details, further analyses,
derivations and movies are provided in the appendices and supplementary material
available at https://doi.org/10.1017/jfm.2020.1122.

2. Overview and objectives

Figure 1 depicts the computational domain used for all simulations in the present study.
The domain comprises three materials, initially separated into regions. The main ablator,
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y

WH

WL

WR

W = WH + WL + WR 
Tr (x = 0, y, z, t) = Tr, main (t)
Tr (x = W, y, z, t) = Tr, reshock (t)

L

L

x

z

H

L

R

Figure 1. Schematic of the simulation domain (not to scale). The symbols MH , ML and MR denote the main
ablator (CHI), foam (CRF) and reshock ablator (PAI) materials, as described in the text. For all cases considered
here, the region dimensions are WH = 550 μm, WL = 4100 μm, WR = 150 μm and L = 200 μm. Therefore,
the total x-extent is W = 4800 μm. Rippled lines denote the initial perturbation at the MH–ML interface. The
spectral content of the rippled lines is for illustration only. As discussed further in §§ 3.1 and 3.6.1, Tr is the
radiation temperature.

also called the heavy material and denoted MH , is an iodine-doped polystyrene plastic
with a nominal density of 1.43 g cm−3. The foam, also called the light material and
denoted ML, is a carbonized resorcinol formaldehyde (sometimes called an aerogel) with a
nominal density of 0.085 g cm−3. The reshock ablator, denoted MR, is a polyamide-imide
plastic with a nominal density of 1.43 g cm−3. Abbreviated names for the materials are
CHI for MH , CRF for ML and PAI for MR. The materials’ chemical compositions are
given in table 6. A multimode initial perturbation is applied to the MH–ML interface,
and both the MH–ML and ML–MR initial interfaces involve a smooth blending of mass
fractions across computational zones. The perturbation has a 2-D character, meaning that
it can be expressed principally as a deviation in x as a function of y, plus lower-amplitude,
higher-frequency noise that is a function of both y and z.

Periodic boundary conditions are applied at the outer surfaces normal to the y and z axes
(the spanwise directions). At the outer surfaces normal to the x axis (the axial direction),
outflow and time-dependent radiation temperature boundary conditions are applied. These
radiation temperature sources drive the formation and propagation of strong shock waves
through the domain. The source at x = 0 drives the main (or first) shock moving in the +x
direction, and the source at x = W drives the reshock moving in the −x direction. The main
shock strikes the MH–ML interface first, imparting to it a positive axial velocity. Later, the
reshock strikes the interface. Note that the terms first shock and reshock are used in this
document to refer to the shock waves themselves or to the corresponding interface-impact
events. The flow field near the interface reaches pressures of ∼2–35 Mbar, densities of
∼0.2–4.0 g cm−3 and temperatures of ∼6–60 eV (where 1 eV ≈ 11 605 K). At such
conditions, all the materials are plasmas with at least partial ionization. Each simulation
spans 50 ns of real time. Our principal interest here is in the detailed physics of post-shock
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instability growth, vortex formation and breakdown, turbulent transition and mixing at the
main-ablator–foam interface.

There are important similarities and differences between the computational model and
the experimental geometry of a Reshock Campaign NIF target. That geometry is described
fully by Nagel et al. (2017), Wang et al. (2018) and Huntington et al. (2020). In the
experiments, the main ablator region consisted of several plastic components of different
compositions but approximately the same density – a design created to optimize quality
of X-ray radiographs of the mixing layer (Huntington et al. 2020). Here, we instead treat
the main ablator region as a monolithic block of a single material. Early calculations, not
detailed here, indicated that the consequences of this simplification on shock propagation
were minimal. Similarly, the model treats the foam region as a monolithic block of a single
material, rather than a density-matched assembly of different foams as in the experimental
targets. The reshock ablator region is a single material in both the model and experiments.

The caption of figure 1 gives the dimensions of the simulated regions. The axial
dimensions WH , WL and WR are taken directly from the experiments. The spanwise
dimension L is much less than the corresponding dimensions in the experiments, which
were Ly,exp = 2500 μm and Lz,exp = 1900 μm. Our model choice for L was determined
mainly by constraints on computing resources. Moreover, the simulations do not include
any treatment of the walls surrounding the plastic–foam–plastic package, nor any of the
diagnostics and mounting hardware inside the NIF. Likewise, the cylindrical halfraums –
which, in figure 1, would be located at the −x and +x extremes outside the domain – are
excluded. The physics of X-ray generation due to laser-energy deposition on the halfraum
walls (Atzeni & Meyer-ter-Vehn 2004) are beyond our scope. In the present study, those
physics are reduced to the radiation temperature boundary conditions at x = 0 and x = W.
In summary, the model is best viewed as a simplified representation of a narrow central
core, with square cross-section, of a physics package from the experiments.

All simulations are executed with the radiation hydrodynamics code ARES. As
discussed in § 3, ARES is based on an arbitrary Lagrangian–Eulerian algorithm, and
it includes an adaptive mesh refinement (AMR) capability. It approximately solves
the governing equations for a multispecies compressible ionized fluid with radiation
transport. It incorporates models for complex equations of state and radiative opacities,
the thermodynamic equilibration of multispecies mixtures within a zone and the physical
transport processes of mass diffusion, viscous dissipation and thermal conduction.
Thermal conduction consists of distinct ion and free-electron contributions. There is
no explicit model of unresolved subgrid scales. For the plasmas considered here, the
continuum assumption is reasonable and the use of a Navier–Stokes-based modelling
strategy is justified; the supplementary material provides quantitative support for these
claims.

How to classify the simulations in the present study merits discussion. We choose
not to use the term large-eddy simulations (LES), because it is most often used to
mean simulations – like those by Hill et al. (2006), Lombardini et al. (2011) and
Lombardini et al. (2012) – involving an explicit subgrid-scale (SGS) model and based
on a rigorous separation of resolved and unresolved length scales (Sagaut 2006). The
term implicit large-eddy simulations is potentially misleading in the present context,
because it is often used to mean simulations with no treatment of physical mass
diffusivity, viscosity or thermal conductivity (Sagaut 2006; Grinstein, Margolin & Rider
2007). The term direct numerical simulations (DNS) (Pope 2000; Davidson 2015) is
inappropriate here because the analysis below indicates that the simulations do not
resolve all length scales in the mixing plasmas. Accordingly, we will instead describe
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Resolution Coarse Medium Fine

�x0 (μm) 10.0 7.14 5.00
�x2 (μm) 1.11 0.794 0.556
Nx,0 — 480 672 960
Nx,2 — 4320 6048 8640
Nyz,0 — 20 28 40
Nyz,2 — 180 252 360
Ndom,0 (106) 0.192 0.527 1.54
Ndom,2 (106) 140 384 1120
N (t = 0 ns) (106) 2.72 6.48 16.0
N (t = 50 ns) (106) 16.2 44.6 109

Cost (106 core-hours) 0.0967 0.223 1.29

Table 1. Summary of the three baseline simulations. Various properties of the simulation meshes are listed:
�x0 (= �y0 = �z0) and �x2 (= �y2 = �z2) are the edge lengths of the cubic zones, on the coarsest and
finest levels of AMR, called level 0 and level 2, respectively; on the respective AMR levels, Nx,0 and Nx,2 are
the numbers of zones counted linearly along the x axis, and Nyz,0 and Nyz,2 are the numbers of zones counted
linearly along either the y or z axis; Ndom,0 and Ndom,2 are the total numbers of zones in the entire domain, if it
were fully discretized at the respective AMR levels; and N is the actual instantaneous number of active zones
across all AMR levels. The quantities Ndom,0 and Ndom,2 are provided for reference only, and neither reflects
a realistic simulation state. Note that Ndom,2/N is a metric of instantaneous AMR efficiency, i.e. a ratio of the
number of zones in a fully resolved simulation to the active number of zones when using AMR. See § 3.3 for
additional details about AMR. All lengths and all large numbers of zones are rounded to three significant digits
for brevity. The last row of the table lists the cost of each simulation in millions of core hours. All simulations
were executed on supercomputing resources at Lawrence Livermore National Laboratory, using ∼1000–2200
cores per simulation. For post-processing, the simulation state was saved every 0.50 ns for the coarse- and
medium-resolution cases and every 0.25 ns for the fine-resolution case.

the simulations only as Navier–Stokes-based multiphysics simulations: they are 3-D fluid
simulations with physical models of mass diffusivity, viscosity and thermal conductivity,
but without an explicit SGS model and without sufficient resolution to achieve the DNS
limit.

The present study is structured with these limitations in mind. Section 3 describes
physics-model selection and a boundary- and initial-condition tuning procedure designed
to bring the simulations into rough agreement with experimental data from the Reshock
Campaign, including some data not previously published. Sections 4 and 5 analyse
statistical quantities, derivable from the simulations but mostly not measurable in the
experiments. Because the simulations are under-resolved (i.e. numerical dissipation is
expected to be significant compared to sources of physical dissipation), they are repeated
using three increasingly refined computational meshes. Some quantities of interest are very
sensitive to the choice of mesh; others are not. Ultimately, the resolutions are adequate
to draw meaningful conclusions, despite falling short of DNS requirements. Table 1
summarizes various metrics from the three cases.

The simulations are designed to evoke a natural comparison with the non-HED-flow
simulations described in § 1. Compare figure 1, for example, with figure 1 in Hill
et al. (2006) or figure 1 in Tritschler et al. (2014). To better understand how the HED
mixing problem is similar to or different from a canonical non-HED analogue, consider
table 2. It reports several important dimensionless numbers, estimated from the study
by Hill et al. (2006) and from the present study and defined as follows (White 2006;
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Incropera et al. 2007):

Re = ρUL
μ

, Pr = μcp

κ
, Sc = μ

ρD
, At = ρH − ρL

ρH + ρL
, Ma = uh

cs
,

Pe(c) = RePr = ρcpUL
κ

, Pe(d) = ReSc = UL
D

.

(2.1a–g)

The Reynolds number Re is a ratio of inertial to viscous forces; the Prandtl number Pr
is the ratio of momentum diffusivity μ/ρ to thermal diffusivity κ/(ρ cp); the Schmidt
number Sc is the ratio of momentum diffusivity to mass diffusivity; the Atwood number
At quantifies the density difference across an interface; the Mach number Ma quantifies
compressibility; the Péclet number for thermal conduction Pe(c), here called the conductive
Péclet number, is a ratio of advective to conductive rates of heat transfer; and the Péclet
number for mass diffusion Pe(d), here called the diffusive Péclet number, is a ratio
of advective to diffusive rates of mass transfer. In (2.1a–g), ρ is the density, U is a
characteristic velocity magnitude, L is a characteristic length, μ is the viscosity, cp is
the specific heat capacity at constant pressure, κ is the thermal conductivity, D is the mass
diffusivity, uh is the shock speed and cs is the speed of sound in the unshocked fluid.

The two flows have similar post-first-shock Atwood numbers. Their Reynolds numbers –
based on the post-reshock mixing-layer width at late time and on the averaged post-reshock
mixing-layer growth rate – are large and of the same order of magnitude. The Schmidt
numbers and diffusive Péclet numbers are similar. The main-shock Mach numbers of the
HED flow are significantly larger than those of the non-HED flow. Most strikingly, the
Prandtl number of the non-HED flow is over 50 times larger than that of the HED flow,
and the conductive Péclet number of the non-HED flow is over two orders of magnitude
larger than that of the HED flow. These substantial differences in Pr and Pe(c) result
principally from differences in the thermal conductivity. Indeed, κ in an HED plasma is
typically large, due to efficient thermal conduction by free electrons (which are absent
from non-ionized fluids). Atzeni & Meyer-ter-Vehn (2004) note that electrons play an
important role in transporting energy in ICF.

Thus, table 2 suggests that a critical comparison of non-HED and HED shock-induced
mixing should scrutinize the role of electron thermal conduction in the HED flow.
Therefore, in addition to the baseline simulations, we conduct a set of companion
simulations called cold-Péclet-number variations (CPVs), in which the mechanism of
electron thermal conduction is removed. The designs of the baseline simulations and
CPVs are identical in every respect except for the inclusion or not of electron thermal
conduction. In particular, thermal conduction via heavy-particle collisions (i.e. ion–ion
collisions) is active in all simulations. For the finest-resolution CPV, the previously
described dimensionless numbers are all roughly the same as those in the third column
of table 2, except that Pr increases from 0.016 to 5.4 and Pe(c) increases from 3.3 × 103

to 1.2 × 106 – both much closer to the corresponding values for the non-HED or ‘cold’
flow. Also compare Pr ≈ 0.7 for air and Pr ≈ 7 for water at room temperature (White
2006). In § 5, we elaborate on the significance of the conductive Péclet number and analyse
the CPVs in detail. It is important to emphasize that the CPVs are not models of a real
physics scenario. Rather, they are numerical experiments, made possible using modern
computational tools. By comparing them with the baseline simulations, we elucidate how
the development of a mixing layer is affected by a physical mechanism that singularly
distinguishes the HED regime from the non-HED regime.

We conclude this section with several important comments about our overall
objectives. Three-dimensional simulations of instability growth and turbulence at HED
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Non-HED HED
Hill et al. (2006) Present study Ratio

Light fluid Air CRF plasma —
Heavy fluid SF6 CHI plasma —
Configuration light–heavy heavy–light —
L (cm) 27 0.020 —

Re 9.5 × 105 2.1 × 105 4.5
Pr 0.81 0.016 52
Sc 0.63 0.68 0.92
Pe(c) 7.6 × 105 3.3 × 103 230
Pe(d) 5.9 × 105 1.4 × 105 4.2
At 0.74 0.57 1.3
MaL 1.50 17 0.088
MaH 1.78 9.2 0.19

Table 2. Comparison of selected simulations of non-HED and HED shock-induced mixing, including several
key dimensionless quantities from (2.1a–g) and their non-HED-to-HED ratios. The non-HED example is
a simulation by Hill et al. (2006) of the Case VI experiment of Vetter & Sturtevant (1995). It features a
light–heavy configuration, meaning that the main shock moves from the light fluid into the heavy fluid.
The HED example is the finest-resolution baseline simulation in the present study. It features a heavy–light
configuration. For each case, L is the cross-section length. The quantities Re, Pr and Sc are calculated at selected
post-reshock late times: 10 ms in the non-HED case and 45 ns in the HED case. Each of these three quantities is
calculated using spanwise averages of fluid properties (ρ, μ, cp, etc.) near each of the two mixing-layer edges,
and the two resulting dimensionless numbers are averaged. When calculating Re, L is taken to be the total
mixing-layer width W , and U is taken to be the characteristic post-reshock growth rate Ẇ , estimated as a net
rate of change from the time of minimum post-reshock W to the time of maximum W . The Péclet numbers
Pe(c) and Pe(d) are calculated from products of the preceding numbers in the table. The Atwood number At
is calculated at selected times shortly after main-shock impact, using densities at the mixing-layer edges:
1 ms in the non-HED case and 12 ns in the HED case. In the HED case, note that the materials’ post-shock
densities are substantially larger than their pre-shock densities. The Mach numbers MaL and MaH correspond
to main-shock conditions in the light and heavy fluids, respectively, at early times. For example, in the non-HED
case, MaL is calculated using properties of the incident main shock, and MaH is calculated using properties
of the transmitted main shock. The non-HED values are based on table 2, figure 5 and figure 6 of Hill et al.
(2006) and on table 1 of Vetter & Sturtevant (1995), neglecting any changes in the properties μ, cp, κ or D of
the gases due to shock heating. For the HED case, those properties are extracted directly from the simulation,
thereby leveraging the models described in § 3.

conditions constitute a nascent scientific field, especially by comparison to those at
non-HED conditions. With few exceptions (Haines et al. 2013, 2016; Weber et al.
2014a; Morgan et al. 2018; Viciconte et al. 2019), there has been little consideration
given to traditional statistical analysis (Pope 2000; Davidson 2015) of transition and
turbulence in 3-D HED-flow simulations. To the best of our knowledge, the formalism
of explicit-SGS-model LES (Sagaut 2006) has never been applied to an HED problem. At
modern HED-science research facilities like the NIF, leadership-class computations have
been crucial to the design and analysis of new experiments. For example, Clark et al. (2013,
2019) performed elaborate 3-D simulations of ICF implosions, incorporating numerous
physical models to both replicate prior experimental observations and inform future
experiments. Instability growth and mixing were only a few of the many multiphysics
processes involved in those simulations.

Compared to the scope of those works, our focus here is both narrower and deeper. We
do constrain our baseline computational model to available experimental data. However,
achieving optimal experimental–computational agreement using best-available tools is not
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J.D. Bender and others

the principal aim of this work. Instead, our simulations are designed to be as transparent
and reproducible as possible, while still capturing all relevant physical mechanisms with
reasonable fidelity. This philosophy leads us to deliberately choose some physics models
(e.g. quasi-analytic equations of state, instead of tabular equations of state tailored to each
material) known to be of lower accuracy than others, if the chosen models are simpler to
implement, easier to understand and/or better documented in the literature. Transparency
and reproducibility are tightly coupled to our goals of (i) drawing clear parallels between
the present simulations and their non-HED analogues and (ii) isolating and understanding
the impact of a unique mechanism in HED fluid mechanics – electron thermal conduction –
on shock-induced mixing. Our hope is that the investigation described herein will help
facilitate the burgeoning cross-disciplinary dialogue between researchers in traditional
fluid mechanics and HED science.

3. Methodology

3.1. Equations of fluid motion
The simulations model a multispecies compressible plasma with energy apportioned
among ions, free electrons and radiation, which are denoted by the subscripts n, e and
r, respectively. The Ns different species are indexed by a = 1, . . . ,Ns. The governing
equations are

∂ρ

∂t
+ ∂

∂xj

(
ρuj

) = 0, (3.1)

∂

∂t
(ρYa) + ∂

∂xj

(
ρYauj

) = −∂Ja,j

∂xj
, (3.2)

∂

∂t
(ρui) + ∂

∂xj

(
ρuiuj

) = − ∂p
∂xi

+ ∂σij

∂xj
, (3.3)

∂En

∂t
+ ∂

∂xj

[
(En + pn)uj

] = ∂

∂xj

(
σijui − qn,j −

Ns∑
a=1

hn,aJa,j

)
− Q̇ne, (3.4)

∂Ee

∂t
+ ∂

∂xj

[
(Ee + pe)uj

] = −∂qe,j

∂xj
− coκpρ

(
4σoT4

e

co
− Er

)
+ Q̇ne, (3.5)

∂Er

∂t
= ∂

∂xj

(
coΥ

ρκr

∂Er

∂xj

)
+ coκpρ

(
4σoT4

e

co
− Er

)
, (3.6)

where xi = (x1, x2, x3) = (x, y, z) is the position vector, t is time, ρ is the fluid density,
ui is the fluid velocity vector, Ya is the mass fraction of species a, Ja,j is the diffusive
mass flux vector for species a, p is the total pressure, σij is the viscous stress tensor,
En is the ion energy per unit volume, pn is the ion pressure, hn,a is the specific ion
enthalpy of species a, qn,j is the heat flux vector for ion thermal conduction, Ee is the
electron energy per unit volume, pe is the electron pressure, qe,j is the heat flux vector
for electron thermal conduction, Te is the electron temperature, Q̇ne is the ion–electron
energy coupling term, Er is the radiation energy per unit volume, co is the speed of light
in a vacuum, σo is the Stefan–Boltzmann constant (≈ 5.670 × 10−5 erg cm−2 s−1 K−4),
Υ is the radiation diffusion flux limiter and κr and κp are the Rosseland and Planck mean
opacities, respectively. The total energy per unit volume E is the sum of the contributions
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from ions, free electrons and radiation

E = En + Ee + Er. (3.7)

A similar set of governing equations was considered by Morgan et al. (2018). Species
equations of state (EOSs), discussed in § 3.2 and appendix A.1, provide additional
relationships between thermodynamic variables like ρ and p. In the plasmas under
consideration, self-generated magnetic fields are small and magnetohydrodynamics can
be reasonably neglected; the supplementary material provides quantitative support for
these claims. Straightforward calculations show that gravity and nuclear reactions can
be reasonably neglected. Finally, we ignore material-strength phenomena (e.g. elastic
deformation) and non-equilibrium chemistry, which are not expected to significantly
impact the flow dynamics of interest and which are (to some extent) implicitly captured in
the boundary-condition tuning procedure of § 3.6.1.

Equation (3.1) is the conservation of total mass equation, and (3.2) states Ns
conservation of species mass equations, one for each of the three materials MH , ML
and MR. Each material is treated as a single effective species a with a number-averaged
atomic number Za and atomic weight Aa. Although MH and MR are each composed of
multiple chemical elements per table 6, the fluid dynamics of the individual elements is
not considered. Accordingly, the terms species and material are used interchangeably to
describe the simulations. Note that (3.1) and (3.2) are redundant since

∑Ns
a=1 Ya = 1; it is

sufficient to solve Ns − 1 species mass conservation equations along with (3.1). We use a
Fickian diffusion approximation

Ja,j = −ρD
∂Ya

∂xj
, (3.8)

satisfying
∑Ns

a=1 Ja,j = 0. In (3.8), D is the mass diffusivity, a material property discussed
in § 3.2 and appendix A.5.

Equation (3.3) states the Navier–Stokes equations for conservation of momentum in
each of the three coordinate directions. The deviatoric, symmetric viscous stress tensor is

σij = 2μ
(

Sij − 1
3
∂uk

∂xk
δij

)
, (3.9)

where

Sij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(3.10)

is the rate of strain tensor and μ is the viscosity, a material property discussed in § 3.2,
appendix A.5 and the supplementary material. Note that momentum transport is assumed
to be due to ions only; the momentum of free electrons is not considered (nor is their
mass).

Equation (3.4) is the equation for conservation of energy of the ions. The ion energy per
unit volume consists of internal and kinetic energy components; it is

En = ρ
(
En + 1

2 uiui

)
, (3.11)

where En is the specific ion internal energy (i.e. the internal energy stored in the ions
per unit fluid mass), computed from the EOSs. The right-hand side of (3.4) includes a
term involving Ja,j that is required for flows with multispecies diffusion (Cook 2009).
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The species-a specific ion enthalpy hn,a is discussed further in appendix A.4. The heat
flux vector for ion thermal conduction is

qn,j = −κn
∂Tn

∂xj
, (3.12)

where Tn is the ion temperature and κn is the ion thermal conductivity, a material property
discussed in § 3.2 and appendix A.5.

Equation (3.5) is the equation for conservation of energy of the free electrons. The
electron energy per unit volume is Ee = ρEe, where Ee is the specific electron internal
energy (i.e. the internal energy stored in the free electrons per unit fluid mass), computed
from the EOSs. The heat flux vector for electron thermal conduction is

qe,j = −κe
∂Te

∂xj
, (3.13)

where Te is the electron temperature and κe is the electron thermal conductivity, a material
property discussed in § 3.2 and appendix A.6. The ion–electron energy coupling term is

Q̇ne = ρcv,eKne (Tn − Te) , (3.14)

where Kne is a coupling coefficient calculated from the approximate model of Brysk (1974,
(35)), which was derived by considering ion–electron collisions in an ideal gas including
Fermi–Dirac electron statistics. In (3.14), cv,e = (∂Ee/∂Te)ρ is the specific electron heat
capacity at constant volume, a material property calculated from the EOSs. Note that the
opposite of Q̇ne is added to (3.4).

Equation (3.6) is the radiation transport equation for conservation of radiation energy.
The radiation energy per unit volume Er is treated as grey, meaning that it represents an
integral over energies at each photon frequency. It is related to the radiation temperature
Tr through

Er = 4σoT4
r

co
. (3.15)

Equation (3.6) is derived from a more complete description of radiative transfer (Castor
2004, (4.24)) by making a diffusion approximation, i.e. that photon mean free paths are
small relative to other length scales (Brunner 2002; Castor 2004). The flux limiter is

Υ =
(

3 + 1
ΥoρκrEr

[
∂Er

∂xk

∂Er

∂xk

]1/2
)−1

, (3.16)

which is called a sum flux limiter per Olson, Auer & Hall (2000, (9)) and Castor (2004,
(11.76)). The constant Υo, which may be viewed as an additional tuning parameter, is set
to unity here. The flux limiter serves to prevent unphysical wave propagation velocities, as
explained by Olson et al. (2000) and Castor (2004). See Castor (2004) for a comprehensive
discussion of radiation transport, and see Levermore & Pomraning (1981) and Pomraning
(1982) for foundational work on flux limiters in radiation diffusion equations. We assume
that radiation pressure is negligible, which is a reasonable assumption at the moderate
densities and the not extremely high (i.e. sub-keV) temperatures considered here.

As mentioned in § 2, a principal goal of the present study is to enable comparisons
between the HED flows of the Reshock Campaign and their non-HED analogues. It
is instructive to compare (3.1)–(3.6) to the governing equations in the simulations
of Hill et al. (2006) or those of Tritschler et al. (2014). Excepting any convolution
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Shocked HED mixing

with LES filtering operators, the underlying equations for conservation of total mass,
species mass and momentum in these non-HED computational studies are identical to
those in the present study. Conversely, the HED case involves three distinct, coupled
equations for conservation of energy – including distinct terms for ion and electron
thermal conduction – while the non-HED cases each involve a single equation for
conservation of energy. Section 5 investigates the role of electron thermal conduction in
detail.

3.2. Material properties
This section briefly summarizes the models for properties of the three pure materials MH ,
ML and MR (each treated as a single species) and of multispecies mixtures. Appendix A
provides detailed elaboration on all of the models described in this section, including key
EOS and opacity model parameters needed to reproduce all the simulations in the present
study.

Equations (3.1)–(3.6) and the associated models are based on the foundational
assumption that the pressure p and specific internal energy El of a material can be separated
into contributions due to ions and free electrons (Zel’dovich & Raizer 2002; Ramshaw &
Cook 2014). For a single species, the total pressure p is expressed as the sum of the ion
(partial) pressure pn and the electron (partial) pressure pe

p = pn + pe. (3.17)

Similarly, the specific total internal energy El is

El = En + Ee. (3.18)

Ion motion is associated with the ion temperature Tn, and free-electron motion with the
electron temperature Te. For the present study and for a single species, pressures and
specific internal energies are expressed in terms of densities and temperatures using the
quotidian equation-of-state (QEOS) model of More et al. (1988). The degree of ionization
Z∗, defined as the number of free electrons per nucleus, is given by an analytic fit (More
1991) to numerical results from Thomas–Fermi theory (Feynman, Metropolis & Teller
1949). The Rosseland and Planck mean opacities, κr and κp, respectively, are modelled
using an analytic form suggested by Atzeni & Meyer-ter-Vehn (2004).

Multispecies mixtures within a computational zone are treated using a free-electron-
biased thermodynamic equilibration framework (Ramshaw & Cook 2014), which defines
an effective multispecies EOS in terms of the single-species EOSs. Degrees of
ionization and opacities of multispecies mixtures are defined as explicit functions of the
single-species quantities.

The coefficients for transport processes involving ions – the mass diffusivity D, viscosity
μ and ion thermal conductivity κn – are derived from kinetic theory (Hirschfelder, Curtiss
& Bird 1954; Chapman & Cowling 1970). The relevant collision integrals are calculated
using a screened Coulomb potential to treat ion–ion binary collisions (Stanton & Murillo
2016). The electron thermal conductivity κe is derived from an analysis (Lee & More 1984)
of the Boltzmann equation for the electron distribution function and from subsequent work
(Managan 2015).

3.3. Numerical methods
Approximate solutions to (3.1)–(3.6) were obtained using the radiation hydrodynamics
code ARES. The code implements an arbitrary Lagrangian–Eulerian (ALE) scheme
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based originally on work by Sharp & Barton (1981). Each time step consists of a
Lagrangian phase, in which the mesh moves with the flow, and a remap (or advection)
phase, in which (i) the mesh is relaxed (without altering the flow field) towards its
previous state by a relative amount J ∈ [0, 1] and (ii) the flow field is interpolated
onto the new mesh. For the present study, we always ran ARES in the J = 1
full remap mode. This yielded simulations that were effectively Eulerian only, with
no net Lagrangian distortion of the mesh. When running in this mode and except
near flow discontinuities, the spatial discretization scheme is second-order accurate.
Explicit time integration is performed using a second-order predictor–corrector scheme
(Darlington, McAbee & Rodrigue 2001). Artificial viscosity (originally proposed by
von Neumann & Richtmyer (1950) and discussed in detail by Richtmyer & Morton
(1967)) is added to maintain numerical stability near shocks. In the present study,
the artificial viscosity scheme incorporates a monotonic limiter, based approximately
on the van-Leer-type flux limiters (van Leer 1979) used widely in approximate
Riemann solvers (Toro 2009). Ion thermal conduction, electron thermal conduction
and radiation diffusion are treated using a first-order implicit-time operator-splitting
framework.

ARES incorporates an AMR capability via the SAMRAI library (Wissink et al. 2001). In
the present study, this capability granted major reductions in computational cost. Indeed,
throughout all the simulations, the regions of the domain featuring significant variation
in quantities like the species mass fractions or the total pressure comprised only small
fractions of the total length W in figure 1. Beginning with a uniform Cartesian level-0 mesh
with cubic zones of edge length �x0, we allowed for two levels of AMR. On the level-1
and level-2 meshes, the edge lengths were �x1 = �x0/3 and �x2 = �x1/3 = �x0/9,
respectively. See table 1 for additional specification of the simulation meshes. Refinement
criteria were designed such that the maximum-resolution level was active at or near any
sharp gradient in density or electron pressure, any non-negligible MH–ML mixing and
both the x = 0 and x = W edges of the domain (where the main shock and reshock formed
at early time).

The simulations were monitored carefully to ensure robustness of all critical algorithms.
Frequent checks were made to ensure that maximal mesh refinement was maintained,
with large buffers, around all flow features of interest at all times. Matrix inversion
operations, particularly those involved in calculating ion and electron thermal conduction
and radiation diffusion, were watched. Excellent convergence behaviour was observed
in all cases. Iterative methods used to equilibrate multispecies mixtures within zones,
as discussed in § 3.2 and appendix A.4, were also audited. Again, excellent convergence
behaviour was observed in all cases.

For detailed analysis of the numerical performance of ARES, including comparisons
between ARES and a higher-order Eulerian code, see Olson & Greenough (2014).
Numerical properties of the ARES solver are also discussed by Morgan & Greenough
(2016), Thornber et al. (2017) and Morgan et al. (2018). All four of those works applied
ARES to problems with instability growth and multispecies mixing. Bowers & Wilson
(1991) and Castor (2004) are general references on the design of radiation hydrodynamics
codes. We reiterate that our present focus is on the physics of HED shock-induced mixing,
not on numerical analysis of the ARES solver nor on implementation of algorithms. Thus,
for example, we do not attempt to quantify the numerical dissipation of the ARES ALE
scheme (as do Olson & Greenough (2014)). Instead, we draw physical conclusions based
on simulation-derived quantities of interest, while scrutinizing the sensitivity of those
quantities to mesh resolution.
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3.4. Warm initially stable interface approximation
The EOS model used in the present study describes matter in the solid, liquid, gas or
plasma states; see appendix A.1. In the NIF experiments, the CHI, CRF and PAI materials
were all initially solids, before they were driven into the HED regime. However, we do not
expect that phenomena unique to the solid state, such as elastic deformation or the crushing
of voids in the porous foam, had significant roles in post-shock CHI–CRF instability
growth and mixing.

Accordingly, to simplify our simulations and enable clearer comparisons with non-HED
reshock studies, we opt to altogether bypass the solid-state thermodynamic regimes of the
materials. Two choices are made in our simulations. First, the entire domain is initialized
with Tn = Te = 1 eV, sufficiently above the boiling temperatures of MH , ML and MR.
At these temperatures and at the densities stated in § 2, the total pressures in the three
materials are different, e.g. by approximately 0.22 Mbar for MH and ML. Consequently,
if no other action were taken, pressure imbalances would cause displacement of the
interfaces before arrival of the shock waves. Therefore, second, the following constraints
are imposed: at each time step, local mixture-equilibrated pressures are calculated and,
if either the electron pressure pe or the ion pressure pn is less than 0.4 Mbar, then the
pressures used in the discretized forms of (3.3)–(3.5) are set to zero. These constraints
keep the MH–ML and ML–MR interfaces stable until they are impacted by the first shock
and reshock, respectively, which exhibit pressures well above the 0.4 Mbar threshold. The
pressure-based constraints are removed after both interfaces are shocked, i.e. after both
shocks have transmitted into the ML region.

We call this scheme the warm initially stable interface (WISI) approximation. It
considerably simplifies our analysis by ensuring that all materials are always in a state
credibly described by the equations of fluid mechanics. Also, it nearly eliminates thermal
conduction at the interfaces before arrival of the shock waves, thereby ensuring that, at
a given resolution, the pre-shock interfaces in the baseline simulation and the CPV are
nearly identical. (Note that the WISI approximation does not prevent mass diffusion,
which is associated with some energy transfer at the interfaces via (3.4). However,
this effect is minor. For example, simulated temperatures at the edges of the MH–ML
interface at 10 ns deviate from the initial temperature by <0.002 eV.) In preliminary
calculations, we observed little sensitivity of shock trajectories to the precise values, within
reasonable bounds, of the initial temperature and the pressure threshold used in the WISI
approximation.

3.5. Statistical averaging
Much of the analysis in §§ 4 and 5 is based on statistical averaging of flow variables in the
mixing layers. Let φ be any flow variable, which in general is a function of x, y, z and t.
Following the conventions in Sagaut & Cambon (2008), Chassaing et al. (2010) and Gatski
& Bonnet (2013), let φ be the Reynolds average, φ′ the Reynolds fluctuation, φ̃ = ρφ/ρ̄

the Favre average and φ′′ the Favre fluctuation, with φ ≡ φ + φ′ and φ ≡ φ̃ + φ′′. The
Reynolds average (·) is defined as a mean over an ensemble of flows. However, here, spatial
averaging over the y and z spanwise directions is employed as a surrogate for ensemble
averaging, as is commonly done in computational studies of mixing layers

φ = φ(x, t) = 1
L2

∫ L

0

∫ L

0
φ(x, y, z, t) dy dz. (3.19)

The supplementary material provides additional discussion of averaging operators.
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Consider the MH–ML mixing region at time t. Call the −x edge of the mixing region
(closest to pure-MH plasma) the bubble front xb(t), and call the +x edge of the mixing
region (closest to pure-ML plasma) the spike front xs(t). These terms are motivated by
conventions for RM or RT instability growth: a bubble is low-density fluid penetrating
into high-density fluid, and a spike is high-density fluid penetrating into low-density fluid
(Atzeni & Meyer-ter-Vehn 2004). Then, the total mixing-layer width is

W(t) = xs(t) − xb(t). (3.20)

For any flow variable φ, the mixing-layer average of φ is

〈〈φ〉〉(t) ≡ 1
W(t)

∫ xs

xb

φ(x, t) dx. (3.21)

The mixing-layer integral of φ is


φ�(t) ≡ 1
W

∫ xs

xb

φ(x, t) dx, (3.22)

where W is the total x-extent of the domain per figure 1. Here, 
·� should not be mistaken
for the mathematical floor function. The distinction between 〈〈φ〉〉 and 
φ� is subtle but
important. If φ is equal to a constant φo, then 〈〈φ〉〉 is identically φo, while 
φ� = φoW/W
is proportional to the total mixing-layer width W . Both 〈〈φ〉〉 and 
φ� have the same units
as φ. In general, the 
·� operator is better suited to extensive properties that might be
expected to increase with mixing-layer size, while the 〈〈·〉〉 operator is better suited to
intensive properties. Note that the normalizing constant W is included in the definition
of 
·� principally to simplify dimensional analysis. We choose to use W because it is an
easily measured parameter in the NIF experiments and is unlikely to change in future
versions of the present simulations. However, alternate choices for the constant could be
made with no impact on our conclusions.

The following method is used to calculate xb and xs at a given t. First, compute the
Reynolds-averaged mass fraction YL(x) of the light material ML: YL is zero for small
x, rises to one after traversing the MH–ML mixing region, and drops to zero again
after traversing the ML–MR interface. Importantly, in the present simulations (and in
the experiments), the main ablator never mixes completely through the foam, i.e. there is
always some region of pure foam located between the main ablator and the reshock ablator.
Let xb be the first point, starting in the pure MH plasma and scanning in the +x direction,
for which YL = Y∗. Let xs be the first point, starting in the pure ML plasma and scanning
in the −x direction, for which YL = 1 − Y∗. Here, Y∗ is a mass-fraction threshold, taken
to be 0.01 in all cases, i.e. a 1 %–99 % criterion defines the mixing-layer boundaries. The
choice for Y∗ is somewhat arbitrary. Setting Y∗ = 0.01 gave a reasonable correspondence
to experimentally determined bubble and spike fronts from the X-ray radiographs. Indeed,
a relatively small amount of MH–ML mixing led to changes in X-ray transmission that
appeared as discernible mixing-layer edges in the NIF images (Huntington et al. 2020).
Importantly, we do not see evidence that any of the qualitative results in §§ 4 and 5 are
sensitive to the exact value of Y∗, provided that it is small. Plots and further discussion of
YL are included in § 4.2.

3.6. Tuning to experimental data
We next turn our attention to methodology for constraining the computational model to
available experimental data from the NIF. These data are incorporated into two critical
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elements of the simulations: (i) the radiation temperature boundary conditions, which
drive the formation of the main shock and reshock; and (ii) the initial perturbation at
the main-ablator–foam interface, which seeds instability growth.

3.6.1. Radiation temperature boundary conditions
Time-dependent radiation temperature boundary conditions, also called sources, are
applied to the x = 0 and x = W surfaces of the domain as depicted in figure 1. The
radiation temperature is set in the centres of ghost zones located just outside the edges of
the domain. The x = 0 boundary condition Tr,main(t) is the main-drive source, and the x =
W boundary condition Tr,reshock(t) is the reshock-drive source. The sources approximately
capture the effects of the X-ray baths inside the two laser-irradiated halfraums in the NIF
experiments. In this work, we do not attempt to derive the sources from detailed models
of the halfraums. Instead, we interpret Tr,main and Tr,reshock as adjustable functions of t,
and we tune them to achieve main-shock and reshock trajectories that are consistent with
experimental data from the Reshock Campaign. For the tuning procedure, shock positions
over time are determined by tracking characteristics (Anderson 2003) in a simplified
one-dimensional (1-D) version of the finest-resolution 3-D baseline simulation per table 1.
Appendix B provides justification for the use of a 1-D simulation in this way. The
tuning procedure is extremely important. It serves to calibrate the computational model –
including the diffusive treatment of radiation transport; the material EOSs, degrees of
ionization and opacities; and the WISI approximation for domain initialization – to
measurable quantities from the NIF. The radiation transport equation (3.6) is especially
crucial for modelling early-time shock formation near the x = 0 and x = W boundaries. In
a future study, if any substantial changes were made to the model as outlined in §§ 3.1–3.4,
then the tuning procedure would need to be repeated.

The following functional form is used for the two sources:

Tr(t) =
3∑

ι=1

B1,ι

(
t

B2,ι

)B3,ι

exp
(

− t
B2,ι

)
. (3.23)

This form allows for replication of typical qualitative features of radiation temperature
histories in NIF halfraums, i.e. a sharp initial peak in Tr followed by intermediate-time
stabilization and late-time decay. See, for example, figure 3(b) of Nagel et al. (2017). The
coefficients B1,1,B2,1, . . . are defined separately for Tr,main and Tr,reshock.

To set the coefficients, shock trajectories are compared to experimental data from three
different NIF shots. The first of these involved a standard Reshock Campaign target,
with two halfraums, as described in § 2. Using the techniques of Nagel et al. (2017)
and Huntington et al. (2020), an X-ray radiograph was taken at a time when both the
main shock and reshock were clearly visible in the foam region. Hence, this shot gave
measurements of the two shock positions at a known time. The second NIF shot used a
single-halfraum target consisting of only the main ablator region placed next to a block of
quartz. The velocity interferometer system for any reflector (VISAR) optical diagnostic
(Celliers et al. 2004) was used to measure shock speed in the quartz over time. In
particular, a measurement was made of the time for the shock to traverse the 550 μm
main ablator region, called the main-shock breakout time. The third NIF shot used a
single-halfraum target consisting of only the reshock ablator region placed next to a thin
block of aluminium followed by a larger block of quartz. The VISAR diagnostic was used
again to measure shock speed in the quartz over time. From this shot, it was possible (using
simulations not detailed here) to infer the time for the shock to traverse the 150 μm reshock
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Figure 2. Simulated main-shock and reshock trajectories (Sim) and comparison with experimental data (Exp),
with x the position in the coordinate system of figure 1 and t the time. The simulated trajectories are from a 1-D
version of the finest-resolution 3-D baseline simulation. Also plotted is the mixing-layer centre-plane position,
defined by (4.3), from the finest-resolution 3-D baseline simulation. Horizontal and vertical error bars on the
experimental data are shown only when larger than the symbol sizes. Appendix B elaborates on the use of
1-D calculations for analysing shock trajectories. The experimental data are tabulated in the supplementary
material.
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Figure 3. Radiation temperature sources, applied to the x = 0 and x = W boundaries. The sources are
defined by (3.23) and the coefficients in table 8.

ablator region, called the reshock breakout time. Quartz is a common material used when
making VISAR measurements in HED experiments, because strong shocks in quartz are
highly reflective. A full discussion of the VISAR technique, and the NIF shots in which
it was implemented, is beyond our scope. Celliers et al. (2004) discuss the technique in
detail.

Figure 2 plots the simulated main-shock and reshock trajectories when using the tuned
sources, along with the experimental data from the three NIF shots described in the
previous paragraph. Figure 3 plots the tuned sources Tr,main and Tr,reshock. Table 8 gives
the corresponding coefficient values.
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3.6.2. Interface initial perturbation
A multimode initial perturbation is applied to the MH–ML interface as schematically
depicted in figure 1. Specifically, the t = 0 material compositions of zones in the vicinity
of the x = WH plane are defined using a multistep procedure described in this section
and in appendix D. The procedure yields a computational representation that meets
several important criteria: (i) it captures key features of the physical perturbations in
the experiments; (ii) it is periodic in both the y and z directions with period L; (iii) it is
based on spectral modes whose wavelengths are reasonable compared to the zone size; and
(iv) it is based on a smooth analytic functional form that is formally independent of the
mesh. Our discussion uses the Fourier analysis conventions summarized in appendix E
and based on Press et al. (1992).

First define the total perturbation function

δx(y, z) = δ†
x ( y) + δ∗

x ( y, z) (3.24)

in the coordinate system of figure 1. It consists of two components, the
principal-perturbation function δ†

x and the noise-perturbation function δ∗
x . The

principal-perturbation function is only a function of y. When visualized as a 2-D surface,
it appears as a 1-D curve extruded into the z direction. It approximately corresponds to
the multimode profile specified in the experimental NIF target designs. In each target, a
perturbation was machined – via extruded cuts along one coordinate direction – onto one
surface of the main ablator, prior to assembly with the foam and other components. The
nominal profile was the same across all the experiments. No perturbation was machined
onto the foam, i.e. the extruded cuts in the main ablator were not mirrored by cuts in the
foam. The nominal profile only contains spectral modes with wavelengths ranging from
λ†

min = 10 μm to λ†
max = 20 μm, and its power spectral density has a top-hat shape.

The noise-perturbation function is a function of both y and z. It accounts for various
irregularities that might be expected in the NIF targets, such as machining imperfections,
foam heterogeneity, interfacial voids and local crushing of the foam as it is pressed against
the rippled main-ablator surface. While these irregularities have not been exhaustively
studied, their characteristic modes are expected to be of higher frequency and lower
amplitude than those in the nominal multimode profile. For example, characteristic pore
sizes in the foam have been observed to be sub-μm (Huntington et al. 2020). In the present
study, we choose to construct δ∗

x such that it only contains spectral modes with wavelengths
ranging from λ∗min = 2 μm (slightly larger than the zone edge length �x2 on the finest
AMR level of the coarsest mesh per table 1) to λ∗max = 5 μm and such that its power
spectral density has a top-hat shape. The values for λ∗min and λ∗max should be understood
as modelling choices; they are not explicit in the NIF target designs, in contrast to λ†

min
and λ†

max. Note that δ∗
x has an important role in the simulations, because it contributes to

symmetry breaking and three-dimensionality in the evolving flow.
Appendix D details the procedures for constructing δ†

x and δ∗
x . The latter procedure is

based on the approach of Thornber et al. (2017). The functions δ†
x and δ∗

x are designed
such that their amplitudes – or, more precisely, the standard deviations S† and S∗ of
suitably large numbers of samples of δ†

x and δ∗
x , respectively – are easily adjustable. Neither

function depends on the mesh resolution.
The total perturbation function δx is cast onto the simulation domain via specification

of zonal mass fractions near the x = WH plane. Each of these zones contains at most two
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species, MH and ML. Define the interface smoothing function by

ζ(s) = 1
2

[
1 + erf

(
s
ζo

)]
, (3.25)

where ζo is the interface smoothing length and erf is the error function. The initial mass
fraction of the light material in the interfacial zones is calculated according to

YL(x, y, z) = ζ (x − [WH + δx(y, z)]) . (3.26)

The initial mass fraction of the heavy material is YH = 1 − YL. Initial densities and
specific internal energies of the mixtures in the interfacial zones are calculated in the
natural way from those of the pure species MH and ML. In this work, ζo ≈ 1.076 μm,
a somewhat arbitrary choice based on characteristic amplitudes in the experimental
multimode profile. (Instead, ζo could be interpreted as an additional tuning parameter,
but we choose not to do so.) Notice that the interface smoothing function does not depend
on the mesh resolution. Thus, the computational representation of the interfacial region
converges under mesh refinement to the analytic form given by (3.25) and (3.26).

It remains to discuss how the amplitudes of the principal- and noise-perturbation
functions are set. The standard deviations S† and S∗ are adjusted until the computational
mixing-layer width W(t) from (3.20) agrees with experimental measurements at six
different times. The experimental data {Wexp,i} were acquired, using the technique
introduced by Huntington et al. (2020), from X-ray radiographs from six NIF shots
with nominally identical targets. One data point was acquired per shot. For this
tuning procedure, which involves multiple full-scale 3-D simulations, we use the
coarsest-resolution mesh described in table 1. Ultimately, setting S† = 0.37 μm and S∗ =
0.074 μm gives reasonable experimental–computational agreement, and these values for
S† and S∗ are held fixed across all the simulations described in this paper. For comparison,
the standard deviation of the experimental multimode profile was S†

exp = 0.59 μm. The
difference between S† and S†

exp reflects the many modelling simplifications described in
this section. Plots and further analysis of W(t) from the tuned simulations, including
comparison with {Wexp,i}, are included in § 4.1.

Figure 4 provides visualizations of the perturbation construction procedure. Shown are
the principal-perturbation function δ†

x in figure 4(a) and representative 1-D slices through
the noise-perturbation function δ∗

x and the total perturbation function δx in figures 4(b)
and 4(c), respectively. The ordinate-axis limits in figure 4(b) are different from those in
figures 4(a) and 4(c), reflecting the fact that S†/S∗ = 5. Per the definitions in appendix E,
figure 4(d) plots the δx radial power spectral density (RPSD), which exhibits two plateaus:
one corresponds to the principal-perturbation minimum and maximum wavelengths (10
and 20 μm, respectively), and the other corresponds to the noise-perturbation minimum
and maximum wavelengths (2 and 5 μm, respectively). By design, there is negligible
spectral power at the intermediate wavelengths between 5 and 10 μm. Figure 4(e)
plots the interface smoothing function ζ . Figure 4( f ) plots, for each of the three
baseline simulations, the RPSD of the heavy-material mass fraction YH at the interface
centre-plane. Thus, the RPSDs in figure 4( f ) – unlike those in figure 4(d) – include
the effects of encoding δx onto the discretized simulation domains. Good convergence
behaviour is seen in the plateaus of the RPSDs, as expected. The spectral power present at
the intermediate wavelengths from 5 to 10 μm results from the nonlinearity in ζ . Indeed,
we confirmed that the intermediate-wavelength spectral power diminishes – compared
to the spectral power on the plateaus – as the interface smoothing length ζo increases;
increasing ζo widens the interval, centred at s = 0, over which ζ(s) is approximately linear.
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Figure 4. Visualizations of the tuned MH–ML interface initial perturbation and related quantities: (a)
plots the 1-D principal-perturbation function δ†

x ; (b) plots the 1-D slice at z = 0 through the 2-D
noise-perturbation function δ∗

x ; (c) plots the 1-D slice at z = 0 through the 2-D total perturbation function
δx, along with δ†

x for comparison; (d) plots (Num) the numerically calculated RPSD of δx using (E9),
along with (Fid) analytically calculated fiducial RPSD values of δ†

x and δ∗
x using Parseval’s theorem;

(e) plots the interface smoothing function ζ of (3.25); and ( f ) plots the RPSD of the initial MH mass fraction
YH at the centre-plane x = xc in the three baseline simulations. Equation (4.3) defines the coordinate xc. In
(d, f ), the abscissa is the spectroscopic wavevector magnitude. In ( f ), the legend states Nyz,2 as defined in
the caption of table 1. See appendix D for full specifications of δ†

x and δ∗
x , and see appendix E for additional

description of Fourier analysis conventions.
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Figure 5. Evolution of the mixing-layer width W from (3.20) in the baseline simulations (Sim), along with
NIF experimental measurements (Exp). For the simulations, the legend states Nyz,2 as defined in the caption
of table 1. The experimental data are tabulated and further discussed in the supplementary material.

4. Results and analysis: baseline simulations

This section discusses results from the three baseline simulations summarized in table 1.
When comparing the three cases, we often reference them by Nyz,2, the number of zones
counted linearly along either the y or z spanwise directions on the finest AMR level.
As noted in § 3.3, this level of refinement is maintained at all times wherever there is
multimaterial mixing (among other criteria). For instance, in the finest-resolution case, a
planar cross-section through the centre of the mixing layer consists of 360 × 360 zones.

4.1. Phases of mixing-layer growth
Figure 5 plots time histories of the mixing-layer width W as defined by (3.20) using a
1 %–99 % mass-fraction criterion. At ∼11 ns, the main shock arrives at the MH–ML
interface, initiating perturbation growth via the RM instability mechanism. At ∼31 ns,
the reshock arrives at and compresses the developing mixing layer. At ∼33 ns, rapid
post-reshock growth begins. The growth rate decreases at later times, with the maximum
width reached at ∼45 ns. Finally, from ∼45 to 50 ns, a weak compression event occurs. It
corresponds to the impact of the reflection (moving in the −x direction) of the main shock
off the reshock ablator MR, which was initially accelerated towards the MH–ML interface.
This late-time event is analysed further in § 4.3.

Figure 5 also includes six experimental measurements of the mixing-layer width from
NIF shots. As explained in § 3.6.2, the coarsest-resolution baseline simulation was tuned
to these data {Wexp,i} by adjusting the perturbation-component standard deviations S† and
S∗. Once fixed, the same parameters were used in all simulations. Accordingly, W agrees
well with {Wexp,i} in the 180-zone case. The higher-resolution simulations yield somewhat
higher values for W , including some values outside the bounds of estimated experimental
error, although the same qualitative behaviour is observed in all cases. No experimental
data are available prior to 30 ns, so it is not known how accurately the simulations capture
the early post-first-shock behaviour of W .

The mixing-layer development can be visualized via contours of the instantaneous MH
mass fraction YH . Figures 6 and 7 provide views of these contours at selected pre-reshock
and post-reshock times, respectively, in the finest-resolution baseline simulation. For
corresponding animations of the YH contours and shock positions over time, see movies 1
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and 2 in the supplementary material. The first pre-reshock figure 6(a) shows the
MH–ML interface at 10 ns, before the main shock arrives. The 2-D character of the
initial perturbation is evident: in the centre-plane cross-section view of YH , horizontal
bands correspond to the principal component δ†

x , while smaller-scale irregularities
correspond to the lower-amplitude noise component δ∗

x . At the second pre-reshock time,
20 ns (figure 6b), the flow exhibits the mushroom-cap bubble and spike structures typically
associated with the RM and RT instabilities. Principal-perturbation growth appears to be
dominant. By the third pre-reshock time, 30 ns (figure 6c), vortices of various sizes and
orientations have formed. The first post-reshock figure 7(a) shows the mixing layer just
after reshock compression, with significant interpenetration of the MH and ML fluids. The
second post-reshock time, 45 ns (figure 7b), corresponds roughly to the point of maximum
mixing-layer width. The flow exhibits a spectrum of length scales and many zones that
are well mixed (with YH ≈ YL ≈ 0.5). At the third post-reshock time at the end of the
simulation, 50 ns (figure 7c), the mixing layer is slightly compressed, relative to its state
at 45 ns. Again, many zones are well mixed, 3-D structures abound and the flow appears
chaotic and turbulent.

The quantity W is an important metric of the mixing-layer size, because it corresponds
most naturally to the experimental data {Wexp,i}: calculated bubble and spike fronts based
on mass-fraction thresholds correspond to observable edges in X-ray radiographs. The
edges appear where X-ray transmission through the plasma changes, e.g. due to density and
species variations (Nagel et al. 2017; Huntington et al. 2020). However, W can be sensitive
to the structure of individual jets and other flow features at the edges of the mixing layer
(Zhou & Cabot 2019). Alternate metrics based on volume integrals may suffer less from
these sensitivities. One such metric, advocated by Zhou, Cabot & Thornber (2016) in the
context of ICF research, is the mixed mass

M(t) =
∫ xs

xb

∫ L

0

∫ L

0
4ρYHYL dy dz dx. (4.1)

For a perfectly mixed simulated layer consisting only of zones with YH = YL = 0.5,
observe that M is equal to the total mass of the layer. Figure 8(a) plots M versus time.
The mixed mass is monotonically increasing and is notably not reduced by the reshock
compression, illustrating its potential usefulness as a progress variable for mixing-layer
development. Growth of M is much more rapid after reshock than after first shock, and a
discernible increase in the magnitude of dM/dt occurs as soon as the reshock enters the
mixing layer, i.e. before the time of maximum compression when the mixing-layer width
W is locally minimal. As expected, M demonstrates slightly better grid-convergence
behaviour than W .

Figure 8(b) plots a related metric, the normalized mixed mass (Zhou et al. 2016)

Ψ (t) =

∫ xs

xb

ρYHYL dx∫ xs

xb

ρ̄(YH)(YL) dx
. (4.2)

This quantity is related to the molecular mixing fraction introduced by Youngs (1991,
1994) and analysed in many computational studies of shock-induced mixing (e.g. Latini,
Schilling & Don 2007; Thornber et al. 2011; Lombardini et al. 2012; Tritschler et al. 2014).
It expresses a ratio of sub-zonal mixing to larger-scale entrainment; it is equal to unity for
a perfectly mixed simulated layer, and it is equal to zero for a simulated layer consisting
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Figure 6. Contours of the instantaneous MH mass fraction YH in the MH–ML mixing layer of the
finest-resolution baseline simulation at three times before reshock: (a) 10 ns, (b) 20 ns and (c) 30 ns. The
left frame of each figure depicts the 3-D field YH(x, y, z) near the mixing-layer centre-plane x = xc. Zones with
YH < 0.05 are not shown. The orientation is rotated from the orientation of figure 1. The right frame of each
figure depicts the 2-D cross-section YH(xc, y, z). Equation (4.3) defines the coordinate xc. Movies 1 and 2 in
the supplementary material accompany this figure.
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Figure 7. Contours of the instantaneous MH mass fraction YH in the MH–ML mixing layer of the
finest-resolution baseline simulation at three times after reshock: (a) 35 ns, (b) 45 ns and (c) 50 ns. The same
conventions used in figure 6 apply here. Movies 1 and 2 in the supplementary material accompany this figure.
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Figure 8. Evolution of (a) the mixed mass M from (4.1) and (b) the normalized mixed mass Ψ from (4.2).
All results are from the baseline simulations. The legends state Nyz,2 as defined in the caption of table 1.

only of zones with either YH = 1 or YL = 1 in any distribution. (Note that quantities
like Ψ have been described as ratios of atomic mixing to chunk mixing. However, those
terms are misleading if the fluid-dynamical action of atomic-scale processes like viscous
dissipation is not resolved on the computational mesh, as is the case in many investigations
of complex mixing.) Before arrival of the first shock, Ψ increases slightly due to mass
diffusion, which is not constrained by the WISI approximation described in § 3.4. The
first shock initiates perturbation growth, stretching coherent packets of the MH and ML
plasmas across the interfacial region and sharply decreasing Ψ . Then, as smaller-scale
structures develop and physical and numerical dissipation ensues, Ψ rises towards values
between approximately 0.80 and 0.85, with an interruption due to reshock. Those values
are roughly in agreement with the asymptotic behaviour of simulations of both singly
shocked and reshocked non-HED mixing layers (Thornber et al. 2011; Lombardini et al.
2012; Tritschler et al. 2014). The figure indicates that the relative amount of sub-zonal
mixed fluid in the earliest phases of post-first-shock perturbation growth is particularly
sensitive to the mesh.

4.2. Mass-fraction profiles and definition of the mixing-layer centre-plane
Figure 9 shows instantaneous profiles of the Reynolds-averaged ML mass fraction YL(x)
at a late pre-reshock time in figure 9(a) and at approximately the time of maximum
mixing-layer width in figure 9(b). As YL increases, the mass fraction YH of the heavy
material MH decreases and the density generally decreases. At each of the two times,
root-mean-square (r.m.s.) simulation-to-simulation deviations between the profiles are
<0.04. At 30 ns, YL is not monotonically increasing with x, a consequence of mostly
single-species fluid entrained in large bubbles and spikes, e.g. as seen in figure 6(c). At the
late post-reshock time, the mixing layer exhibits an inner core with approximately linear
variation in the averaged ML mass fraction, for all three meshes.

Recall from § 3.5 that YL underwrites the definitions of the bubble front xb and spike
front xs. Many of the analyses described here also require definition of a mixing-layer
centre-plane xc. Due to the non-monotonicity in some YL profiles, a definition based
simply on a mass-fraction threshold (e.g. YL = 0.5) is not robust and may be undesirably
sensitive to local bubbles and spikes. Instead, we define xc by fitting the following
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Figure 9. Instantaneous profiles of the Reynolds-averaged mass fraction YL of the light material ML versus
axial distance at two times in the baseline simulations. Symbols indicate data extracted directly from the
simulations (Sim). The data are under-sampled for clarity in the figure, i.e. for each case, there are more data
available than there are symbols drawn. Lines indicate fits (Fit) to the simulation data using the analytic form
(4.3). The abscissa limits are chosen such that the centre of each plot is x = xc, as defined in the text, and the
abscissa range is 250 μm. The legends state Nyz,2 as defined in the caption of table 1.

error-function-based form to the YL data (compare (3.25)),

YL,fit(x) = 1
2

[
1 + erf

(
x − xc

xw

)]
, (4.3)

where xw is the mixing-layer fitting width. The parameters xc and xw are determined
via nonlinear least-squares fitting methods (Jones 2001), and this definition for xc is
used throughout the present study. For some analyses, we may replace xc with the
x coordinate of the nearest plane of zone centres or nodes on the finest AMR level.
Figure 9 includes plots of the fitted curves at 30 and 45 ns. At each of the two times,
r.m.s. simulation-to-simulation deviations between the curves are <0.008; the YL,fit

curves are better converged than the YL profiles. Over all post-first-shock times, r.m.s.
simulation-to-simulation deviations in xc are <1 μm. The post-reshock YL profiles in
figure 9(b) are better represented by the analytic function YL,fit than are the pre-reshock
profiles in figure 9(a). However, deviations from the fit near the edges of the mixing layer
persist to late times. At the lower-density spike front, the simulations predict a sharper rise
to YL = 1 (as x increases) than the analytic form. Conversely, at the higher-density bubble
front, the simulations predict a shallower fall to YL = 0 (as x decreases) than the analytic
form. Thus, relative to the simulation data, the error function fit mostly underestimates the
light-material mass fraction at both mixing-layer edges.

Although not investigated in detail here, other definitions for the mixing-layer
centre-plane are plausible. Consider three alternate definitions for xc at a given time: the x
coordinate of the midpoint of a line segment fit to the YL data from xb to xs; the x value
for which the accumulated mixed volume

∫ x
xb

∫∫
4YHYL dy dz ds is half of its maximum;

and the x value for which the accumulated mixed mass
∫ x

xb

∫∫
4ρYHYL dy dz ds is half

of its maximum. Each of these three methods returns values of xc usually smaller than
those derived from (4.3), with method-to-method r.m.s. deviations – calculated over all
post-first-shock times and as percentages of the instantaneous mixing-layer width – less
than 1.5 %, 9.6 % and 14 %, respectively. Note that the choice of definition for xc has no
effect on integrated quantities computed from (3.21) or (3.22).
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Figure 10. Evolution of various Reynolds-averaged flow variables at the mixing-layer centre-plane xc, as
defined by (4.3), in the finest-resolution baseline simulation: p is the total pressure, u1 is the axial component
of velocity, ρ is the density and Te is the electron temperature. Overbars are omitted to simplify the notation.

4.3. Thermodynamic properties and bulk velocity at the centre-plane
Figure 10 presents time histories of the Reynolds averages of various thermodynamic
variables and of the axial component of velocity at the mixing-layer centre-plane in the
finest-resolution baseline simulation. The first shock drives the centre of the mixing layer
into the HED regime. From ∼11 to 31 ns, the averaged total pressure is ∼2–4 Mbar and
the averaged electron temperature holds relatively steady at ∼15 eV. The first shock also
imparts a large positive axial velocity to the mixing layer. From ∼11 to 31 ns, the averaged
axial velocity decreases, i.e. the interface decelerates as it moves downstream towards
unmixed light material ML. Hence, we expect MH–ML perturbation growth due to both
the RM instability, activated by the first-shock impact, and the RT instability, activated
by the heavy–light interface deceleration. The presence of both mechanisms may explain
the slightly super-linear growth of the mixing-layer width in figure 5 from ∼20 to 31 ns.
The results imply that the flows realized in the NIF experiments cannot be accurately
characterized as either ‘pure RM’ or ‘pure RT’.

Reshock causes multiple-factor increases in the averaged total pressure, density and
electron temperature at the centre-plane. The averaged axial velocity falls to approximately
zero and remains small for the duration of the simulation. Hence, the reshock effectively
halts the bulk forward motion of the mixing layer. The averaged total pressure, density
and electron temperature all decay from their peak values as the doubly shocked plasma
decompresses. It is notable that p decreases by a factor of ∼2.8 from 33 to 45 ns; the
post-reshock decompression observed here is generally much more intense than in the
non-HED studies discussed in § 1. Near the end of the simulation, all three thermodynamic
variables abruptly rise again, although by smaller amounts than immediately after reshock.
This late-time event, previously mentioned in § 4.1, corresponds to the impact of the
reflection of the main shock off the reshock ablator MR. Indeed, a high-density region
of MR plasma is created by the reshock at early times, moves in the −x direction towards
the MH–ML interface, and serves as a reflection surface for the main shock (after the main
shock has transmitted into the ML region).

The simulations predict a small precursor in the radiation temperature, extending
� 20 μm ahead of the reshock in ML before its impact on the MH–ML interface. However,
the precursor has a negligible effect on the ion temperature, electron temperature, and
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Figure 11. Evolution of (a) the Reynolds-averaged density ρ and (b) the Reynolds-averaged electron
temperature Te at the mixing-layer bubble front xb and spike front xs, as defined in § 3.5, in the finest-resolution
baseline simulation. The subscripts b and s denote values at the bubble and spike fronts, respectively. Overbars
are omitted to simplify the notation.

total pressure. Ahead of the main shock in MH before its impact on the MH–ML
interface, temperature and pressure precursors are negligible. Indeed, the NIF experiments
were intentionally designed to keep energies low enough such that the shocks could be
reasonably interpreted as simple discontinuities in the thermodynamic quantities. (Our
computational framework does predict strong radiative precursors at higher energies than
those in the present study, although accurate assessment of such phenomena would likely
require more-sophisticated treatments of radiation transport and opacities.)

Additional insight into the thermodynamics of the flow comes from Reynolds-averaged
densities and electron temperatures at the mixing-layer edges. Figures 11(a) and 11(b) plot
those quantities, respectively, at both the bubble and spike fronts. The time variations of
the bubble-front density ρb and the spike-front density ρs are qualitatively similar to the
time variation of the centre-plane density. Since the reshock and the reflected main shock
strike the spike front before the bubble front, the corresponding rises in ρs occur before
those in ρb. Figure 11(b) indicates that there is a significant temperature gradient across
the mixing layer. After first shock, the lower-density spike front remains at a much higher
electron temperature than the higher-density bubble front. Throughout the shocked and
reshocked mixing layers, we observe that packets of foam ML tend to be much hotter than
nearby packets of main ablator MH , with important fluid-dynamical consequences that
will be analysed in § 5.

Corresponding time evolutions of ion temperature and radiation temperature are nearly
identical to those of electron temperature in both figures 10 and 11(b); considering the
plotted quantities after first shock, r.m.s. Tn–Te deviations are <0.02 eV and r.m.s. Tr–Te
deviations are <0.07 eV. Indeed, throughout the mixing layer, Tn, Te and Tr remain
approximately equal, suggesting that both ion–electron energy coupling via (3.14) and
electron–radiation energy coupling via the second term of the right-hand side of (3.6) are
very fast compared to other dynamics in the mixing plasmas. Differences between the
three temperatures are more significant near the −x and +x domain boundaries in the pure
MH and MR materials, both during initial formation of the main shock and reshock at
early times and after the materials have expanded to very low densities at late times.

While this section only presented results for the finest-resolution baseline simulation,
the qualitative trends observed here apply to all three baseline simulations. Post-first-shock
r.m.s. simulation-to-simulation deviations in the Reynolds-averaged centre-plane,
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bubble-front and spike-front quantities plotted in figures 10 and 11 are less than 0.2 Mbar
for p, 0.2 μm ns−1 for u1, 0.07 g cm−3 for ρ and 1 eV for Te.

4.4. Evolution of turbulent kinetic energy
This section considers the kinetic energy in the fluctuating fluid motion in the developing
mixing layers. Using the formalisms of § 3.5, define the local turbulent kinetic energy

I = 1
2 u′′

i u′′
i (4.4)

and the mean density-weighted turbulent kinetic energy

K = 1
2ρu′′

i u′′
i = 1

2 ρ̄ũ′′
i u′′

i = ρ̄Ĩ, (4.5)

which are here abbreviated LTKE and MDTKE, respectively. Further discussion of I, K
and related quantities can be found in Sagaut & Cambon (2008), Chassaing et al. (2010),
Gatski & Bonnet (2013) and the supplementary material. In the present study, I is a
function of x, y, z and t, while K is a function of x and t only.

Figure 12(a) plots 
K�, the mixing-layer integral of MDTKE, versus time. It rises
slowly after first shock, stabilizes, increases sharply by over one order of magnitude after
reshock and finally decays as the mixing layer grows and decompresses. To quantify
the reshock-induced increase and the post-reshock decay, table 3 reports mixing-layer
integral values at the representative times 30 ns (shortly before the reshock arrival), 35
ns (shortly after the reshock has moved through the mixing-layer and after the moment
of peak compression) and 45 ns (when the mixing-layer width is approximately largest).
The simulations predict that 
K� increases by a factor of ∼30–40 from 30 to 35 ns. The
magnitude of this increase, along with much of the history of 
K�, is only weakly sensitive
to the mesh. Grid sensitivity is most noticeable just after first shock and at very late
times. The large and rapid reshock-induced increase in MDTKE seen here is consistent
with findings from analogous non-HED computational work (Hill et al. 2006; Schilling &
Latini 2010; Tritschler et al. 2014).

Compensated turbulent energy spectra – derived from the Favre fluctuation of velocity
per appendix E – are shown in figure 12(b) at the mixing-layer centre-plane at the same
three times discussed above. On each plot, horizontal lines correspond to the canonical
f −5/3 behaviour of fully developed turbulence (Pope 2000; Davidson 2015). At the
two post-reshock times, the turbulent energy spectra R are larger at high wavevector
magnitudes – relative to corresponding values at low wavevector magnitudes – than at the
pre-reshock time, indicating that energy was transferred to smaller scales as the mixing
evolved. However, even at the time when the integrated MDTKE is near its maximum,
there are not broad intervals exhibiting f −5/3 behaviour. At high wavevector magnitudes,
the spectra are clearly not grid-converged, suggesting that the simulations are not close to
resolving the scales associated with the physical viscosity μ. It is not known whether
more-distinct inertial ranges would appear in finer-resolution versions of the present
simulations.

Appendix F expands on the discussion in this section. Various terms in an evolution
equation for K are analysed, providing further insight into how energy exchanges between
the mean and fluctuating flows.

4.5. Anisotropy, length scales and Reynolds numbers
The previous section considered only the total MDTKE, i.e. the sum of three terms
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Figure 12. In (a), evolution of the mixing-layer integral of MDTKE K from (4.5). In (b), turbulent energy
spectra R from (E11) at the mixing-layer centre-plane at 30, 35 and 45 ns. The spectra are compensated via
division by f −5/3, where f is the spectroscopic wavevector magnitude. Note the differences in the ordinate
limits of the plots of (b). All results are from the baseline simulations. Equation (4.3) defines the mixing-layer
centre-plane, and (3.22) defines the mixing-layer integral. The legends state Nyz,2 as defined in the caption of
table 1.

Resolution Coarse Medium Fine
Nyz,2 180 252 360


K�(t = 30) 0.0105 0.0112 0.0111

K�(t = 35) 0.372 0.378 0.393

K�(t = 45) 0.125 0.0896 0.0713


K�(t = 35)/
K�(t = 30) 35.6 33.7 35.2

K�(t = 35)/
K�(t = 45) 2.97 4.22 5.51

Table 3. Selected values of the mixing-layer integral of MDTKE (g cm−3 μm2 ns−2) at three different times
(ns). The ratio of the early post-reshock value to the late pre-reshock value and the ratio of the early post-reshock
value to the late post-reshock value are given. Compare with figure 12(a).

corresponding to fluctuating motion in each coordinate direction. The flow in the present
study is neither homogeneous nor isotropic. Anisotropy arises not only from the distinction
between the axial (x) and spanwise (y, z) directions (which are, respectively, parallel and
normal to the shock velocity vectors), but also from the experimentally based asymmetries
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in the interface initial perturbation described in § 3.6.2. This section analyses how the
directional components of the MDTKE and related quantities evolve. Throughout this
section, we refer to the coordinate directions interchangeably by the indices i = 1, 2 or 3
or by the letters x, y or z.

Define the ith component of MDTKE by

Ki = 1
2ρu′′

(i)u
′′
(i), (4.6)

with no summation on i implied. Note that K = K1 + K2 + K3. A metric of the relative
contribution of axial-direction fluctuations to K, integrated across the mixing layer, is

Y1 = 
K1�

K� − 1

3
, (4.7)

which equals 2/3 when the only contributions to K are the u′′
1 fluctuations and equals

zero in the limit of perfect isotropy. Figure 13(a) plots Y1 versus time, showing that the
mixing layer is strongly anisotropic before reshock, with axial fluctuations dominating over
spanwise fluctuations. This imbalance lessens after reshock, with Y rapidly decreasing
towards its isotropic value at later times. Figure 13(b) complements figure 13(a), plotting
the ratio of the mixing-layer integrals of the two spanwise components of K. When

K2�/
K3� � 1, the u′′

2 fluctuations are larger in magnitude than the u′′
3 fluctuations,

on average; conversely, in a perfectly isotropic flow, 
K2�/
K3� = 1. The curves in
figure 13(b) indicate that, just after first shock, y-direction contributions to the MDTKE
drastically outweigh z-direction contributions – a trend expected given that the standard
deviation of the principal perturbation is much larger than that of the noise perturbation
per § 3.6.2. The energy distribution among the two spanwise components changes rapidly,
with the ratio 
K2�/
K3� dropping almost monotonically. The ratio appears to reach
an asymptotic value greater than unity at late times, i.e. the u′′

2 fluctuations persistently
account for a larger fraction of 
K� than the u′′

3 fluctuations, even after the mixing layer
appears well developed. However, caution is necessary when interpreting figure 13(b): the
spanwise-component ratio is clearly not grid converged. The finer computational meshes
are better capable of resolving the small scales of the noise perturbation (e.g. scales
comparable to λ∗min = 2 μm) than the coarsest mesh. Since only the noise perturbation –
not the principal perturbation – seeds initial growth of K3, the finer-resolution simulations
generally predict larger u′′

3-fluctuation magnitudes than the coarsest-resolution simulation.
To further explore the structure of the mixing layer in the two spanwise directions,

we consider length scales and dimensionless numbers based on the u2 and u3 velocity
components, at the mixing-layer centre-plane x = xc defined by (4.3). We draw on the
analytical approaches of Weber et al. (2014b) in their experimental study of the RM
instability and Cook & Dimotakis (2001) in their computational study of the RT instability.
Define the centre-plane y- and z-direction autocorrelation functions

R2(r) = u2(xc, y, z)u2(xc, y + r, z)

u2(xc, y, z)2
, R3(r) = u3(xc, y, z)u3(xc, y, z + r)

u3(xc, y, z)2
. (4.8a,b)

The corresponding y- and z-direction Taylor microscales (Tennekes & Lumley 1972; Pope
2000; Davidson 2015) can be defined from the curvature of R2 and R3, respectively

λt,i =
(

−1
2

d2Ri

dr2

∣∣∣∣∣
r=0

)−1/2

. (4.9)

915 A84-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
22

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1122


Shocked HED mixing

0.6

0.4

0.2

1.0

0.5Ri

Re
t,2

3

0

15

12

9

6

3

0
10 20 30 40 50 10 20 30 40 50

0

10 20

180

252

360

180

252

360

180

252

360

30

360, t = 30.00 ns 360, t = 45.00 ns

t (ns) t (ns)

t (ns) t (ns)

r (µm)

λ
t,i

 (
µ

m
)

r (µm)

40 50

0 1

y Sim

180 y
180 z
252 y
252 z
360 y
360 z

y Fit

z Sim

z Fit

y Sim

y Fit

z Sim

z Fit

2 3 4 5

1.0

0.5Ri

0

0 1 2 3 4 5

10 20 30 40 50

Y1

103

102

104

103

102

101

100

�K
2�

/�K
3�

(e)

(b)(a)

(c) (d )

( f )

Figure 13. Anisotropy metrics, Taylor microscales and Taylor Reynolds numbers in the baseline simulations:
(a) plots Y1 from (4.7); (b) plots the ratio 
K2�/
K3� of the mixing-layer integrals of the spanwise MDTKE
components from (4.6) and (3.22); (c) and (d) plot, at 30 and 45 ns, respectively, the mixing-layer centre-plane
autocorrelation functions (4.8a,b) calculated directly from the finest-resolution simulation (Sim), along with
parabolic fits (Fit); (e) plots the y- and z-direction Taylor microscales λt,i from (4.10); and ( f ) plots the effective
spanwise-direction Taylor Reynolds number Ret,23 from (4.12). In (c,d), only values of Ri at r < 2 μm were
used to fit the analytic form (4.10). In all legends and headers, numbers state Nyz,2 as defined in the caption of
table 1, and the letters y and z correspond to the coordinate indices 2 and 3, respectively.

In the present study, we calculate λt,i by fitting a parabola

Ri,fit = 1 − r2

λ2
t,i

(4.10)
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to Ri(r) over a small interval near r = 0. Figures 13(c) and 13(d) show examples of Ri and
Ri,fit calculated from the finest-resolution baseline simulation at a late pre-reshock time
and a late post-reshock time. The Taylor microscales evoke definitions of centre-plane
Taylor Reynolds numbers based on MDTKE-component velocities

Ret,i = ρ̄λt,(i)

μ

(
2K(i)

ρ̄

)1/2

, (4.11)

with no summation on i implied. An effective spanwise-direction Taylor Reynolds number
can also be defined by

Ret,23 = Ret,2 + Ret,3

2
. (4.12)

Compare (39a) and (39b) in Cook & Dimotakis (2001).
Figures 13(e) and 13( f ) plot time histories of the y- and z-direction Taylor microscales

and the effective spanwise-direction Taylor Reynolds number in the three baseline
simulations. For each simulation, the y-direction microscale λt,2 is always larger than
the corresponding z-direction microscale λt,3. Hence, as also observed in figure 13(b),
there are persistent differences in the mixing-layer structure along the two spanwise
directions, even at late times. The post-reshock Taylor Reynolds number Ret,23 is
significantly larger than 100–140, suggesting that the flows meet the criterion proposed
by Dimotakis (2000) for transition to a well-mixed turbulent state. (Zhou (2007) argues
that additional, more stringent conditions must also be met for non-stationary flows.)
However, both the microscales and Reynolds number are moderately sensitive to the mesh
(particularly after reshock) and have not reached their DNS limits in the present study.
Any definitive conclusions based on absolute values of λt,2, λt,3 and Ret,23 would require
greater resolution and/or more advanced computational schemes, e.g. less-dissipative,
higher-order numerics or explicit SGS models. We also reiterate that the turbulent energy
spectra of figure 12(b) do not exhibit broad inertial ranges; such ranges may or may not
appear with greater resolution and/or more advanced computational schemes.

4.6. Evolution of enstrophy
The vorticity ωi is the curl of the velocity ui, i.e. ωi = εijk∂uk/∂xj, where εijk is the
antisymmetric Levi-Civita symbol (also called the permutation symbol or the alternating
unit tensor). The enstrophy is a scalar measure of vorticity magnitude

Ω = 1
2ωiωi. (4.13)

An evolution equation for Ω can be derived from the Navier–Stokes equations (3.3)

∂

∂t
(ρΩ) + ∂

∂xj

(
ρΩuj

) = (
ρωjSijωi

)︸ ︷︷ ︸
EI

+
(

−2ρΩ
∂uj

∂xj

)
︸ ︷︷ ︸

EII

+
(
ωi

ρ
εijk

∂ρ

∂xj

∂p
∂xk

)
︸ ︷︷ ︸

EIII

+
(
ρωiεijk

∂

∂xj

[
1
ρ

∂σkl

∂xl

])
︸ ︷︷ ︸

EIV

. (4.14)

Vorticity dynamics is important in instability growth, variable-density turbulent
mixing and shock-wave–turbulence interaction (Andreopoulos, Agui & Briassulis 2000;
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Chassaing et al. 2010). Analysis of vorticity and enstrophy in simulated non-HED mixing
layers with reshock can be found in Schilling & Latini (2010), Grinstein et al. (2011),
Hahn et al. (2011) and Tritschler et al. (2014), which consider 3-D layers arising from
multimode perturbations; Latini et al. (2007) and Schilling, Latini & Don (2007), which
consider 2-D layers arising from single-mode perturbations; and Latini & Schilling (2020),
which considers both 2-D and 3-D layers arising from single-mode perturbations. Vorticity
analysis also features prominently in the works on shock-wave–turbulence interaction by
Larsson & Lele (2009), Larsson, Bermejo-Moreno & Lele (2013), Ryu & Livescu (2014)
and Livescu & Ryu (2016). The supplementary material provides a complete derivation of
(4.14).

The terms on the right-hand side of (4.14) are labelled. The first term EI is the
vortex-stretching term, accounting for stretching, shrinking and tilting of vortices. It
vanishes for a 2-D flow. The second term EII is the enstrophy–dilatation term, which
vanishes for a constant-density flow (in which ∂uj/∂xj ≡ 0). The third term EIII is
the baroclinic source term, which generates enstrophy via misalignment of density and
pressure gradients, e.g. in a flow with RM and RT instabilities. The fourth term EIV is the
dissipation term, which captures the dissipative action of viscosity via the viscous stress
tensor σkl.

Figure 14(a) plots 
ρΩ�, the mixing-layer integral of density-weighted enstrophy, versus
time. Like 
K� in figure 12(a), 
ρΩ� rises slowly after first shock, stabilizes, increases
sharply by over one order of magnitude after reshock and finally decays as the mixing
layer grows and decompresses. Table 4 quantifies the reshock-induced increase and the
post-reshock decay at selected times. From 30 to 35 ns, the integrated density-weighted
enstrophy increases by a factor of ∼30–70, much like the integrated MDTKE as reported
in table 3. The sharp reshock-induced increase in enstrophy seen here is consistent with
findings from the non-HED computational studies by Latini et al. (2007), Schilling et al.
(2007) and Tritschler et al. (2014). As also observed by those authors, enstrophy is much
more sensitive to the mesh than turbulent kinetic energy. Indeed, at any given time, 
ρ Ω�
increases with the density of computational zones. The ratio of post-reshock to pre-reshock

ρ Ω� is less sensitive to the mesh than instantaneous values of 
ρ Ω�.

To obtain deeper insight into growth and decay of the enstrophy, we examine
mixing-layer integrals of each term on the right-hand side of (4.14). When normalized
by 
ρ Ω�, such integrals have units of inverse time and quantify the relative magnitude
of the various mechanisms of enstrophy creation or destruction. Figure 14(b) plots the
four quantities 
EI�/
ρ Ω�, . . . , 
EIV�/
ρΩ� in the finest-resolution baseline simulation
before reshock. The baroclinic source term dominates the enstrophy production just
after first shock. This early-time production is offset by destruction due to the
enstrophy–dilatation term, which is negative in areas of local fluid expansion (where
∂uj/∂xj > 0). The contribution from the vortex-stretching term is initially small but
grows steadily, eventually outweighing the contribution from the baroclinic source term.
Enstrophy destruction due to the dissipation term occurs throughout pre-reshock growth,
but its magnitude is small.

Figure 14(c) plots the same four quantities after reshock. As the reshock traverses
the mixing layer, there is a sharp increase in enstrophy production due to both the
baroclinic source and enstrophy–dilatation terms. The latter term is positive in areas of
local fluid compression (where ∂uj/∂xj < 0). In fact, 
EII� exceeds 
EIII� during the
reshock traversal, suggesting that fluid compressibility has a significant role in vorticity
generation during reshock. After the reshock exits the mixing layer, enstrophy production
is principally due to the vortex-stretching term. At very late time, enstrophy–dilatation
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Figure 14. In (a), evolution of the mixing-layer integral of density-weighted enstrophy ρΩ from (4.13) in
the three baseline simulations. The legend states Nyz,2 as defined in the caption of table 1. In (b,c), evolution of
the mixing-layer integrals of each term EI, . . . ,EIV in (4.14), normalized by 
ρΩ�, in the finest-resolution
baseline simulation: (b) displays early-time results before reshock, and (c) displays late-time results after
reshock. Note the difference in the ordinate limits of the two figures. Equation (3.22) defines the mixing-layer
integral.

Resolution Coarse Medium Fine
Nyz,2 180 252 360


ρΩ�(t = 30) 0.00109 0.00149 0.00278

ρΩ�(t = 35) 0.0403 0.0957 0.166

ρΩ�(t = 45) 0.0149 0.0219 0.0326


ρΩ�(t = 35)/
ρΩ�(t = 30) 36.8 64.4 59.8

ρΩ�(t = 35)/
ρΩ�(t = 45) 2.70 4.37 5.11

Table 4. Selected values of the mixing-layer integral of density-weighted enstrophy (g cm−3 ns−2) at three
different times (ns). The ratio of the early post-reshock value to the late pre-reshock value and the ratio of the
early post-reshock value to the late post-reshock value are given. Compare with figure 14(a).

production increases again as the reflected main shock compresses the mixing layer.
The sum of the four mixing-layer integrals 
EI�, . . . , 
EIV� is positive at all times after
reshock, suggesting that the post-reshock decay of 
ρΩ� is attributable to numerical
dissipation and/or redistributive mechanisms involving the left-hand side of (4.14), e.g.
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entrainment of zero-enstrophy unmixed fluid into the developing mixing layer. The fact
that the mixing layer undergoes intense post-reshock decompression, as discussed in § 4.3
and in contrast to typical non-HED analogues, also points to the importance of advective
redistribution.

Figures 14(b) and 14(c) only plot results from the finest-resolution baseline simulation.
The supplementary material provides corresponding results from the two lower-resolution
baseline simulations. Qualitative trends in the normalized mixing-layer integrals

EI�/
ρΩ�, . . . , 
EIV�/
ρΩ� in the two lower-resolution cases are mostly the same as
those observed in the finest-resolution case, with one important exception: 
EI�/
ρΩ�
is significantly smaller with coarser meshes, particularly at late pre-reshock and early
post-reshock times. We suspect that the finest-resolution simulation better resolves the
3-D physics of vortex stretching, just as it better resolves the growth of initially small
z-direction velocity fluctuations as discussed in § 4.5.

Moreover, it is important to emphasize that (4.14) is not exact for an under-resolved
3-D simulation. Numerical errors arise both from the discretization of the governing
equations within ARES and from the use of finite differences during post-processing,
e.g. to compute Ω from ui. For a detailed examination of numerical errors, Ω could be
replaced in (4.14) with Ω̆ + TΩ , where Ω is the exact solution to the system of partial
differential equations (3.1)–(3.6) with (4.13), Ω̆ is the numerical solution obtained from
the post-processed simulation and TΩ is the truncation error. Similar substitutions could
be made for all flow variables and their derivatives. Then, a new equation could be derived
that would resemble (4.14), except for the addition of truncation error terms that vanish in
the DNS limit. The procedure outlined here draws on the theory of equivalent or modified
differential equations, foundational to computational fluid dynamics (Hirsch 2007, § 7.1).
Truncation errors associated with enstrophy evolution were recently analysed by Zhou,
Groom & Thornber (2020) in simulations of shocked non-HED mixing layers. In the
present study, the grid independence of several trends mentioned above – e.g. the larger
production during reshock via the enstrophy–dilatation term than via the baroclinic source
term – suggests that they are physically meaningful and not merely numerical artefacts.
Nevertheless, further analysis of numerical errors is warranted, particularly of their role in
the post-reshock enstrophy decay.

5. Results and analysis: CPVs

This section discusses the CPVs, a set of simulations that do not include electron thermal
conduction. The CPVs are motivated by the observation in § 2 that the baseline HED
flow exhibits much lower conductive Péclet numbers than a canonical non-HED analogue,
due to energy transport by ionized electrons (present only in the HED case). Generally,
thermal conduction is much more efficient via interactions involving free electrons than
via heavy-particle collisions, i.e. ion–ion or neutral-atom–neutral-atom collisions. By
comparing the CPVs and the baseline simulations, we aim to isolate and understand
the influence of electron thermal conduction on HED shock-induced mixing. For other
pertinent discussions of small-scale temperature fluctuations in mixing plasmas in an ICF
context, see the recent work by Morgan et al. (2018) and Haines et al. (2020).

Like the baseline simulations, the CPVs are executed using three different-resolution
meshes. For a given resolution, the designs of the baseline simulation and the
corresponding CPV are identical in every respect except for the inclusion or not of electron
thermal conduction. AMR parameters (summarized in table 1), boundary conditions
(illustrated in figure 3) and the interface initial perturbation (illustrated in figure 4) are the
same. Main-shock and reshock trajectories are nearly identical, as shown in appendix B.
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The computational cost of the CPV is slightly less than that of the baseline
simulation.

Some preliminary concepts are needed. First, define the Prandtl number at the
mixing-layer centre-plane

Prc = μ cp,eff

κeff

∣∣∣∣
x=xc

, (5.1)

where cp,eff is the specific effective total heat capacity at constant pressure and xc is defined
by (4.3). For a plasma with Tn ≈ Te (see § 4.3), cp,eff is estimated as γ (cv,n + cv,e), where
cv,n = (∂En/∂Tn)ρ and cv,e = (∂Ee/∂Te)ρ are the specific ion and electron heat capacities
at constant volume, respectively, and γ = 5/3 is the heat capacity ratio for a monatomic
gas (Schroeder 2000; Anderson 2003). The effective total thermal conductivity is

κeff =
{
κn + κe, for baseline simulations,
κn, for CPVs.

(5.2)

Other definitions are possible, since the concept of an effective total thermal conductivity
is not immediately apparent from (3.1)–(3.6). We claim that (5.2) is reasonable, especially
because κe � κn in the baseline-simulation mixing layers, i.e. the ion thermal conductivity
contributes negligibly to the effective total. Next, define the effective spanwise-direction
Taylor conductive Péclet number

Pe(c)t,23 = Ret,23Prc, (5.3)

where Ret,23 is the Reynolds number at the centre-plane from (4.12). Note that Pe(c)t,23 does
not explicitly depend on viscosity μ. It is the ratio of an advective rate of heat transfer –
based on the Taylor microscale and the spanwise-direction MDTKE-component velocities
– to the rate associated with thermal conduction. The emphasis here on Pe(c)t,23, not Prc, is
deliberate and important. As discussed in § 4.4, our simulations do not resolve the scales
of viscous dissipation. Conversely, as discussed in §§ 4.1 and 4.5, they give reasonable
(though not perfectly grid-converged) estimates of larger scales like the mixing-layer
width and the Taylor microscale. Hence, we claim that the simulations are better suited
for comparisons of advective and conductive heat-transfer rates (associated with Pe(c)t,23)
than for comparisons of momentum and thermal diffusivities (associated with Prc).

In a similar way, define the Schmidt number at the mixing-layer centre-plane

Scc = μ

ρ̄ D

∣∣∣∣
x=xc

, (5.4)

and define the effective spanwise-direction Taylor diffusive Péclet number

Pe(d)t,23 = Ret,23Scc, (5.5)

which does not explicitly depend on μ. Extending the arguments of the previous
paragraph, we claim that our simulations are better suited for comparisons of advective and
diffusive mass-transfer rates (associated with Pe(d)t,23) than for comparisons of momentum
and mass diffusivities (associated with Scc).

Figure 15 compares various quantities in the three baseline simulations and the three
CPVs. Figure 15(a) plots the conductive Péclet number Pe(c)t,23 from (5.3), showing the

expected trends: at a given resolution and at any time, Pe(c)t,23 is approximately two orders
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Figure 15. Comparisons of various metrics in the baseline simulations (Base) and the CPVs: (a) the
conductive Péclet number Pe(c)t,23 from (5.3); (b) the diffusive Péclet number Pe(d)t,23 from (5.5); (c) the
mixed mass M from (4.1); (d) the normalized mixed mass Ψ from (4.2); (e) the mixing-layer integral of
MDTKE K from (4.5); and ( f ) the mixing-layer integral of density-weighted enstrophy ρΩ from (4.13). In
the supplementary material, movie 3 accompanies (e), and movie 4 accompanies ( f ). Lines with symbols
denote CPV results, and lines without symbols denote baseline-simulation results. Equation (3.22) defines
the mixing-layer integral. The legends state Nyz,2 as defined in the caption of table 1. Some of the
baseline-simulation results also appear in figures 8(a), 8(b), 12(a) or 14(a).

of magnitude lower in the baseline simulation than in the CPV. For each set of three
computations, variation in Pe(c)t,23 with mesh resolution is mainly attributable to variation
in Ret,23 rather than Prc. The figure suggests immediately that, in the baseline simulations
but not in the CPVs, the scales of thermal conduction are comparable to the scales of
advection within the mixing layers.
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t (ns) 30 35 45

M (μg) Base 0.812 1.83 3.41
CPV 0.910 2.01 3.48

Ψ Base 0.656 0.529 0.773
CPV 0.687 0.589 0.792


K� (g cm−3 μm2 ns−2) Base 0.0111 0.393 0.0713
CPV 0.0114 0.417 0.0686


ρΩ� (g cm−3 ns−2) Base 0.00278 0.166 0.0326
CPV 0.00372 0.202 0.0315

Table 5. Selected values, at three different times, of various metrics in the finest-resolution baseline simulation
(Base) and the finest-resolution CPV. The same metrics plotted in figures 15(c), 15(d), 15(e) and 15( f ) are
considered here.

Figure 15(b) plots the diffusive Péclet number Pe(d)t,23 from (5.5). At a given resolution

and at any time, Pe(d)t,23 is large, and its value in the baseline simulation is comparable to
its value in the CPV. The figure suggests that the scales of mass diffusion are small in a
dimensional sense and are likely not well-resolved on these meshes.

Figures 15(c), 15(d), 15(e) and 15( f ) plot the mixed mass M, normalized mixed mass
Ψ , mixing-layer integral of MDTKE K and mixing-layer integral of density-weighted
enstrophy ρΩ , respectively, all as defined in § 4. At a given resolution, the mixed mass
is slightly larger in the CPV than in the baseline simulation, both before and after reshock.
(The mixing-layer width W also shows the same behaviour.) The normalized mixed mass,
after initial post-first-shock growth, is also larger in each CPV than in the corresponding
baseline case. The differences are largest in the several ns after reshock; observe that the
baseline-simulation decrement to Ψ (relative to the CPV) at 35 ns increases steadily with
resolution. At a given resolution, the mixing-layer integrals of MDTKE in the CPV and
the baseline simulation are quite similar, although some differences are notable at the
coarsest resolution and/or at very late times. Conversely, there are substantial differences
in the mixing-layer integrals of density-weighted enstrophy between the CPVs and the
baseline cases, except at late post-reshock times. Across the three mesh resolutions, the
baseline-simulation decrement to 
ρΩ� (relative to the CPV) is significant but variable,
ranging from 13 to 31 % at 30 ns and from 18 to 29 % at 35 ns. For additional quantitative
comparison of M, Ψ , 
K� and 
ρ Ω� in the finest-resolution cases, see the selected values
in table 5. The supplementary material includes animations accompanying figures 15(e)
and 15( f ): movie 3 shows centre-plane local density-weighted turbulent kinetic energy
(= ρI), and movie 4 shows centre-plane density-weighted enstrophy (= ρΩ).

Taken together, the observations in the previous paragraph indicate that depriving
the flow of electron thermal conduction leads to a minor but unequivocal increase in
sub-zonal mixing. The effect emerges at moderate times after first shock, grows after
reshock and persists weakly to late times. Accompanying the increase in sub-zonal mixing
is an increase in the magnitude of vorticity. With electron thermal conduction removed,
the enhancement of mixing-layer vorticity begins almost immediately after first shock,
continues through reshock and lessens at later times. The trends are seen at all mesh
resolutions, and they appear even though the strengths of the main shock and reshock
are essentially unaffected by electron thermal conduction; see appendix B.

To illuminate the connection between electron thermal conduction and mixing, first
consider any non-negative flow variable φ and define the spanwise gradient squared

915 A84-40

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
22

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1122


Shocked HED mixing

magnitude operator

G2
yzφ ≡

(
∂φ

∂y

)2

+
(
∂φ

∂z

)2

. (5.6)

For the present study, the axial component of the gradient of φ is excluded, since it can
be dominated by the bulk-flow inhomogeneities discussed in § 4.3. Associated with G2

yz
are the spanwise gradient inverse squared scale length (G2

yzφ)/φ
2, which has units of

inverse squared length and is abbreviated SGISL, and the spanwise gradient inverse scale

length (G2
yzφ)

1/2
/φ, which has units of inverse length and is abbreviated SGIL. These

quantities are large when the magnitudes of spanwise components of the gradient are large,
i.e. when φ exhibits sharp spanwise-direction variations with small characteristic lengths.

Figure 16 compares the mixing-layer averages of the SGISLs of four flow variables
in the finest-resolution baseline simulation and CPV. The averaged SGISLs of MH
mass fraction and total pressure (figures 16(a) and 16(b), respectively) in the baseline
simulation are similar to those in the CPV, especially after reshock. In contrast, beginning
immediately after first shock and persisting to late times, the averaged SGISL of electron
temperature (figure 16d) is significantly larger in the CPV than in the baseline case. This
trend is not surprising: activating electron thermal conduction enhances heat transfer
from relatively hot to relatively cold fluid, which tends to soften or ‘smooth out’ local
temperature gradients. Recall from § 4.3 that packets of the light material ML tend to be
much hotter that nearby packets of the heavy material MH in the mixing layer. Perhaps
more surprising is the trend shown in figure 16(c): the averaged SGISL of density is
also significantly larger in the CPV than in the baseline case. Indeed, inspection of
the temperature and density fields shows a strong correlation between temperature and
density gradient magnitudes. These findings suggest that, in this HED flow, enhanced
heat transfer between different-temperature fluid packets promotes the expansion of the
colder (typically higher-density) packet and/or the contraction of the hotter (typically
lower-density) packet. Thus, activating electron thermal conduction tends to soften
local gradients of both temperature and density. Note that the CPV–baseline-simulation
differences in the density SGISLs are likely not due to differences in the behaviour of the
diffusive mass flux vector Ja,j from (3.8). If they were, then we would not expect to see, as
in figure 16(a), such good agreement between the baseline-simulation and CPV SGISLs
of MH mass fraction.

Figure 17 further supports the claims made in the previous paragraph. Shown are the
CPV–baseline-simulation ratios of the mixing-layer averages of the SGISLs of the same
quantities considered in figure 16, at all three mesh resolutions. For a flow variable φ, this
ratio is

〈〈(G2
yzφ)/φ

2〉〉CPV

〈〈(G2
yzφ)/φ

2〉〉Base
, (5.7)

a metric of gradient-scale-length differences between two simulations with the same mesh
parameters. Figure 17(a) shows that the CPV–baseline-simulation discrepancies in the
MH mass-fraction spanwise gradients are small at all times and at all mesh resolutions.
Figure 17(b) shows that these discrepancies for the total pressure spanwise gradients
are somewhat larger before and during reshock, but diminish at late times. In contrast,
figures 17(c) and 17(d) show that the averaged SGISLs of density and electron temperature
are significantly larger in the CPVs than in the baseline simulations. For the medium- and
fine-resolution cases, (i) both the density and electron temperature averaged-SGISL ratios
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Figure 16. Mixing-layer averages of the SGISLs of various flow variables in the finest-resolution baseline
simulation (Base) and the finest-resolution CPV: (a) MH mass fraction YH , (b) total pressure p, (c) density ρ

and (d) electron temperature Te. The SGISL is defined in terms of the G2
yz operator; see (5.6) and the supporting

discussion. Equation (3.21) defines the mixing-layer average. The legends state Nyz,2 as defined in the caption
of table 1.

are greater than 2 for much of the time both before and after reshock, and (ii) both ratios
increase almost monotonically after reshock.

Figure 18 provides an additional visualization of the trends described in figures 16(c) and
17(c). The SGIL of density is shown at a late pre-reshock time and two late post-reshock
times, in the finest-resolution baseline simulation in figure 18(a) and the finest-resolution
CPV in figure 18(b). The figures plot the local quantities at the mixing-layer centre-plane.
Darker regions signify larger values of the density SGIL, i.e. sharper density gradients
characterized by smaller scale lengths. At each of the three times, the CPV exhibits more
locations with more intense gradients than the baseline simulation. The figure highlights
that these density SGIL differences remain through the very end of the simulations, even
after the mixing layer has been impacted by the reflected main shock after 45 ns. For a
corresponding animation of density SGILs over time, see movie 5 in the supplementary
material.

The mechanistic link between sharper density gradients, increased enstrophy production
and greater sub-zonal mixing lies in the baroclinic source term EIII in the enstrophy
evolution equation (4.14). Indeed, at a given mesh resolution and when compared
to the baseline simulation (after normalization by 
ρΩ�), the CPV exhibits greater
enstrophy production via the baroclinic source term, beginning shortly after first shock
and continuing at least until reshock. This magnification of the baroclinic source term is
followed by magnification of the vortex-stretching term EI . At late times after reshock,
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Figure 17. Ratios of the mixing-layer averages of the SGISLs of various flow variables for three different mesh
resolutions. For each case, the ratio is of the instantaneous CPV value to the instantaneous baseline-simulation
(Base) value. The ratio is always calculated from a pair of simulations with identical mesh parameters. The
same four flow variables considered in figure 16 are considered here. See (5.6) and the supporting discussion.
Equation (3.21) defines the mixing-layer average. The legends state Nyz,2 as defined in the caption of table 1.

baroclinic production contributes little to the overall enstrophy dynamics, and integrated
density-weighted enstrophy in the CPV approaches the value in the baseline simulation.
Nevertheless, CPV–baseline-simulation differences in the mixed mass and (especially) in
the magnitudes of spanwise gradients of temperature and density persist long after reshock.

Thus, the analysis of this section underscores a set of interconnected physical
processes in the HED flows of the Reshock Campaign. In principle, the connection
between enhanced thermal conduction, smoother temperature and density gradients and
diminished baroclinic enstrophy production exists in any compressible flow (in which
the conservation of energy equation(s), EOSs and Navier–Stokes equations are tightly
coupled). However, studies of non-HED shock-induced mixing typically and justifiably
place little attention on the role of thermal conduction between fluid packets within
mixing layers. The CPV–baseline-simulation comparisons of this section demonstrate that
thermal conduction should not be ignored in HED shock-induced mixing, especially if any
quantities of interest depend on the magnitudes of local temperature or density gradients.
In the HED mixing layers considered here, the presence of ionized electrons induces
thermal conductivities so large that local heat transfer has a non-negligible impact on
small-scale mixing – an impact that can be observed in modern numerical simulations.

915 A84-43

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
22

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1122


J.D. Bender and others

200

150

100

50

200

150

100

50

0 50 100 150 200 0 50 100 150 200

200

150

100

50

0 50 100 150 200

200

150

100

50

200

150

100

50

0 50 100 150 200 0 50 100 150 200

200

150

100

50

0 50 100 150 200

2.0

1.5

1.0

0.5

0

2.0

1.5

1.0

0.5

0

(G
2 yz

 ρ
)1/

2 /
ρ

 (1
0–1

µ
m

–1
)

(G
2 yz

 ρ
)1/

2 /
ρ

 (1
0–1

µ
m

–1
)

y 
(µ

m
)

y 
(µ

m
)

z (µm) z (µm) z (µm)

Base, xc = 1581.1 µm, t = 30.00 ns Base, xc = 1733.9 µm, t = 45.00 ns Base, xc = 1771.7 µm, t = 50.00 ns

CPV, xc = 1577.2 µm, t = 30.00 ns CPV, xc = 1731.7 µm, t = 45.00 ns CPV, xc = 1767.8 µm, t = 50.00 ns

(a)

(b)

Figure 18. Visualizations of the SGIL of density ρ at the mixing-layer centre-plane x = xc in (a) the
finest-resolution baseline simulation (Base) and (b) the finest-resolution CPV. In both simulations, Nyz,2 =
360; see table 1. Contour plots are provided at 30, 45 and 50 ns. The SGIL is defined in terms of the G2

yz
operator; see (5.6) and the supporting discussion. Equation (4.3) defines the coordinate xc. Movie 5 in the
supplementary material accompanies this figure.

6. Conclusions

This paper discussed a computational investigation of shocked and reshocked
multimaterial mixing layers in the HED regime, in which pressures exceeded 1 Mbar.
The flows had a multimode initial perturbation at the interface between a heavy material
MH (iodine-doped polystyrene plastic) and a light material ML (carbonized resorcinol
formaldehyde). After they were shocked, both materials were plasmas. Perturbations grew
via the RM and RT instability mechanisms, and MH–ML interpenetration and mixing
occurred. The simulations were based on a series of experiments performed at the NIF
that were part of the Reshock Campaign (Nagel et al. 2017). The experimental series
was designed as an HED analogue of non-HED shock-tube studies of instability growth
and turbulent mixing. The present study built on a long history of experimental and
computational research on shock-induced mixing at both non-HED and HED conditions.
While the HED regime poses tremendous modelling challenges, many insights can be
gained using modern theories and numerical methods.

To model the NIF experiments, a 3-D computational framework was designed.
Simulations were executed using the radiation hydrodynamics code ARES with AMR.
They included treatments of distinct ion and free-electron internal energies, non-ideal
EOSs, radiation transport and plasma-state models of the transport processes of mass
diffusion, viscous dissipation and thermal conduction. Two critical aspects of the
simulations were tuned to available data from the NIF experiments: radiation temperature
boundary conditions were determined from measurements of the shock positions, and the
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interface initial perturbation was scaled based on measurements (Huntington et al. 2020)
of the mixing-layer width. The simulated perturbation was carefully designed such that
it captured key features of the experimental perturbations and it converged to an analytic
form under mesh refinement.

The simulated mixing layers were analysed in two parts. In the first part, we investigated
the evolution of various statistical metrics – common in studies of turbulent mixing –
from three different-resolution baseline simulations. The mixing-layer width increased
after first shock, decreased during reshock compression, increased rapidly after reshock
and decreased again at late time due to compression from a reflected shock. The mixed
mass increased monotonically, and its post-reshock growth rate was generally much larger
than its pre-reshock growth rate. The normalized mixed mass (a dimensionless measure
of sub-zonal mixing to larger-scale entrainment) approached values of ∼0.80–0.85 at late
time. Integrated metrics of MDTKE and enstrophy both increased by over an order of
magnitude after reshock. Axial-direction anisotropy in the MDTKE was strong before
reshock, but weakened substantially after reshock. Many of these trends were consistent
with computational studies of non-HED shock-induced mixing. In the HED flows, both the
baroclinic source and enstrophy–dilatation terms made large contributions to enstrophy
production during reshock, suggesting that fluid compressibility is important in the
vorticity dynamics in the HED regime.

The simulations included models of physical viscosity and mass diffusivity. In principle,
they would converge to the DNS limit under mesh refinement. However, the resolutions
considered here were not sufficient to resolve all fluid-dynamical length scales. Therefore,
we scrutinized the mesh sensitivity of all quantities of interest. The mixing-layer width,
mixed mass, moderate-to-late-time normalized mixed mass and MDTKE were all only
weakly sensitive to mesh resolution. The enstrophy – particularly its production via vortex
stretching – was strongly dependent on the grid, although the relative magnitude of the
reshock-induced enstrophy increase was less dependent. Analysis of anisotropy suggested
that the poor convergence of some quantities might be attributable to inadequate resolution
of the small-wavelength noise component of the initial perturbation. A time-varying
Reynolds number based on Taylor microscales was moderately grid dependent. However,
at post-reshock times, this Reynolds number – at all resolutions – was large enough
to suggest that the flows realized at the NIF had met a criterion (Dimotakis 2000) for
transition to a well-mixed state.

In the second part of the analysis, we sought to illuminate the role of HED-specific
physics in shock-induced mixing. Compared to a canonical non-HED analogue (Vetter
& Sturtevant 1995; Hill et al. 2006), the HED flow exhibited similar Reynolds numbers
and diffusive Péclet numbers but much smaller conductive Péclet numbers due to efficient
thermal conduction by free electrons. Motivated by this finding, we ran three additional
simulations, termed CPVs, that were identical to the baseline simulations except that
electron thermal conduction was removed. At a given resolution, the mixing-layer width,
mixed mass and moderate-to-late-time normalized mixed mass were larger in the CPV
than the baseline simulation by minor but unequivocal amounts. At pre-reshock and early
post-reshock times, enstrophy was also larger in the CPV than the baseline simulation. We
explained these trends by showing that local spanwise gradients of both temperature and
density were (on average) significantly sharper in the CPV than in the baseline simulation,
resulting in greater baroclinic production of enstrophy and sub-zonal mixing in the CPV
than in the baseline simulation.

Thus, the CPV–baseline-simulation analysis yielded insights into HED flows like those
realized in the NIF Reshock Campaign. When compared to their non-HED analogues,
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the HED flows are distinguished by several interrelated characteristics: (i) the presence of
ionized electrons substantially raises the effective thermal conductivity in a dimensional
sense; (ii) there is strong correlation between local temperature gradients and local
density gradients in the mixing layers, with different-density fluid packets tending to have
very different temperatures; (iii) electron thermal conduction plays a significant role in
softening local gradients of both temperature and density; and (iv) this gradient-softening
mechanism is associated with a minor but non-negligible decrement to baroclinic
enstrophy production and small-scale mixing.

The research presented here will help inform future theoretical, experimental and
computational inquiries. The present simulations leveraged state-of-the-art models from
numerous areas of fluid mechanics, thermodynamics and plasma physics. While we
believe that these models reasonably represented all relevant physical processes (especially
after tuning to experimental data), further examination of model sensitivities is warranted.
The simulations could be repeated with better resolution of the initial perturbation,
higher-order numerical schemes, more-sophisticated EOSs or alternate approaches to
thermodynamic equilibration in mixed zones. In HED flows more complex than
those considered here, instability growth and mixing may be affected significantly by
ion–electron non-equilibrium, non-diffusive radiation transport, magnetohydrodynamics
and other physics. Many open questions remain, along with opportunities for fruitful
experiments and 3-D simulations. We look forward to continued dialogue between the
traditional fluid mechanics and HED science communities, in the ongoing quest to
understand mixing at extreme conditions.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2020.1122.
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Appendix A. Material properties: additional details

A.1. EOS of a single species
Expanding on § 3.2, this appendix further describes the EOSs of the three pure materials
MH , ML and MR as modelled in the present study. Each material is treated as a
single species. In this appendix, all thermodynamic quantities and model coefficients are
understood to be particular to a single species. Multispecies mixtures are discussed later
in appendix A.4.

From (3.17) and (3.18), the total pressure p is expressed as the sum of the ion pressure
pn and the electron pressure pe, and the specific total internal energy El is expressed
as the sum of the specific ion internal energy En and the specific electron internal
energy Ee. The concept of separating thermodynamic contributions due to ions and
free electrons is discussed in detail by Zel’dovich & Raizer (2002, §§ XI.1–XI.6) and
Ramshaw & Cook (2014). Importantly, whenever discussing material properties in this
work, we adopt the following conventions. An electron internal energy like Ee always
refers to an electron thermal internal energy, meaning that it is formally zero when the
electron temperature Te = 0. Conversely, an ion internal energy like En always refers to
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a sum of two sub-components: an ion thermal component (which is formally zero when
the ion temperature Tn = 0) and a cold component (which is formally independent of
temperature). Similar conventions are followed for pe and pn.

In typical EOS formalisms for HED-flow calculations, the density ρ, ion temperature Tn
and electron temperature Te are treated as independent variables. Then, pn, pe, En, and Ee
are defined as follows:

pn = pn(ρ, Tn), (A1a)

pe = pe(ρ, Te), (A1b)

En = En(ρ, Tn), (A1c)

Ee = Ee(ρ, Te). (A1d)

It is assumed (Ramshaw & Cook 2014) that pn and En are independent of Te and that pe
and Ee are independent of Tn.

For the present study, the QEOS model of More et al. (1988) is used to explicitly define
the four functions in (A1a–d). QEOS was designed as a versatile description of matter at a
wide range of densities and temperatures. For a material with fixed atomic number Z and
atomic weight A, the total Helmholtz free energy per unit mass F is expressed as the sum
of three components

F(ρ, Tn, Te) = F1(ρ, Tn) + F2(ρ, Te) + F3(ρ), (A2)

where F1 is the ion component, a function of ρ and Tn; F2 is the electron component, a
function of ρ and Te; and F3 is the chemical bonding correction, a function of ρ only.
Pressures, specific internal energies and other thermodynamic quantities are calculated
from F using thermodynamic identities (McQuarrie 2000; Schroeder 2000).

In the QEOS framework, F is constructed as a smooth function, and it exactly satisfies
a condition of thermodynamic consistency (More et al. 1988, (6)). The ion component
F1 is constructed analytically such that it reduces to well-known physical laws in various
limiting cases, e.g. it reduces to the ideal gas law at high temperatures or low densities.
The ion component is constrained by various material properties that are treated as
model inputs, principally the Debye temperature (McQuarrie 2000, (11.27)), the Grüneisen
gamma (Zel’dovich & Raizer 2002, § XI.4) and the melting temperature at a reference
condition. The electron component F2 is based on Thomas–Fermi theory (Feynman et al.
1949), which treats the material as nuclei surrounded by a charged semiclassical electron
fluid including Fermi–Dirac electron statistics. At a given density and temperature,
F2 is determined by the atomic number Z and the atomic weight A. The chemical
bonding correction F3 is constructed analytically. It adds an approximate treatment of
chemical bonds that is absent in Thomas–Fermi theory and is particularly relevant at low
temperatures and solid-state densities. The chemical bonding correction is expressed in
terms of the bulk modulus, which can be calculated from the speed of sound (treated
as a model input) at a reference condition. See Zel’dovich & Raizer (2002, § XI.14) and
Schroeder (2000, § 1.5).

In an efficient implementation of QEOS, some results from Thomas–Fermi theory are
pre-computed and later recovered as needed via a table lookup. Hence, the model can
overall be described as quasi-analytic. Also note that neither F1 nor F2 reduce to zero
in the limit of zero temperatures; they are not thermal components. Therefore, to obtain
the specific electron (thermal) internal energy Ee in (A1d), we must take the specific
internal energy derived from F2 and subtract its value at Te = 0. To obtain the specific
ion (non-thermal) internal energy En in (A1c), we must take the specific internal energy
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Material identifier MH ML MR
Abbreviated name CHI CRF PAI

X(H) — 47/100 — 20/67
X(C) — 50/100 1 36/67
X(N) — — — 4/67
X(O) — — — 7/67
X(I) — 3/100 — —
Z — 5.06 6 4.776
A — 10.286 12.011 9.262

Γ — 0.782 0.500 0.350
ρref (g cm−3) 1.43 2.00 1.43
Tref (eV) 0.0250 0.0250 0.0250
pref (Mbar) 0 0 0
cs,ref (μm ns−1) 1.82 3.88 2.14
Tm (eV) 0.0458 0.177 0.0841
Td (eV) 0.0302 0.0431 0.134

Table 6. Material chemical compositions and other parameters, used in the QEOS model (More et al. 1988):
X(b) is the number fraction of chemical element b and is assumed to be fixed at all positions and times for
a given material; Z is the atomic number and A is the atomic weight, computed as number averages over the
chemical elements and, in the table, rounded to the nearest 0.001 when appropriate; Γ is the Grüneisen gamma;
ρref is the reference density; Tref is the reference temperature; pref is the reference pressure; cs,ref is the speed
of sound at reference density and temperature; Tm is the melting temperature at reference density; and Td is the
Debye temperature. The reference conditions are used only for parameterizing the EOSs and are not the same
as the initialization conditions in the simulations.

derived from F1 and add contributions derived from F2 at Te = 0 and from F3. Similar
manipulations are required for pe, pn and other quantities.

Table 6 gives the chemical compositions and other QEOS model input parameters for
the materials MH , ML and MR in the present study. The parameters were obtained from
existing tabular EOSs in the LEOS database, specifically L5442 for CHI, L5250 for CRF
and L5460 for PAI. Those tabular EOSs were constructed using an approach similar to
the QEOS framework but including some additional features (Young & Corey 1995). For
each material, the speed of sound cs,ref was determined by interpolation on the tabular
EOS. All other parameters were taken directly from the inputs used to originally construct
the tabular EOS. The chemical compositions were modelling approximations informed by
knowledge of how each real material was manufactured. For simplicity, only carbon was
included in the chemical composition for ML, even though real CRF contains carbon plus
small fractions of hydrogen and oxygen. We emphasize that access to the tabular EOS
database is not needed to reproduce any of the results in this paper.

A.2. Degree of ionization of a single species
The degree of ionization Z∗ of a single material is defined as the number of free electrons
per nucleus. Here, Z∗ is specified by an analytic function, given in More (1991, table 1),
of the density, electron temperature, atomic number and atomic weight. The same formula
was also referenced and reprinted by Atzeni & Meyer-ter-Vehn (2004, table 10.2). It is a
fit to numerical results from Thomas–Fermi theory (Feynman et al. 1949). The electron
number density ne is related to Z∗ by

ne = ρZ∗

m
, (A3)
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Material identifier MH ML MR
Abbreviated name CHI CRF PAI

C1,r ((cm2 g−1) (g cm−3)−C2,r (keV)−C3,r ) 3.2 × 102 1.3 × 103 2.5 × 101

C2,r — 0.28 0.62 0.53
C3,r — −1.0 −0.35 −1.8
C1,p ((cm2 g−1) (g cm−3)−C2,p (keV)−C3,p ) 2.7 × 102 3.2 × 103 6.9 × 101

C2,p — 0.27 0.36 0.48
C3,p — −1.4 −0.57 −1.9

Table 7. Material opacity parameters used with (A4). Parameters labelled r correspond to Rosseland mean
opacities. Parameters labelled p correspond to Planck mean opacities. The units of the parameters C1,ι are
dependent on the corresponding values of the exponents C2,ι and C3,ι.

where m is the mass of a single atom, computable from the atomic weight. The quantities
Z∗ and ne are important for calculating transport coefficients, as explained below.

A.3. Opacities of a single species
For use in (3.5), (3.6), and (3.16), the Rosseland and Planck mean opacities of a single
material, κr and κp, respectively, are given by a simple analytic function of density and
electron temperature suggested by Atzeni & Meyer-ter-Vehn (2004, (10.127))

κι = C1,ιρ
C2,ιTC3,ι

e , ι = r or p. (A4)

Table 7 gives the coefficients C1,ι, C2,ι and C3,ι used for each of the materials MH , ML and
MR. The coefficients were obtained by curve fitting to tabular opacity data, which, in turn,
were based on the OPAL code (Iglesias, Rogers & Wilson 1992; Rogers & Iglesias 1992;
Iglesias & Rogers 1996) and the super-transition-array theory (Bar-Shalom et al. 1989).
The fitting parameters were adjusted until main-shock and reshock trajectories, when using
(A4) in a simplified 1-D version of the 3-D simulations (see appendix B), were similar to
those obtained when using the tabular opacities directly. The parameters in table 7 are not
expected to give reasonable representations of the opacities in any physics environment
that differs significantly from the one considered here. We emphasize that access to the
tabular opacity data is not needed to reproduce any of the results in this paper.

A.4. Properties of multispecies mixtures
The present simulations allow for arbitrary mixtures of the three species MH , ML and
MR anywhere in the computational domain. Due to the complexity of the species EOSs,
care is needed to ensure a robust approach to calculating thermodynamic properties in
a mixed-material zone. Ramshaw (2004) conducted theoretical studies of mixtures of
partially ionized gases with non-ideal EOSs. Cook (2009) published a computational
method for thermodynamic equilibration of mixtures characterized by one temperature.
Ramshaw & Cook (2014) then extended the method to two-temperature plasma mixtures,
i.e. those featuring distinct ion and electron temperatures. The method of Ramshaw &
Cook (2014) is used in the present study and summarized here.

The mixture equilibration problem is formulated as follows. Consider a computational
zone with a mixture of the Ns species. Suppose that ρ, En, Ee and {Ya} are known, where
ρ, En and Ee refer to densities and specific internal energies of the mixture in aggregate
and where Ya is the ratio of the mass of species a to the total mass in the zone. Define the
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Shocked HED mixing

volume fraction υa as the fractional volume occupied by species a if it were artificially
separated from all other species; υa is an auxiliary variable that evokes definition of the
species-a density

ρa = ρYa

υa
. (A5)

We now seek a solution to the following system of equations:

pm,a(ρa, Tn,a, Te,a) = pe,a(ρa, Te,a) + B(Te,a) pn,a(ρa, Tn,a) = pm,eq, (A6)

Tn,a(ρa, En,a) = Tn,eq = Tn, (A7)

Te,a(ρa, Ee,a) = Te,eq = Te, (A8)

Ns∑
a=1

υa = 1, (A9)

Ns∑
a=1

YaEn,a = En, (A10)

Ns∑
a=1

YaEe,a = Ee. (A11)

Equations (A6), (A7) and (A8) codify the core proposition of Ramshaw & Cook (2014):
thermodynamic equilibrium is achieved when the mixture-controlling pressure pm,a, the
ion temperature Tn,a and the electron temperature Te,a of each artificially separated
species-a volume is the same. The subscript eq denotes the equilibrium condition. The
mixture-controlling pressure is defined by (A6), where the blending function B(Te,a) is

B(Te,a) = exp

[
− ln 2

(
Te,a

Tg

)2
]
, (A12)

where ln 2 is the natural logarithm of 2 and Tg is a parameter called the blending transition
temperature, here set to 5 eV. Observe that B(Te,a = Tg) = 0.5 and that B varies smoothly
from 1 as Te,a → 0 to 0 as Te,a → ∞. Hence, pm,a equals the total pressure in the
low-temperature limit but the electron pressure in the high-temperature limit. Indeed,
Ramshaw (2004) and Ramshaw & Cook (2014) argue that accurate equilibration of
hot plasma mixtures (with Te,a � 0) should be based on free-electron thermodynamic
properties, not the total pressure. Equation (A9) follows from the definition of υa, and
(A10) and (A11) define the mixture specific internal energies as weighted sums of the
species-a specific internal energies {En,a} and {Ee,a}.

Equations (A6)–(A11) are 3Ns + 3 equations for 3Ns + 3 unknowns: {υa}, {En,a},
{Ee,a}, pm,eq, Tn,eq and Te,eq. The system of equations involves both explicit and implicit
evaluations of the single-species EOSs, which are written as functions of densities and
temperatures per (A1a–d). For example, pe,a(ρa, Te,a) in (A6) is an explicit evaluation,
while Te,a(ρa, Ee,a) in (A8) is an implicit evaluation. The equations are solved iteratively
using the procedure described in Ramshaw & Cook (2014), which incorporates a
Newton–Raphson root-finding scheme (Press et al. 1992).
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With the solution obtained, the total pressure of the mixture is (Ramshaw & Cook 2014,
(38))

p =
Ns∑

a=1

υapa, pa = pn,a + pe,a. (A13)

Note that p and pm,eq are identical only in the zero-electron-temperature limit. The specific
ion enthalpy of species a, used in (3.4), is

hn,a = En,a + pn,a

ρa
. (A14)

For a multispecies mixture, the degree of ionization Z∗ is computed as a
number-fraction-weighted average of the species-a degrees of ionization

Z∗ =
Ns∑

a=1

XaZ∗
a . (A15)

The number fraction Xa of species a is related to the mass fraction Ya by

Xa = Ya

ma

/ Ns∑
b=1

Yb

mb
, (A16)

where ma is the mass of a single atom of species a. The mixture electron number density
is calculated from

ne = ρ

Ns∑
a=1

YaZ∗
a

ma
. (A17)

The mixture opacity is computed as a volume-fraction-weighted average of the species-a
opacities

κι =
Ns∑

a=1

υaκι,a, ι = r or p. (A18)

A.5. Ionic transport coefficients
This appendix elaborates on the models used for physical transport processes involving
ions, namely mass diffusion, viscous dissipation and ion thermal conduction. The
associated transport coefficients are the mass diffusivity D, viscosity μ and ion thermal
conductivity κn, respectively. The theory of transport processes in fluids is extensive, and
we only give a brief overview of the relevant concepts. See Chapman & Cowling (1970)
and Hirschfelder et al. (1954) for thorough expositions.

The models for the three ionic transport processes are based on kinetic theory.
Specifically, Chapman–Enskog theory (Chapman & Cowling 1970) supplies approximate
solutions to the Boltzmann equation for particle distribution functions, along with analytic
expressions for the transport coefficients. These expressions are written in terms of
collision integrals, which quantify the effects of pairwise interactions between particles.
In the present study, ion–ion binary collisions are modelled using a screened Coulomb
potential, representing ion repulsion moderated by a background of free electrons, as
presented and analysed by Stanton & Murillo (2016). Their exposition includes analytic
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fits for the key collision integrals and related quantities needed to treat ionic transport in
many HED environments.

The mass diffusivity D in (3.8) is modelled by (55) in Stanton & Murillo (2016). For
model inputs such as the ion number density and ion reduced mass, local averages over
all species are used. Thus, D is treated as a mixture-averaged self-diffusion coefficient;
binary diffusion coefficients Dab for each a–b species pair are never calculated. Ellison
et al. (2018) have studied this approach, which they call the one-component plasma (OCP)
approximation. It is a considerable simplification of the physics of multispecies diffusion,
and it is expected to be most accurate for mixtures of ions with similar masses and
charges. Ellison et al. (2018) found that it gave reasonable order-of-magnitude results for
an ICF-relevant flow. Specifically, they reported that diffusive mixing between various
combinations of five atomic species was larger, in a majority of cases, when using the
OCP approximation instead of higher-fidelity approaches. For additional discussion of
self-diffusion, see Chapman & Cowling (1970, § 14.5) and Hirschfelder et al. (1954,
§ 8.2.d.ii).

The formulation (3.8) for the diffusive mass flux vector ignores pressure and thermal
contributions to mass diffusion – sometimes called barodiffusion and thermodiffusion,
respectively – as defined by Chapman & Cowling (1970, §§ 14.1 and 14.6) and Hirschfelder
et al. (1954, § 8.1a). Generally, barodiffusion is significant when pressure gradient
magnitudes are large and when the atomic weights of the diffusing species are very
discrepant, and thermodiffusion is significant when temperature gradient magnitudes are
large. However, in the cases considered by Ellison et al. (2018), the impact of neglecting
these two contributions appeared to be comparable to or less than the impact of grouping
species into one or more subsets (as done in the OCP approximation). Also, their cases
involved a converging geometry and pressures and temperatures orders of magnitude
larger than those in the present study. Hence, the impact of neglecting barodiffusion and
thermodiffusion is expected to be less in the present study than in Ellison et al. (2018). We
stress that the assessment of simplified models of mass diffusion in HED flows remains an
active area of research.

The viscosity μ in (3.9) of a single material is modelled by (60) in Bergeson et al. (2019).
Their theory builds on earlier work by Haxhimali et al. (2015) and considers the viscosity
to be a quadrature sum of two components: a weak-coupling component derived from
Stanton & Murillo (2016, (74)) and a strong-coupling component proposed by Murillo
(2008, (5)). The new model is designed to capture viscosity physics across a wide range
of values of the plasma coupling parameter, a dimensionless ratio of Coulomb-interaction
energy to thermal energy (Bergeson et al. 2019, (2)). The shocked and reshocked mixing
layers in the present study are in the weakly-to-moderately coupled regime; they exhibit
values of the plasma coupling parameter from ∼0.9 to 2. For a multispecies mixture, μ
is calculated explicitly in terms of species-a viscosities {μa} using an approximation due
originally to Burgers (1969, (21.4a)) and investigated by Haxhimali et al. (2015, (B10))
and Bergeson et al. (2019, (64)).

The ion thermal conductivity κn in (3.12) of a single material is modelled by (81) in
Stanton & Murillo (2016). For a multispecies mixture, κn is calculated explicitly in terms
of species-a conductivities {κn,a}, using a formula analogous to (B10) in Stanton & Murillo
(2016).

A.6. Electron thermal conductivities
Models of electron thermal conduction are based on a theoretical framework somewhat
different from the one used to model ionic transport. In this appendix, we first give a
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brief conceptual overview of the model used for the electron thermal conductivity κe in
(3.13). We discuss the applicability of the model. Then, we summarize its key equations
and compare its predictions to benchmark data.

Influential work on electron transport in HED plasmas was conducted by Lee & More
(1984). They obtained an expression for κe in a plasma of arbitrary composition, starting
from the Boltzmann equation for the electron distribution function and – in an important
innovation over earlier research – accounting for electron degeneracy. They presented
the formula for κe as a function principally of the electron temperature, density, and
chemical potential, and they gave analytic forms (fit to numerical results) for the relevant
quantities. They warned that their model overestimated κe for low-Z∗ plasmas, because
it did not account for electron–electron scattering. In the present study, κe for a single
material is calculated as the product of two factors: a conductivity κe,o as presented
by Lee & More (1984) and a correction factor Se that accounts for electron–electron
scattering. The analytic expression for Se was previously presented by Managan (2015)
and satisfies important theoretical limits. For a multispecies mixture, κe is calculated
using local averages of the model inputs, rather than as an explicit function of species-a
conductivities {κe,a}.

It is important to mention that the model for κe with (3.13) is not accurate when
the electron temperature gradient scale length is much smaller than the mean free path
for electron–ion collisions λen. In such cases, low-collisionality kinetic effects become
significant and cause inhibition or ‘saturation’ of the electron heat flux. Such physics,
notably important in the laser ablation of hohlraum walls in HED experiments, are
commonly modelled by applying a limiter to the heat flux for electron thermal conduction.
Cowie & McKee (1977), Bell (1985) and Atzeni & Meyer-ter-Vehn (2004, § 7.2) discuss
these issues in detail. Using the methodology of Bell (1985), we find that the ratio of
the averaged local gradient scale length of electron temperature to λen in the shocked
and reshocked mixing layers of the present study ranges from ∼9 × 103 to 2 × 105,
large enough to suggest that a limiter is not needed for a reasonable description of
the electron heat flux. Note that the limiters discussed notionally in this paragraph
are distinct from and should not be confused with the radiation diffusion flux limiter
of (3.16).

To describe the single-species electron thermal conductivity model in more detail, first
define the auxiliary variables

Θ = 1 + exp
(

− ϕ

kbTe

)
, ϑ = ln

[
1 + exp

(
ϕ

kbTe

)]
, χ = 1

Z∗ (1 + ϑ)
, (A19a–c)

where kb is the Boltzmann constant (≈ 1.381 × 10−16 erg K−1), Te is the electron
temperature, Z∗ is the degree of ionization (i.e. the number of free electrons per nucleus)
and ϕ is the electron chemical potential. The electron thermal conductivity is

κe = κe,oSe. (A20)

The first factor is taken exactly from Lee & More (1984, (23b) and (24)), written in the
Gaussian (rather than SI) system of units

κe,o = 3kb (kbTe)
5/2 A

23/2πZ∗e4m1/2
e lnΛ

ΘF1/2, (A21)

where e is the charge of an electron (≈ 4.803 × 10−10 statcoulombs), me is the mass of
an electron and lnΛ is the dimensionless Coulomb logarithm for electron–ion collisions.
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The Coulomb logarithm is set according to Lee & More (1984, (17)). Other choices are
possible; see Atzeni & Meyer-ter-Vehn (2004, § 10.9.1) for further discussion. The factor
A is expressed as a function of ϑ . Rather than using the fit specified by Lee & More (1984,
table VII, column 3), we use a similar but newer fit proposed by Managan (2015, (11))

A(ϑ) = [128/(3π)] + 2.4905ϑ + 0.53536ϑ2 + 0.089107ϑ3

1 + 0.63389ϑ + 0.15998ϑ2 + 0.089107(3/π2)ϑ3 . (A22)

The quantity F1/2 is a Fermi–Dirac integral (Lee & More 1984, (26))

F1/2 = F1/2

(
ϕ

kbTe

)
=

∫ ∞

0

s1/2 ds
1 + exp

[
s − ϕ/(kbTe)

] . (A23)

Rather than evaluating F1/2 directly via numerical integration, we use a curve fit (Managan
2015, (20)) for the product ΘF1/2

ΘF1/2 =
√

π

2
+ ϑ1/2 [0.080897 + 0.99341ϑ − 0.20639ϑ2 + 1.0710(2/3)ϑ3]

1 + 0.11000ϑ + 1.0710ϑ2 . (A24)

The electron–electron scattering correction factor Se is expressed as a function of χ

(Managan 2015, (37))

Se(χ) =
(

0.0961
1.2000

)(
1.2000 + 5.4053χ + 4.4080χ2 + 0.9067χ3

0.0961 + 0.7778χ + 1.5956χ2 + 1.3008χ3

)
. (A25)

This relation is similar to an expression, derived from a general moment equations analysis,
that was published by Ji & Held (2013, κ̂e

‖ in table III). The formulae from both Managan
(2015) and Ji & Held (2013) were designed to reproduce benchmark values for low-Z∗
plasmas from Braginskii (1965, table 2), and they satisfy Se → 1 as Z∗ → ∞.

It remains to specify the chemical potential or, equivalently, the auxiliary variable ϑ .
See Schroeder (2000, § 7.3) for an overview of the theory of the chemical potential of
a degenerate Fermi electron gas. Here we use a fit that satisfies theoretical limits in the
high-temperature (non-degenerate) and low-temperature (degenerate) extremes. Define the
dimensionless Fermi energy

εf = �2(3π2ne)
2/3

2mekbTe
, (A26)

where � is Planck’s constant (≈ 6.626 × 10−27 erg s) divided by 2π and ne is the electron
number density. Let ςf = √

εf . Then a reasonable approximation for ϑ as a function of ςf
is (Managan 2015, (15))

ϑ(ςf ) =
ς3

f

(
[4/(3

√
π)] + 0.19972ςf + 0.17258ς2

f + 0.14500ς3
f

)
1 + 0.25829ςf + 0.28756ς2

f + 0.16842ς3
f + 0.14500ς4

f
. (A27)

For illustration and critical comparison, figure 19 plots selected thermal conductivity
values for carbon at temperatures from 3 to 60 eV and densities from 0.2 to 4.0 g cm−3.
Those ranges fully encompass the conditions in the simulated shocked and reshocked
mixing layers; see figure 11. The material properties of carbon are important in the
simulated flows, since carbon composes 100 % of ML and 50 % of MH per table 6.
Figure 19(a) shows electron thermal conductivities calculated using the ARES model
described above and the PURGATORIO EOS code. PURGATORIO uses a framework that
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Figure 19. Comparisons of thermal conductivities versus temperature T at constant density ρ for elemental
carbon: (a) plots the electron thermal conductivities κe from ARES and PURGATORIO using lines and symbols,
respectively, and (b) plots the electron thermal conductivity κe from ARES (e) and the ion thermal conductivity
κn from ARES (n). Ion and electron temperatures are assumed to be equal, i.e. T = Te = Tn. The ARES data
are calculated with the models described in appendices A.5 and A.6, exactly as implemented in the 3-D fluid
simulations. In the legends, numbers indicate the density in g cm−3.

(unlike the ARES model) accounts for the effects of electron shell structure (Hansen et al.
2006; Wilson et al. 2006; Sterne et al. 2007). The PURGATORIO results are expected
to be of higher fidelity than those from the ARES model, and the former are treated
here as benchmark data. The figure shows that the ARES model successfully captures
overall trends in κe, which varies by more than two orders of magnitude. However,
near the upper bound of the temperature range, the ARES model can overestimate
κe by as much as ∼70 %. (ARES–PURGATORIO discrepancies are even larger at
temperatures below 3 eV.) Figure 19(b) compares ARES electron thermal conductivities
with ARES ion thermal conductivities. The latter are calculated using the model described
in appendix A.5. As expected, across the temperature and density ranges, the electron
thermal conductivity vastly exceeds the ion thermal conductivity.

Appendix B. Consistency of simulated shock trajectories

For any comparative computational study of shock-induced mixing, it is natural to ask
whether differences between simulations are due simply to differences in the shock
strengths. This appendix provides evidence that, in fact, the main-shock and reshock
trajectories are very similar across all the simulations considered in this work.

To analyse the position and velocity histories of the shocks, it proved useful to
construct simplified 1-D versions of the 3-D simulations. Each 1-D simulation featured
a Nx,2 × 1 × 1 mesh, where Nx,2 is the number of zones counted linearly along the x
direction on the finest AMR level in the corresponding 3-D simulation; see table 1. The
1-D simulations used a uniform mesh without AMR, with the same total x-extent W as
their 3-D counterparts. Sources Tr,main and Tr,reshock were applied in the 1-D simulations in
exactly the same manner as in the 3-D simulations. The 1-D simulations were particularly
conducive to shock-tracking methods based on characteristics (Anderson 2003), and they
had an important role in the source-tuning procedure discussed in § 3.6.1.

Figure 20 compares main-shock and reshock trajectories from several cases, with
time histories of position plotted in figure 20(a) and time histories of velocity plotted
in figure 20(b). Included are results from coarse-, medium- and fine-resolution 1-D
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Figure 20. Shock trajectories from various simulations: (a) plots time t versus axial shock position xh, and (b)
plots the axial component uh of shock velocity versus time t. Open squares and hexagons denote main-shock
and reshock positions, respectively, in the finest-resolution 3-D baseline simulation per table 1. Thick lines
and thin lines denote main-shock and reshock quantities, respectively, in coarse-, medium- and fine-resolution
simplified 1-D simulations, as explained in the text. The legend entries for the 1-D simulations state Nx,2, the
number of zones counted linearly along the x direction; compare with values in table 1. Base indicates a 3-D or
1-D simulation including electron thermal conduction, and CPV indicates a 1-D simulation excluding electron
thermal conduction.

versions of both the baseline simulations and the CPVs. The shock velocity in these
1-D simulations is calculated directly from the characteristics-based method, not from
a numerical derivative of shock position. Also included in figure 20(a) are selected
shock positions, determined by inspection of the instantaneous pressure fields, in the
finest-resolution 3-D baseline simulation. The figure suggests that the shock trajectories
in the present study are not sensitive to any of the following: (i) mesh resolution;
(ii) inclusion of an electron thermal conduction model or not; or (iii) use of a 3-D mesh
with AMR instead of a corresponding 1-D mesh without AMR. The small radiative
precursor ahead of the reshock, discussed in § 4.3, is not discernibly altered by electron
thermal conduction.
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Main Reshock

B1,1 (eV) 200 390
B2,1 (ns) 1.0 0.7
B3,1 — 2 2
B1,2 (eV) 170 55
B2,2 (ns) 2.0 2.3
B3,2 — 2 2
B1,3 (eV) 280 170
B2,3 (ns) 19 19
B3,3 — 1 1

Table 8. Coefficients used in (3.23) for the sources Tr,main and Tr,reshock.

Appendix C. Coefficients for sources

Table 8 gives the coefficients used in (3.23) for the radiation temperature boundary
conditions Tr,main and Tr,reshock. The constants were determined via the tuning procedure
of § 3.6.1. The choices in table 8 are not unique; other choices could also yield
suitable agreement with the NIF experimental data. Also, we caution the reader against
over-attributing physical meaning to the tuned coefficients. They ensure that shock
trajectories from the computational model are consistent with the experimental data, but
they are not expected to give a general-purpose model of halfraum physics.

Appendix D. Interface initial perturbation: additional details

Thisappendixexplainshowtheprincipal-perturbationfunctionδ†
x andthenoise-perturbation

function δ†
x are defined for use in (3.24). Importantly, δ†

x and δ∗
x are designed such that

their amplitudes are linearly proportional to constant dimensionless scaling parameters ξ†

and ξ∗, respectively. Those parameters can be related simply to the standard deviations S†

and S∗ of suitably large numbers of samples of the two functions. In the present study,
S† and S∗ were adjusted to achieve reasonable agreement with experimental measurements
of the mixing-layer width; see § 3.6.2.

To construct the principal-perturbation function, let N† be an even number. Define a
sequence of random lengths (Ri), where each Ri is independently sampled from a uniform
distribution with 0 μm ≤ Ri ≤ 1 μm, and define a corresponding sequence of positions
( yi) by

yi = iΔ†, i = 0, 1, . . . , (N† − 1), (D1)

where Δ† = L/N†. Take the discrete Fourier transform of (Ri), yielding a new sequence
of N† complex numbers (R̂n) associated with spectroscopic frequencies ( fn), which have
units of μm−1. The frequencies range in magnitude from 0 to 1/(2Δ†), inclusive. Next,
define a modified sequence (R̂†

n) by the following rule:

R̂†
n =

{
R̂n, if 1/λ†

max ≤ fn ≤ 1/λ†
min,

0, otherwise.
(D2)

Take the inverse discrete Fourier transform of (R̂†
n) to obtain a new sequence (R†

i ). Then
the principal-perturbation function δ†

x ( y) is defined as a smooth function that passes
through all the points (yi, ξ

†R†
i ), where ξ† is a constant dimensionless scaling parameter.
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The same function δ†
x is used for all simulations, independent of the mesh. Furthermore, we

choose N† carefully – as a sufficiently large multiple of the number of spanwise zones
in each of the three baseline simulations – such that it is never necessary to interpolate
between consecutive values in (ξ†R†

i ) when evaluating δ†
x for domain initialization. Early

tests demonstrated that such interpolation could corrupt the spectral content of δ†
x .

To construct the noise-perturbation function, we adopt the approach of Thornber et al.
(2017), which is also discussed in earlier works (Thornber 2007; Thornber et al. 2010)
and is comparable to the noise-construction technique of Schilling & Latini (2010).
The method involves an explicit summation of sinusoidal basis functions with randomly
sampled coefficients. First, let ko = 2π/L. Define two sequences of angular wavenumbers
(ky,i) and (kz,j), in units of rad μm−1

ky,i = iko, i = 1, 2, . . . ,

kz,j = jko, j = 1, 2, . . . .

}
(D3)

The spacings between consecutive values in the two sequences, denoted by Δky and Δkz,
are both equal to ko. (Constructions using alternate choices for Δky and Δkz are possible.)

For any ky and kz, let k =
√

k2
y + k2

z be the length of the corresponding angular wavevector.
Take the power spectral density function

P(ky, kz) =
{
Po, if 1/λ∗max ≤ k/(2π) ≤ 1/λ∗min,

0, otherwise,
(D4)

where Po is a positive constant taken to be 1 μm3 rad−1. Hence, P has units of squared
perturbation amplitude per angular wavenumber. Notice that P is non-zero in an annulus of
wavevector space, with inner and outer radii corresponding to λ∗max and λ∗min, respectively.
For each (ky,i, kz,j) pair for which P is non-zero, define the four coefficients

η
(1)
ij , η

(2)
ij , η

(3)
ij and η

(4)
ij

as independent samples drawn from a normal distribution with zero mean and with
variance (in μm2) defined by

V(ky, kz) = ΔkyΔkz

2πk
P(ky, kz). (D5)

The factor of 1/k in this equation compensates for the larger number of wavevector samples
at larger values of k (Thornber et al. 2017). Then the noise-perturbation function δ∗

x ( y, z)
is

δ∗
x (y, z) = ξ∗ ∑

i,j

[
η
(1)
ij cos(ky,iy) cos(kz,jz) + η

(2)
ij cos(ky,iy) sin(kz,jz)

+ η
(3)
ij sin(ky,iy) cos(kz,jz) + η

(4)
ij sin(ky,iy) sin(kz,jz)

]
, (D6)

with the summation taken over all available η
(1)
ij , . . . , η

(4)
ij and where ξ∗ is a constant

dimensionless scaling parameter. The same function δ∗
x is used for all simulations,

independent of the mesh.
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Appendix E. Conventions for Fourier analysis

This appendix summarizes terminology, notation and key equations for Fourier analysis
of discrete data sets. The exposition is based on Press et al. (1992). To compute discrete
Fourier transforms in the present study, we use the routines in the NumPy library (Oliphant
2006), part of the larger SciPy ecosystem (Jones 2001).

Let G( y) be a real periodic function with period L. Define a length-N sequence of
sampled values (Gi) by

Gi = G(yi), yi = iΔ, i = 0, 1, . . . ,N − 1, (E1)

where Δ = L/N is the sampling interval. Assume N is even for simplicity. The discrete
Fourier transform of (Gi) is a sequence of complex numbers (Ĝn) defined by

Ĝn ≡
N−1∑
i=0

Gi exp (2π�in/N) (E2)

with � = √−1. Each Ĝn corresponds to a spectroscopic wavenumber

fn = n
L

= n
NΔ

, n = −N
2
, . . . ,−1, 0, 1, . . . ,

N
2

− 1, (E3)

which is related to the angular wavenumber kn = 2π fn. The Nyquist wavenumber is
1/(2Δ). From periodicity, Ĝn = Ĝn+N . Also, Ĝn is related to an estimate of the continuous
Fourier transform

Ĝ( f ) ≡
∫ ∞

−∞
G( y) exp (2π�fs) ds (E4)

via Ĝ( fn) ≈ ΔĜn. For practical applications, it is common to re-order the sequences (Ĝn)
in (E2) and ( fn) in (E3) according to the alternate enumeration

( fn) = 1
L

(
0, 1, . . . ,

N
2

− 2,
N
2

− 1,−N
2
,−N

2
+ 1, . . . ,−2,−1

)
, (E5)

so that the values of n in (E2) can be taken as n = 0, . . . ,N − 1. Parseval’s theorem is an
important property describing the total power in the sequence (Gi)

N−1∑
i=0

G2
i = 1

N

N−1∑
n=0

|Ĝn|2. (E6)

These concepts extend naturally to two dimensions. Let H( y, z) be a real periodic
function with period L in both the y and z directions. Define the array (Hij) by

Hij = H(yi, zj), yi = iΔ, zj = jΔ, i, j = 0, 1, . . . ,N − 1. (E7)

The 2-D discrete Fourier transform of (Hij) is an array (Ĥnm) defined by

Ĥnm ≡
N−1∑
i=0

N−1∑
j=0

Hij exp (2π�in/N) exp (2π�jm/N) , (E8)
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the component corresponding to a spectroscopic wavevector ( fn, fm). The radial power
spectral density (RPSD) DH( f ) of H can be approximated via DH( fq) ≈ DH,q, where

DH,q ≡ L
N4

∑
n,m∈β( fq)

∣∣∣Ĥnm

∣∣∣2 ,
β( fq) =

{
n,m : fq − �

2
≤

√
f 2
n + f 2

m < fq + �

2

}
.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (E9)

Here, ( fq) is a sequence of spectroscopic wavevector magnitudes, with � ≡ fq+1 − fq =
1/L as in (E3) and (E5). The quantity DH, q gives a measure of how much power in (Hij)
falls within a wavevector-magnitude bin centred at fq with bin width � , and β( fq) is the
collection of (n,m) pairs that correspond to that bin. The multiplicative factor L/N4 =
Δ4/L3 ensures that∫

DH( f ) df ≈
∑

q

DH, q� =
N−1∑
i=0

N−1∑
j=0

H2
ij

N2 ≈ 1
L2

∫ L

0

∫ L

0
H2(y, z) dy dz, (E10)

which can be verified using the 2-D analogue of (E6). If H has units of V and y and z each
have units of W, then DH has units of V2W.

Now consider a 2-D slice through a 3-D flow field, with periodic boundary conditions
on the slice. Building on the conventions in the previous paragraph, let (u′′

1, u′′
2, u′′

3)ij be a
discrete sample of the velocity Favre-fluctuation vector (u′′

1, u′′
2, u′′

3). The turbulent energy
spectrum R( f ) can be approximated via R( fq) ≈ Rq, where

Rq ≡ L
2N4

∑
n,m∈β( fq)

[∣∣∣û′′
1nm

∣∣∣2 +
∣∣∣û′′

2nm

∣∣∣2 +
∣∣∣û′′

3nm

∣∣∣2] (E11)

with β( fq) defined as in (E9). As in (E10), observe that
∫
R df ≈ ∑

Rq� =∑∑
Iij/N2 ≈ I , where I is the LTKE from (4.4). We find that the method represented by

(E11) is consistent with the shell-averaging method of Ishida, Davidson & Kaneda (2006,
appendix B), after adapting the latter for 2-D analysis; method-to-method differences in
R at the mixing-layer centre-plane are somewhat more appreciable at pre-reshock times,
when the flow is strongly anisotropic, than at post-reshock times. See Pope (2000, § 6.5)
and Davidson (2015, § 8.1.4) for detailed discussions of R and its importance.

Appendix F. MDTKE analysis: additional details

Expanding on the analysis in § 4.4, an evolution equation for K can be derived from the
Navier–Stokes equations (3.3)

∂

∂t
(K) + ∂

∂xj

(
Kũj

) =
(

−ρu′′
i u′′

j
∂ ũi

∂xj

)
︸ ︷︷ ︸

TI

+
(

u′′
i

[
∂σ̄ij

∂xj
− ∂ p̄

∂xi

])
︸ ︷︷ ︸

TII

+
(

p′ ∂u′′
i

∂xi

)
︸ ︷︷ ︸

TIII

+
(

− ∂

∂xj

[
1
2 ρ̄

˜(
u′′

i u′′
i u′′

j

)
+ p′u′′

j − σ ′
iju

′′
i

])
︸ ︷︷ ︸

TIV

+
(

−σ ′
ij
∂u′′

i
∂xj

)
︸ ︷︷ ︸

TV

. (F1)

915 A84-61

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
22

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1122


J.D. Bender and others

10 15 20 25 30
t (ns)

–0.4

0

0.4

0.8

�T
ι�/

�K
� (

ns
–1

)

I
II
III
IV
V

30 35 40 45 50
t (ns)

–10

0

10

20

30(a) (b)

Figure 21. Evolution of the mixing-layer integrals of each term TI, . . . ,TV in (F1), normalized by 
K�, in the
finest-resolution baseline simulation: (a) displays early-time results before reshock, and (b) displays late-time
results after reshock. Note the difference in the ordinate limits of the two figures. Equation (3.22) defines the
mixing-layer integral.

This equation is central to the construction of reduced-order Reynolds-averaged
Navier–Stokes models. As explained in Sagaut & Cambon (2008) and Chassaing et al.
(2010), the first term TI is the shear production term, which is zero when the mean rate
of strain (∂ ũi/∂xj + ∂ ũj/∂xi)/2 is zero. The second term TII is the turbulent-mass-flux
coupling term, so named because the product of density and u′′

i = ui − ũi can be
interpreted as a turbulent mass flux that vanishes for a constant-density flow. As a
contribution to TII , the product − u′′

i ∂p/∂xi is called the buoyancy production term
(Schilling & Latini 2010; Thornber et al. 2019) or the mean pressure work term (Chassaing
et al. 2010). The third term TIII is the pressure–dilatation term. The fourth term TIV
is the turbulent transport term, which vanishes for a homogeneous flow. The fifth term
TV is the dilatational dissipation term. The shear production term is associated with
exchange between the turbulent kinetic energy and mean-flow kinetic energy, while
the pressure–dilatation and dilatational dissipation terms are associated with exchange
between the turbulent kinetic energy and mean-flow internal energy. The turbulent
transport term is associated with spatial redistribution of turbulent kinetic energy. In the
present study, the terms on the right-hand side of (F1) can be calculated (as functions of x
and t) using the Reynolds-averaging operator (3.19). The supplementary material provides
a complete derivation of (F1) and elaborates on some computational issues associated
with it.

Figure 21 plots normalized mixing-layer integrals of each term TI, . . . ,TV versus
time, in the finest-resolution baseline simulation. Figure 21(a) shows that, before reshock,
MDTKE production is principally due to the turbulent-mass-flux coupling term TII as the
MH–ML interface moves downstream and instabilities grow. The buoyancy production
term accounts for nearly all of TII at these times. The TI term accounts for some
MDTKE destruction after first shock, while the other three terms do not contribute
significantly to the net balance of MDTKE. The persistent generation of MDTKE via
buoyancy production mirrors the persistent generation of enstrophy via the baroclinic
source term in (4.14); see figure 14(b). Both trends are consistent with RT instability
growth throughout the post-first-shock, pre-reshock interval, with sustained deceleration
of the heavy–light mixing layer. As discussed in § 4.3, the flows simulated here cannot be
accurately characterized as either ‘pure RM’ or ‘pure RT’.
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Figure 22. Instantaneous profiles of each term TI, . . . ,TV in (F1), normalized by 
K�, in the finest-resolution
baseline simulation at (a) 20 ns, (b) 30 ns, (c) 35 ns and (d) 45 ns. The profiles are plotted as functions of
the dimensionless mixing-layer position (x − xc)/xw, where xc is the mixing-layer centre-plane and xw is the
mixing-layer fitting width; see (4.3). In each figure, two solid vertical lines denote the bubble front xb and spike
front xs as defined in § 3.5. Note that the ordinate limits vary across the four figures. Equation (3.22) defines
the mixing-layer integral.

Figure 21(b) shows that MDTKE production during reshock traversal of the mixing layer
is principally due to the shear production term TI , with the component −ρu′′

1u′′
1∂ ũ1/∂x1

being the dominant contributor to TI . During reshock traversal, the pressure–dilatation
term TIII contributes significantly to MDTKE production, and the turbulent-mass-flux
coupling term TII is responsible for some MDTKE destruction.

Figure 22 plots instantaneous, normalized profiles of the five terms in the
finest-resolution baseline simulation at two pre-reshock and two post-reshock times.
Figures 22(a) and 22(b) correspond to moderate and late pre-reshock times, respectively,
and they support the claims made in the previous paragraph. The turbulent-mass-flux
coupling term TII dominates MDTKE production. The turbulent transport term TIV
is non-zero across most of the mixing layer, although the magnitude of its integral is
small. Figure 22(c) indicates that – as the mixing layer expands rapidly after reshock
– MDTKE destruction occurs due to both TI and TII , and spatial redistribution due to
TIV is significant. Figure 22(d) suggests an approximate balance between TII and TIV
near the time of maximum mixing-layer width. At all times, losses due to the dilatational
dissipation term TV are relatively minute.
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The qualitative trends described in the preceding three paragraphs are also seen in
the two lower-resolution baseline simulations and in all three CPVs, suggesting that the
trends are physically meaningful and not merely numerical artefacts. The supplementary
material provides results, corresponding to figure 21, from the two lower-resolution
baseline simulations. As in the discussion of enstrophy evolution in § 4.6, it is important
to emphasize that (F1) is not exact for an under-resolved 3-D simulation. Numerical
truncation errors associated with MDTKE evolution were recently analysed by Thornber
et al. (2019). Although beyond the scope of the present study, further analysis of numerical
errors is warranted. In particular, numerical dissipation likely has a role in the post-reshock
MDTKE decay.
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