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THE REVERSE MATHEMATICS OF THE THIN SET AND
ERDŐS–MOSER THEOREMS

LU LIU AND LUDOVIC PATEY

Abstract. The thin set theorem for n-tuples and k colors (TSnk) states that every k-coloring of [N]n

admits an infinite set of integers H such that [H ]n avoids at least one color. In this paper, we study the
combinatorial weakness of the thin set theorem in reverse mathematics by proving neither TSnk , nor the
free set theorem (FSn) imply the Erdős–Moser theorem (EM) whenever k is sufficiently large (answering
a question of Patey and giving a partial result towards a question of Cholak Giusto, Hirst and Jockusch).
Given a problem P, a computable instance of P is universal iff its solution computes a solution of any other
computable P-instance. It has been established that most of Ramsey-type problems do not have a universal
instance, but the case of Erdős–Moser theorem remained open so far. We prove that Erdős–Moser theorem
does not admit a universal instance (answering a question of Patey).

§1. Introduction. In this paper, we study the computability-theoretic strength of
Ramsey’s theorem when we weaken the notion of homogeneous set by allowing more
colors. The resulting weakenings are known as thin set theorems. In particular, we
show that some thin set theorems are sufficiently weak not to imply the Erdős–Moser
theorem in reverse mathematics.

Reverse mathematics is a foundational program which seeks to determine the
optimal axioms to prove “ordinary” theorems [3]. It uses the framework of
subsystems of second-order arithmetic, with a base theory called RCA0, informally
capturing “computable mathematics.” When the first-order part consists of the
standard integers, the models of RCA0 are fully specified by their second-order
parts, which are precisely the Turing ideals. A Turing ideal I is a collection of sets
which is closed downward under the Turing reduction (∀X ∈ I)(∀Y ≤T X )Y ∈ I
and closed under the effective join (∀X,Y ∈ I)X ⊕ Y ∈ I. We shall only consider
such models, called �-models.

The early study of reverse mathematics has seen the emergence of four subsystems
of second-order arithmetic linearly ordered by the provability relation, such that
most of the ordinary theorems are either provable in RCA0, or equivalent in RCA0

to one of them. These subsystems, together with RCA0, form the “Big Five” [11].
Among them, let us mention ACA, standing for arithmetical comprehension axiom,
and WKL, standing for weak König’s lemma, which states that every infinite
binary tree has an infinite path. See Simpson [20] for a good introduction to
reverse mathematics. Among the theorems studied in reverse mathematics, Ramsey’s
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theorem plays an important role, since Ramsey’s theorem for pairs is historically the
first example of statement which does not satisfy this empirical observation.

Definition 1.1 (Ramsey’s theorem). A subset H of � is homogeneous for a
coloring f : [�]n → k (or f-homogeneous) if each n-tuple over H is given the same
color by f. RTnk is the statement “Every coloring f : [�]n → k has an infinite
f -homogeneous set.”

RT1
k is nothing but the infinite pigeonhole principle which is provable in RCA0.

Jockusch [6] (see Simpson [20]) proved that RTnk is equivalent to ACA over RCA0

whenever n ≥ 3, and that WKL does not imply RT2
2 over RCA0. The computability-

theoretic strength of Ramsey’s theorem for pairs was unknown for a long time, until
Seetapun [19] proved that RT2

2 does not imply ACA over RCA0, and that the first
author [9] proved that RT2

2 does not imply WKL over RCA0, thereby showing that
RT2

2 is not even linearly ordered with the Big Five.
This analysis of Ramsey’s theorem naturally started new research axis, among

which the search for weakenings of Ramsey’s theorem for arbitrary n-tuples which
would not imply ACA. Ramsey’s theorem can be seen as a problem, whose instances
are k-colorings of [�]n, and whose solutions are infinite homogeneous sets. This
problem has two explicit parameters, namely, the size n of the n-tuples, and the
number k of colors of the coloring. There is one implicit parameter which is the
number of colors � allowed in the solution. In the case of a homogeneous set, � = 1.
In this paper, we give a partial answer to the following question.

• How does the number of colors allowed in a solution impact the
computability-theoretic strength of Ramsey’s theorem?

We are in particular interested in the case where � = k – 1. This yields the notion
of thin set.

Definition 1.2 (Thin set theorem). Given a coloring f : [�]n → k (resp. f :
[�]n → �), a set H is thin for f (or f-thin) if |f([H ]n)| ≤ k – 1 (resp.f([H ]n) �= �).
For every n ≥ 1 and k ≥ 2, TSnk is the statement “Every coloring f : [�]n → k has
an infinite f -thin set” and TSn� is the statement “Every coloring f : [�]n → � has
an infinite f -thin set.”

In particular, TSn2 is Ramsey’s theorem for n-tuples and two colors. The thin set
theorem TSn� was introduced in reverse mathematics by Friedman [4] and studied
by Cholak et al. [2]. Wang [21] proved the surprising result that for every n ≥ 1 and
every sufficiently large k (with an explicit upper bound on k), TSnk does not imply
ACA, thereby showing that allowing more colors in the solutions yields a strict
weakening of Ramsey’s theorem, which is already reflected in reverse mathematics.
The second author refined Wang’s analysis by proving that for every n,m, � ∈ �
with m > 1 and every sufficiently large k, TSnk implies neither WKL [13], nor TSm�
[18]. In particular, the statement (∀n)(∃k)TSnk does not imply RT2

2 over RCA0. In
this paper, we partially answer the following sub-question.

• What consequences of Ramsey’s theorem for pairs are already
consequences of the various thin set theorems in reverse mathe-
matics?
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The thin set theorem for pairs with � colors (TS2
�) seems combinatorially very

weak, however, it has a diagonalization power similar to Ramsey’s theorem for pairs.
For example, there is a computable instance of TS2

� with no Σ0
2 solution [2], and

given any low2 set X, there is a computable instance of TS2
� with no X -computable

solution [14]. One can strengthen the thin set theorem by asking, given a coloring
f : [�]n → �, for an infinite set H such thatH \ {x} is f -thin for every x ∈ H . This
yields the notion of free set.

Definition 1.3 (Free set theorem). Given a coloring f : [�]n → �, a set H is
free for f (or f-free) if for every � ∈ [H ]n, f(�) ∈ H → f(�) ∈ �. For every n ≥ 1,
FSn is the statement “Every coloring f : [�]n → � has an infinite f -free set.”

The free set theorem is usually studied together with the thin set theorem, as they
are combinatorially very close. The standard proof of FSn involves the statement
(∃k)TSnk in a way that propagates most of the computability-theoretic properties
of the thin set theorem to the free set theorem. This is why any known proof that
(∃k)TSnk does not imply another statement P over RCA0 empirically yields a proof
that FSn does not imply P [2, 13, 18, 21]. This will again be the case in our paper.

1.1. Main results. Ramsey’s theorem for pairs admits various decompositions
into conjunctions of strictly weaker statements. Among them, the decomposition
into the Erdős–Moser theorem and the Ascending Descending sequence principle
is particularly interesting for various technical reasons.

Definition 1.4 (Erdős–Moser theorem). A tournament T is an irreflexive binary
relation such that for all x, y ∈ � with x �= y, exactly one of T (x, y) or T (y, x)
holds. A set H is T-transitive if the relation T over H is transitive in the usual
sense. EM is the statement “Every infinite tournament T has an infinite transitive
subtournament.”

Definition 1.5 (Ascending descending sequence). Given a linear order (L,<L),
an ascending (descending) sequence is a set S such that for every x <N y ∈ S, x <L
y (x >L y). ADS is the statement “Every infinite linear order admits an infinite
ascending or descending sequence.”

Bovykin and Weiermann [1] proved Ramsey’s theorem for pairs as follows: Given
a coloringf : [N]2 → 2, we can see f as a tournament T such that whenever x <N y,
T (x, y) holds if and only if f(x, y) = 1. Any T-transitive set H can be seen as a
linear order (H,≺) such that for every x <N y: x ≺ y if and only if f(x, y) = 1.
Any infinite ascending or descending sequence is f -homogeneous. It is therefore
natural to study the ascending descending sequence principle together with the
Erdős–Moser theorem. Lerman et al. [8] proved that EM does not imply ADS over
RCA0, while Hirschfeldt and Shore [5] proved that ADS does not imply EM. The
second author asked [18] whether any of FS2, TS2

� , or TS2
3 implies EM over RCA0.

We answer this question negatively, even for stable restrictions of the Erdős–Moser
theorem.

Theorem 1.6. Over RCA0, WKL+COH+TS2
4 +(∀n)(∃k)TSnk +(∀n)FSn implies

none of SEM, STS2
3 and SADS.

In Theorem 1.6, STS2
k , SEM and SADS denote the restriction of TS2

k , EM and
ADS to stable colorings, respectively. A coloring f : [�]2 → k is stable if for every
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x ∈ �, lims f(x, s) exists. In the case of SADS, this yields the statement “Every
linear order of type� + �∗ has an infinite ascending or descending sequence.” COH
is the statement “For every sequence of sets �R = (R0, R1, ... ), there is an infinite set
C such that C ⊆∗ Ri or C ⊆∗ Ri for every i ∈ �.” Such set C is called �R-cohesive.

The separation result, Theorem 1.6, shows that although the thin set theorem
shares many lower bounds with Ramsey’s theorem, allowing more colors in the
solutions yields a statement with strictly weaker computability-theoretic properties.
Cholak et al. [2] Question 7.4 asked whether FS2 + CAC implies RT2

2. Bovykin and
Weiermann [1] proved that RT2

2 is equivalent to EM + ADS. It’s well known CAC
implies ADS. Thus Theorem 1.6 (FS2 does not imply EM) is a partial result towards
a negative answer to Cholak et al.’s question.

For a problem P, a computable P-instance I ∗ is universal iff for every computable
P-instance I, every solution of I ∗ computes a solution of I. The most well known
example of a universal instance is for WKL, there is a computable tree T ∗ ⊆ 2<�

so that every infinite path through T ∗ is of PA degree. Thus every infinite path
through T ∗ computes an infinite path of a given computable infinite tree T . Patey
[14] systematically studied which Ramsey type problem admits universal instance.
Many Ramsey type problems do not admit a universal instance. Often, if a problem
admits a universal instance, it is relatively easy to construct one. The coding is not
hard when it exists. For several problems, the question remains. The second author
asked in [15] that whether EM admits a universal instance. We answer this question
negatively.

Theorem 1.7. EM does not have universal instance.

The first author asked a similar question with respect to an arbitrary instance of
RT1

2. Clearly, when an instance is universal, it encodes information about every other
computable instance. For a problem P, we consider the mass problem generated by
instances of P. For P-instances I, Î (not necessarily computable), we say I encodes
Î iff every solution of I computes a solution of Î . That is, the set of solutions of Î
is Muchnick reducible to that of I. Liu [10] asked whether there is a RT1

2 instance X
that is maximal (in the lattice of the encoding relation) in the sense that for every
RT1

2 instance Y, if Y encodes X, then X encodes Y.

1.2. Organization. The paper is divided into two main sections, corresponding to
the proofs of Theorems 1.6, 1.7, respectively. In Section 2, we introduce a framework
for preservation of 2-hyperimmunity, and develop its basic properties in subsection
2.1. We then prove in subsection 2.3 that TS2

4 preserves 2-hyperimmunity, and then
generalize the proof to (∀n)(∃k)TSnk in Section 2.5. We prove that FS2 preserves
2-hyperimmunity in Section 2.6, and again generalize it to (∀n)FSn in Section 2.7.
In Section 3, we prove Theorem 1.7.

1.3. Notation. Given two sets A and B, we write A < B iff x < y for all x ∈
A, y ∈ B (A < ∅ and ∅ < B both hold); we write A > y iff x > y for all x ∈ A.
We use |A| to denote the cardinal of the set A. Denote by [A]n the collection of
n-element subsets of A; [A]<� the collection of finite subsets of A. Usually, we use
F,E,D and sometimes �, � to denote finite sets of integers; X,Y,Z to denote infinite
sets of integers; A,B,H,G to denote sets of integers.
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A Mathias condition is a pair (F,X ) where F is a finite set, X is an infinite set.
A condition (E,Y ) extends (F,X ) (written (E,Y ) ≤ (F,X )) if E ⊇ F,E \ F > F,
E \ F ⊆ X,Y ⊆ X . Note that we do not require F < X for a condition (F,X ),
but continuity is ensured by the extension relation. A set G satisfies a Mathias
condition (F,X ) if F ⊆ G , G \ F ⊆ X,G \ F > F . A Mathias condition c is seen
as the collection {G : G satisfies (F,X )}; we define c ≤ d iff the collection of c is
a sub collection of d. We adopt the convention that if ΦF (n) ↓ and G > F , then
ΦF∪G(n) ↓= ΦF (n).

§2. Free and thin sets which are not transitive. This section is devoted to the proof
of Theorem 1.6 that we recall now.

Theorem 1.6. Over RCA0, WKL+COH+TS2
4 +(∀n)(∃k)TSnk +(∀n)FSn implies

none of SEM, STS2
3 and SADS.

For this, we are going to prove that WKL, COH, TS2
4 and FSn preserve a

computability-theoretic notion that we call 2-hyperimmunity, while none of SEM,
STS2

3 and SADS does (see Lemma 2.3 for why this is enough). We introduce
the concept of 2-hyperimmunity preservation next. The required results about
2-hyperimmunity preservation are proved in the remaining sections of this section
(see Figure 1 for where they are proved).

Definition 2.1. (1) A bifamily is a collection H of ordered pairs of finite sets
which is closed downward under the product subset relation, that is, such that
if (C,D) ∈ H and E ⊆ C and F ⊆ D, then (E,F ) ∈ H.

(2) A biarray is a collection of finite sets ( �E, �F ) = 〈En, Fn,m : n,m ∈ �〉 such that
En > n and Fn,m > m for every n,m ∈ �. A biarray ( �E, �F ) meets a bifamily
H if there is some n,m ∈ � such that (En, Fn,m) ∈ H.

(3) A bifamily H is C-2-hyperimmune if every C-computable biarray meets H.

Corollary 2.7
WKL preserves

Corollary 2.9
COH preserves

Lemma 2.14
TSndn

TSndn

1 +1 preserves
Lemma 2.31
FSn preserves

Induction hypothesis
TSsds +1 strongly preserves

for s < n

Induction hypothesis
FSs strongly preserves

for s < n

Theorem 2.26
+1 strongly preserves

Theorem 2.43
FSn for left trapped functions

strongly preserves

Lemma 2.31
FSn strongly preserves

Figure 1. Diagram of dependencies between the proofs of preservation of
2-hyperimmunity. An arrow from P to Q means that Q depends on P.
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We shall relate the notion of 2-hyperimmunity and various notions of immunity
in Section 2.1. For notational convenience, in this section we regard each Turing
machine Φ as computing a biarray. We will therefore assume that whenever Φ(n; 1)
converges, then it will output (the canonical index of) a finite set En > n and
whenever Φ(n,m; 2) converges, then it will output a finite set Fn,m > m.

Definition 2.2. Fix a problem P.
(1) P preserves 2-hyperimmunity if for every bifamilyH that is C-2-hyperimmune,

every C-computable P-instance admit a solution G such that H is C ⊕G-2-
hyperimmune.

(2) P strongly preserves 2-hyperimmunity if for every bifamily H that is C-2-
hyperimmune, every P-instance admit a solution G such that H is C ⊕G-2-
hyperimmune.

The following lemma is a particular case of Lemma 3.4.2 in [17]. We reprove it
for the sake of completeness.

Lemma 2.3. If some problems P1,P2, ... preserve 2-hyperimmunity while another
problem Q does not, then the conjunction

∧
i Pi does not imply Q over RCA0.

Proof. SinceQdoes not preserve 2-hyperimmunity, there is some set C, a bifamily
H that is C-2-hyperimmune, and a Q-instance B such that for every solution G, H is
not C ⊕G-2-hyperimmune. Since each Pi preserve 2-hyperimmunity, we can define
an infinite sequence of sets C = Z0 ≤T Z1 ≤T ··· such that

(i) H is Zn-2-hyperimmune for every n
(ii) For every i, n ∈ �, every Zn-computable Pi -instance has a Zm-computable

solution for some m
Consider the �-structure M = {X : (∃n)X ≤T Zn}. By construction, B ∈ M, and
by (i), H is C ⊕G-2-hyperimmune for every G ∈ M. It follows that the Q-instance
B ∈ M has no solution in M, so M �|= Q. By (ii), M |= Pi for every i ∈ �. This
completes the proof. �

2.1. Relation with immunity notions. Given a pair of infinite sets A,B ⊆ N, we
let H(A,B) be the bifamily of all finite pairs (E,F ) such that E ⊆ A and F ⊆ B .
Recall that an infinite set H is C-hyperimmune if for every C-computable array1 of
finite sets V0, V1, ... such that Vn > n, there is some n such that Vn ⊆ H .

Lemma 2.4. Two sets A and B are C-hyperimmune if and only if H(A,B) is C-2-
hyperimmune.

Proof. For convenience, we assume C = ∅ since the result relativizes. Assume
that A and B are hyperimmune, and fix a computable biarray ( �E, �F ). By
hyperimmunity of A applied to �E, there is some n such that En ⊆ A. By
hyperimmunity of B applied to Fn,0, Fn,1, ... , there is some m such that Fn,m ⊆ B . It
follows that the biarray ( �E, �F ) meets H(A,B).

Assume now that either A or B is not hyperimmune. Suppose first that A is
not hyperimmune. Let E0, E1, ... be a computable array of finite sets such that

1By a computable array of finite sets V0, V1, ... , we mean a computable function α : � → � such
that α(n) is the canonical index of Vn .
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En > n and En ∩ A �= ∅ for every n. Then letting Fn,m = {m + 1} for every m, the
computable biarray ( �E, �F ) does not meet H(A,B). Suppose now that B is not
hyperimmune. Let D0, D1, ... be a computable array of finite sets such that Dn > n
and Dn ∩ B �= ∅ for every n. Then letting En = {n + 1} and Fn,m = Dm for every
m, n ∈ �, the computable biarray ( �E, �F ) does not meet H(A,B). In both cases,
H(A,B) is not 2-hyperimmune. �

It follows that if a problemP preserves 2-hyperimmunity, then it also preserves two
hyperimmunities, in the sense of Definition 6.2.2 in [17]. Since SADS is known not
to preserve two hyperimmunities (see Corollary 10.3.5 in [17]), we can immediatly
conclude that SADS does not preserve 2-hyperimmunity. We will nevertheless recall
the argument.

Corollary 2.5. SADS does not preserve 2-hyperimmunity.

Proof. Fix any stable linear order of order type � + �∗ with no computable
infinite ascending or descending subsequence. Let A and B be the � and �∗ part,
respectively. By Lemma 41 in [16], A and B are hyperimmune. Therefore, by Lemma
2.4, H(A,B) is 2-hyperimmune. Any infinite ascending or descending sequence G is
a subset of A or B, respectively. It follows that either A, or B is not G-hyperimmune,
and by Lemma 2.4, H(A,B) is not G-2-hyperimmune. It follows that SADS does
not preserve 2-hyperimmunity. �

Whenever a Turing degree contains no C-hyperimmune set, it is said to be
C-hyperimmune-free. A Turing degree d is known to be C-hyperimmune-free if
and only if every function bounded by d is dominated by a C-computable function
(see Theorem III.3.8 in [12]).

Lemma 2.6. Let H be a C-2-hyperimmune bifamily and G be of C-hyperimmune-
free degree. Then H is C ⊕G-2-hyperimmune.

Proof. Again, assume C = ∅ since the result relativizes. Fix a bifamily H,
and a set G of hyperimmune-free degree such that H is not G-2-hyperimmune.
We want to show that H is not 2-hyperimmune. Let ( �E, �F ) be a G-computable
biarray which does not meet H. In particular, the function f defined by f(n,m) =
maxEn, Fn,m is G-computable, and is therefore dominated by a computable
function g. Define the computable biarray ( �K, �L) by Kn = {n + 1, ... , g(n, 0)}
and Ln,m = {m + 1, ... , g(n,m)}. It is easy to see that En ⊆ Kn and Fn,m ⊆ Ln,m
for every n,m ∈ �. Indeed, En > n and maxEn ≤ f(n, 0) ≤ g(n, 0) so En ⊆
{n + 1, ... , g(n, 0)}. Similarly, Fn,m > m and maxFn,m ≤ f(n,m) ≤ g(n,m), so
Fn,m ⊆ {m + 1, ... , g(n,m)}. Since ( �E, �F ) does not meet H, (En, Fn,m) �∈ H, and
by downward-closure of H under the subset relation, (Kn,Ln,m) �∈ H. It follows that
( �K, �L) does not meet H and therefore that H is not 2-hyperimmune. �

Corollary 2.7. WKL preserves 2-hyperimmunity.

Proof. Let H be a 2-hyperimmune family, and let T be an infinite computable
binary tree. By the hyperimmune-free basis theorem [7], there is an infinite path
P ∈ [T ] which is C-hyperimmune-free. By Lemma 2.6, H is P-2-hyperimmune. �

Given a bifamily H, let B(H) ⊆ �� be the closed set of all X such that for every
m, n ∈ �, X (〈0, n〉) and X (〈1, n,m〉) are finite sets En > n and Fn,m > m such that
(En, Fn,m) �∈ H.
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Lemma 2.8. A bifamily H is C-2-hyperimmune if and only if B(H) has no
C-computable member.

Proof. The members of B(H) are precisely the biarrays which fail meeting H.
The equivalence follows immediately. �

Corollary 2.9. COH preserves 2-hyperimmunity.

Proof. Let H be a 2-hyperimmune family, and let �R = R0, R1, ... be an infinite
computable sequence2 of sets. By Lemma 2.8, B(H) has no computable member. By
[13, Corollary 2.9], there is an �R-cohesive set G such thatB(H) has noG-computable
member. By Lemma 2.8, H is G-2-hyperimmune. �

2.2. STS2
3 and SEM do not preserve 2-hyperimmunity. Before proving that STS2

3
and SEM do not preserve 2-hyperimmunity, we must first introduce some notation.

Given a stable coloring f : [�]2 → 3 and two sets E < F , we write E →i
F for (∀x ∈ E)(∀y ∈ F )f(x, y) = i . For every i < 3, we let Ci(f) = {x :
(∀∞y)f(x, y) = i}. Finally, given a stable coloring f : [�]2 → 3, we let H(f)
be the bifamily of all pairs (E,F ) such that E < F , E ⊆ C1(f), F ⊆ C2(f), and
E →0 F .

Proposition 2.10. There is a stable computable coloring f : [�]2 → 3 such that
H(f) is 2-hyperimmune.

Proof. We build the coloring f : [�]2 → 3 by a finite injury priority argument.
For every e ∈ �, we want to satisfy the following requirement:

Re :If Φe is total, then there is some n,m ∈ � such that

Φe(n; 1) ⊆ C1(f),Φe(n,m; 2) ⊆ C2(f) and Φe(n; 1) →0 Φe(n,m; 2). (2.1)

The requirements are given the usual priority ordering R0 < R1 < ··· Initially, the
requirements are neither partially, nor fully satisfied.

(i) A requirement Re requires a first attention at stage s if it is not partially
satisfied and Φe,s(n; 1) ↓= E for some setE ⊆ {e + 1, ... , s – 1} such that no
element in E is restrained by a requirement of higher priority. If it receives
attention, then it puts a restrain on E, commit the elements of E to be in
C0(f), and is declared partially satisfied.

(ii) A requirement Re requires a second attention at stage s if it is not fully
satisfied, and Φe,s(n; 1) ↓= E and Φe,s(n,m; 2) ↓= F for some sets E,F ⊆
{e + 1, ... , s – 1} such that E →0 F and which are not restrained by a
requirement of higher priority. If it receives attention, then it puts a restrain
on E ∪ F , commit the elements of E to be in C1(f), the elements of F to be
in C2(f), and is declared fully satisfied.

At stage 0, we let f = ∅. Suppose that at stage s, we have defined f(x, y) for every
x < y < s . For every x < s , if it is committed to be in some Ci(f), set f(x, s) =
i , and otherwise set f(x, s) = 0. Let Re be the requirement of highest priority
which requires attention. If Re requires a second attention, then execute the second
procedure, otherwise execute the first one. In any case, reset all the requirements

2By a computable sequence of sets R0, R1, ... we mean Rn is uniformly computable.
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of lower priorities by setting them unsatisfied, releasing all their restrains, and go
to the next stage. This completes the construction. On easily sees by induction that
each requirement acts finitely often, and is eventually fully satisfied. This procedure
also yields a stable coloring. �

Corollary 2.11. STS2
3 does not preserve 2-hyperimmunity.

Proof. Let f be the stable computable coloring of Proposition 2.10. Let
G = {x0 < x1 < ··· } be an infinite f -thin set. We claim that H(f) is not G-2-
hyperimmune. Indeed, let ( �E, �F ) be the G-computable biarray defined byEn = {xn}
and Fn,m = {xn+m}. Fix any n. Suppose thatEn ⊆ C1(f) and Fn,m ⊆ C2(f) (if such
En, Fn,m does not exist then we are done). In other words, for every sufficiently large
k, f(xn, xk) = 1 and f(xn+m, xk) = 2. It follows that G must be f -thin for color 03,
therefore En �→0 Fn,m and so (En, Fn,m) �∈ H(f). The G-computable biarray ( �E, �F )
does not meet H(f), so H(f) is not G-2-hyperimmune. �

Corollary 2.12. SEM does not preserve 2-hyperimmunity.

Proof. Let f : [�]2 → 3 be the stable computable coloring of Proposition 2.10.
Let T be the stable computable tournament defined for every x < y by T (x, y) iff
f(x, y) = 1. Let G = {x0 < x1 < ... } be an infinite transitive subtournament. We
claim that H(f) is not G-2-hyperimmune. Indeed, let ( �E, �F ) be the G-computable
biarray defined by En = {xn} and Fn,m = {xn+m}. Fix n. Suppose that En ⊆ C1(f)
and Fn,m ⊆ C2(f) (if suchEn, Fn,m does not exist then we are done). In other words,
for every sufficiently large k, f(xn, xk) = 1 and f(xn+m, xk) = 2, so T (xn, xk) and
T (xk, xn+m) will hold. By transitivity of G,T (xn, xn+m) must hold, sof(xn, xn+m) =
1. It follows that En �→0 Fn,m and so (En, Fn,m) �∈ H(f). The G-computable biarray
( �E, �F ) does not meet H(f), so H(f) is not G-2-hyperimmune. �

2.3. TS2
4 preserves 2-hyperimmunity. The purpose of this section is to prove the

following theorem.

Theorem 2.13. TS2
4 preserves 2-hyperimmunity.

This will be generalized to arbitrary tuples in the next section. The notion
of preservation of 2-hyperimmunity for TSn+1

k relates to the notion of strong
preservation of 2-hyperimmunity for TSnk in the following sense.

Lemma 2.14. Fix some n ≥ 1 and k ≥ 2. If TSnk strongly preserves 2-
hyperimmunity, then TSn+1

k preserves 2-hyperimmunity.

Proof. Let H be a 2-hyperimmune family, and f : [�]n+1 → k be a computable
instance of TSn+1

k . Let �R = 〈R�,i : � ∈ [�]n, i < k〉 be the computable family of sets
defined for every � ∈ [�]n and i < k by

R�,i = {x ∈ � : f(�, x) = i}.

3Given f : [�]n → �, a set G is f -thin for color i iff i /∈ f[G ]n .
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Since COH preserves 2-hyperimmunity (Corollary 2.9), there is an �R-cohesive set
G such that H is G-2-hyperimmune. Let g : [�]n → k be the Δ0,G

2 instance of TSnk
defined for every � ∈ [�]n by

g(�) = lim
x∈G
f(�, x).

By strong preservation of TSnk , there is an infinite g-thin set H such that H isG ⊕H -
2-hyperimmune. By thinning out the set H, we obtain an infiniteG ⊕H -computable
f -thin set H̃ . In particular, H is H̃ -2-hyperimmune. �

It therefore remains to prove the following theorem.

Theorem 2.15. TS1
4 strongly preserves 2-hyperimmunity.

Proof. For notational convenience, we will prove the non-relativized version,
which extends by routine arguments. Let H be a 2-hyperimmune bifamily, and let
f : � → 4 be an arbitrary instance of TS1

4. Without loss of generality, assume that
there is no infinite subset H off–1(i) such thatH isH -2-hyperimmune (as otherwise
we are done). We are going to

• build 4 infinite sets (Gi : i < 4) such that Gi is f-thin for color i and

H isGi -2-hyperimmune for some i < 4.

We are going to build the sets Gi by a Mathias forcing whose conditions are
tuples (F0, F1, F2, F3, X ), where (Fi , X ) is a Mathias condition, Fi is f -thin for
color i and H is X -2-hyperimmune. A condition d = (E0, E1, E2, E3, Y ) extends
c = (F0, F1, F2, F3, X ) (written d ≤ c) if (Ei , Y ) Mathias extends (Fi , X ) for every
i < 4.

The first lemma ensures that every sufficiently generic filter for this notion of
forcing will induce four infinite sets.

Lemma 2.16. For every condition c = (F0, F1, F2, F3, X ) and every i < 4, there is
an extension d = (E0, E1, E2, E3, Y ) of c such that |Ei | > |Fi |.

Proof. Fix c and i < 4. Note that X \ f–1(i) is infinite, since otherwise it
contradicts with our assumption that H is X -2-hyperimmune. Let x ∈ X \ f–1(i)
with x > Fi . The condition d = (E0, E1, E2, E3, X ) defined by Ei = Fi ∪ {x}, and
Ej = Fj for j �= i is the desired extension of c. �

A 4-tuple of sets G0, G1, G2, G3 satisfies a condition c = (F0, F1, F2, F3, X ) if
Gi satisfies the Mathias condition (Fi , X ) for every i < 4. A condition c forces a
formulaϕ(G0, G1, G2, G3) if the formula holds for every 4-tuple of setsG0, G1, G2, G3

satisfying c. Given any e0, e1, e2, e3, we want to satisfy the following requirements:

Re0,e1,e2,e3 : R0
e0
∨R1

e1
∨R2

e2
∨R3

e3
,

where Rie is the requirement:

If ΦGie is total, then it meets H.
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Lemma 2.17. For every condition c and every 4-tuple of indices e0, e1, e2, e3, there
is an extension d of c forcing Re0,e1,e2,e3 .

Lemmas 2.17, 2.29, 2.38 and 2.46 are main technical lemmas of Theorem 1.6
(where we prove a condition can be extended to force that a given Turing functional
meets H). We briefly explain one of the ideas of these lemmas (which also appears in
the main Lemma 3.9 of Theorem 3.6) a generalization of Seetapun forcing to build
weak solution. Usually, given an arbitrary instance f (of a problem), we want to
build a solution G to f so that ΦG has a desired behaviour. Since f is not computable,
we cannot search computably among initial segments F of solutions to f (call such
F finite solution to f ) such that ΦF has that behaviour. The idea of Seetapun forcing
is to find sufficiently many F so that ΦF has that behaviour. By “sufficiently many,”
it means whatever f looks like, one of F is, at least, a finite solution to f.

In our case, this means we want to find sufficiently many F such that ΦF (n; 1) ↓
and ΦF (n,m; 2) ↓. But this is not quite enough. It only gives (by compactness)
two sets Un,m, Vn,m so that for every g, there is a finite solution F of g such that
ΦF (n; 1) ⊆ Un,m ∧ ΦF (n,m; 2) ⊆ Vn,m. That is, Un,m depends on m. So one may
want to try this: first, search for a sufficient collection F , so that ΦF (n; 1) ↓ for each
F ∈ F ; second, search for a sufficient collection E each E ∈ E extends a member
of F and ΦE(n,m; 2) ↓. Let’s see what sufficiency notion F should satisfy. When F
exists while E does not, we have that for some instance g,

there is no finite solution E of g such that E extends a member of F
and ΦE(n,m; 2) ↓ . (2.2)

We need to find an appropriate F ∈ F such that F is a finite solution to g and
restrict G so that G extends F and G is a solution to g (because by (2.2), for such G,
ΦG(n,m; 2) ↑). Here “appropriate” means: at least, F is a finite solution to f. The
sufficiency notion for F should guarantee the existence of F. This gives the following
sufficiency notion: for every two instances g and h, there is an F ∈ F such that F is
a finite solution to both g, h. This is exactly the sufficiency notion we use in Lemma
2.17. For more complex problems, F being a finite solution to f is not enough, but we
must ensure that imposing the restriction of F does not cut the candidate space too
much. This concern gives rise to the more complex sufficiency notion (Definitions
2.24 and 2.41 and Lemmas 2.42 and 2.25).

Proof. Fix c = (F0, F1, F2, F3, X ). For notational convenience, we assume X =
� and Fi = ∅. We define a partial computable biarray as follows. To obtain a desired
extension of c, we take advantage of the failure of this biarray to meet H or its non-
totality.

Defining Un. Given n ∈ �, search computably for some finite set Un > n4 (if
it exists) such that for every pair of colorings g, h : � → 4, there are two colors

4More concretely, we mean search the canonical index of Un .
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i0 < i1 < 4 and two sets Ei0 and Ei1 such that for every i ∈ {i0, i1}, Ei is both g-thin
and h-thin for color i and5

ΦEiei (n; 1) ↓⊆ Un.
Defining Vn,m. Given n,m ∈ �, search computably for some finite set Vn,m > m

(if it exists) such that for every coloring g : � → 4, there is an i < 4 and a finite set
Eig-thin for color i such that

ΦEiei (n; 1) ↓⊆ Un ∧ ΦEiei (n,m; 2) ↓⊆ Vn,m.
We now have multiple outcomes, depending on which ofUn and Vn,m is found.
• Case 1: Un is not found for some n ∈ �. By compactness, the following Π0

1
class P of pairs of colorings g, h : � → 4 is nonempty: there are three indices
i0 < i1 < i2 < 4 such that for every i ∈ {i0, i1, i2} and every finite set Ei being
both g-thin and h-thin for color i, we have ΦEiei (n; 1) ↑.

AsWKL preserves 2-hyperimmunity (Corollary 2.7), there is a member (g, h)
of P such that H is g ⊕ h-2-hyperimmune. In particular, there are some i0 <
i1 < i2 < 4 such that for every i ∈ {i0, i1, i2} and every finiteEi being g-thin and
h-thin for color i, we have ΦEiei (n; 1) ↑. There must be an i ∈ {i0, i1, i2} such that
the setY = {x : g(x) �= i, h(x) �= i} is infinite.6 Then clearly (F0, F1, F2, F3, Y )
is an extension of c. For every G satisfying (Fi , Y ), G is g-thin for color i. Thus
ΦGei (n; 1) ↑. That is, d forces ΦGei (n; 1) ↑, hence Re0,e1,e2,e3 .

• Case 2: Un is found, but not Vn,m for some n,m ∈ �. By compactness, the
following Π0

1 class P of colorings g : � → 4 is nonempty: for every i < 4 and
every finite set Eig-thin for color i,

ΦEiei (n; 1) ↓⊆ Un ⇒ ΦEiei (n,m; 2) ↑ . (2.3)

As WKL preserves 2-hyperimmunity (Corollary 2.7), there is a member g of P
such that H is g-2-hyperimmune. By definition of Un (where we take h = f in
the definition of Un), there are some i0 < i1 < 4 and some finite sets Ei0 and
Ei1 such that for every i ∈ {i0, i1}, Ei is both g-thin and f -thin for color i and

ΦEiei (n; 1) ↓⊆ Un.
In particular, there must be some i ∈ {i0, i1} such that the setY = {x : g(x) �=
i} is infinite. Consider the extension d = (D0, D1, D2, D3, Y ) of c defined by
Di = Fi ∪ Ei andDj = Fj for each j �= i . To see d forces ΦGiei (n,m; 2) ↑ (hence
forces Re0,e1,e2,e3), note that for every G satisfying (Di ,Y ), G is g-thin for color
i. But ΦDiei (n; 1) ↓⊆ Un. Thus, by definition of g (namely (2.3)), ΦGei (n,m; 2) ↑.

• Case 3: Un and Vn,m are found for every n,m ∈ �. By 2-hyperimmunity of H,
there is some n,m ∈ � such that (Un,Vn,m) ∈ H. In particular, by definition

5By compactness, ifUn is found, there is a sufficient sequence (Fi : i < 4) of finite collections of finite
sets so that for everyE ∈ F , ΦEei (n; 1) ↓⊆ Un . Here sufficient means for every two colorings g, h : � → 4,
there are i0 < i1 < 4 and Ei ∈ Fi for each i ∈ {i0, i1} so that Ei is g-thin, h-thin for color i.

6This is where the argument works with TS1
4 and fails with TS1

3: with TS1
3, we would only get two

colors {i0, i1}, and if g and h are the constant functions i0 and i1, respectively, the set Y is finite for every
i ∈ {i0, i1}.
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of Vn,m (where we take g = f in the definition of Vn,m), there is some i < 4
and some finite set Ei such that Ei is f -thin for color i and

ΦEiei (n; 1) ↓⊆ Un ∧ ΦEiei (n,m; 2) ↓⊆ Vn,m.

The condition (D0, D1, D2, D3, X ) defined by Di = Fi ∪ Ei and Dj = Fj for
each j �= i is an extension of c forcing Re0,e1,e2,e3 .

This completes the proof of Lemma 2.17. �

Let F = {c0, c1, ... } be a sufficiently generic filter for this notion of forcing, where
cs = (F0,s , F1,s , F2,s , F3,s , Xs), and let Gi =

⋃
s Fi,s . By definition of a condition, for

every i < 4, Gi is f -thin for color i. By Lemma 2.16, Gi are all infinite, and by
Lemma 2.17, there is some i < 4 such that H is Gi -2-hyperimmune. This completes
the proof of Theorem 2.15. �

For TS23, its relation with EM is unclear.

Question 2.18. Does TS23 imply EM?

2.4. Generalized cohesiveness preserves 2-hyperimmunity. In order to prove that
TSnk and FSn preserve 2-hyperimmunity for sufficiently large k, we first need to
prove the following technical theorem, which thin out colors while preserving 2-
hyperimmunity. The proof is a slight adaptation of [13] to 2-hyperimmunity. We
however reprove it for the sake of completeness. We will need the case t = n – 1 for
TSnk , and the case t = n for FSn. Fix a set C, a bifamilyHwhich is C-2-hyperimmune,
an infinite set X ≤T C ; let f : [�]n → k be a coloring.

Proposition 2.19. Assume TSsds+1 strongly preserves 2-hyperimmunity for each
0 < s < n. Then there exists an infinite set G ⊆ X such that H is C ⊕G-2-
hyperimmune, and for every � ∈ [�]<� such that 0 < |�| < n, there is a set I� ⊆
{0, ... , k – 1} such that |I� | ≤ dn–|�| and

(∃b)(∀� ∈ [G ∩ (b,+∞)]n–|�|)f(�, �) ∈ I�.

Proof. For notational convenience, assume X = � and C = ∅. Our forcing
conditions are Mathias conditions (F,Y ) where H is Y -2-hyperimmune. The first
lemma shows that H will be G-2-hyperimmune for every sufficiently generic filter.
Given e, let Re be the requirement:

If ΦGe is total, then it meets H.

Lemma 2.20. Given a condition c = (F,Y ) and an index e ∈ �, there is an extension
d forcing Re .

Proof. This simply follows by a finite extension argument. Again for notational
convenience, assume F = ∅ and Y = �. We define a partial computable biarray as
follows.

Defining Un. Given n ∈ �, search computably for some finite set Un > n (if it
exists) and a finite set E such that

ΦEe (n; 1) ↓= Un.
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Defining Vn,m. Given n,m ∈ �, search computably for some finite set Vn,m > m
(if it exists) and a finite set E such that

ΦEe (n; 1) ↓= Un ∧ ΦEe (n,m; 2) ↓= Vn,m.

We now have multiple outcomes, depending on which Un and Vn,m is found.
• Case 1:Un is not found for some n ∈ �. Then the condition c = (F,Y ) already

forces ΦGe (n; 1) ↑ and therefore forces Re .
• Case 2:Un is found, but notVn,m for some n,m ∈ �. By definition ofUn, there

is a finite set E such that

ΦEe (n; 1) ↓= Un.

The condition d = (E,Y ) is an extension of c forcing ΦGe (n,m; 2) ↑.
• Case 3: Un and Vn,m are found for every n,m ∈ �. By 2-hyperimmunity of H,

there is some n,m ∈ � such that (Un,Vn,m) ∈ H. In particular, by definition
of Vn,m, there is a finite set E such that

ΦEe (n; 1) ↓= Un ∧ ΦEe (n,m; 2) ↓= Vn,m.

The condition d = (E,Y ) is an extension of c forcing ΦGe to meet H, and
therefore forcing Re .

This completes the proof of Lemma 2.20. �
Lemma 2.21. For every condition (F,Y ) and � ∈ [�]<� such that 0 < |�| < n,

there is a finite set I ⊆ {0, ... , k – 1} with |I | ≤ dn–|�| and an extension (F, Ỹ ) such
that

(∀� ∈ [X̃ ]n–|�|)f(�, �) ∈ I.

Proof. This simply follows from strong preservation of TS
n–|�|
dn–|�|+1. Define the

function g : [Y ]n–|�| → k by g(�) = f(�, �). Since TS
n–|�|
dn–|�|+1 strongly preserves

2-hyperimmunity (since 0 < n – |�| < n), there exists an infinite Ỹ ⊆ Y and a
finite set I ⊆ {0, ... , k – 1} such that H is Ỹ -2-hyperimmune, |I | ≤ dn–|�|, and
(∀� ∈ [Ỹ ]n–|�|)f(�, �) ∈ I . The condition (F, Ỹ ) is the desired extension. �

Let F = {c0, c1, ... } be a sufficiently generic filter containing (∅, �), where cs =
(Fs , Xs). The filter F yields a unique infinite set G =

⋃
s Fs . By Lemma 2.20, H is

G-2-hyperimmune. By Lemma 2.21, G satisfies the property of the theorem. This
completes the proof of Proposition 2.19. �

2.5. TSn preserves 2-hyperimmunity. Define the sequence d0, d1, ... by induction
as follows:

d0 = 1 dn = 3
∑

0<s<n

dsdn–s for n > 1.

The purpose of this section is to prove the following theorem.

Theorem 2.22. TSndn+1 strongly preserves 2-hyperimmunity for every n ≥ 1.
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Proof. We prove by induction over n ≥ 1 that TSndn–1+1 preserves 2-

hyperimmunity, and that TSndn+1 strongly preserves 2-hyperimmunity. If n = 1, TS1
2

is a computably true statement, that is, every instance has a solution computable
in the instance, so TS1

2 preserves 2-hyperimmunity. On the other hand, TS1
4

strongly preserves 2-hyperimmunity follow from Theorem 2.15. If n > 1, then
by the induction hypothesis, TSn–1

dn–1+1 strongly preserves 2-hyperimmunity, so by
Lemma 2.14, TSndn–1+1 preserves 2-hyperimmunity. Assuming by the induction
hypothesis that TSsds+1 strongly preserves 2-hyperimmunity for every 0 < s < n,
and that TSndn–1+1 preserves 2-hyperimmunity, by Theorem 2.26, TSndn+1 strongly
preserves 2-hyperimmunity. �

We need to prove Theorem 2.26 to complete the proof of Theorem 2.22. We
start with the following technical lemma which thins out colors while preserving
2-hyperimmune. Fix a set C, a bifamily H which is C-2-hyperimmune, an infinite set
X ≤T C and a coloring f : [�]n → k.

Lemma 2.23. Assume TSsds+1 strongly preserves 2-hyperimmunity for every 0 <
s < n. Then there is an infinite set Y ⊆ X so that H is C ⊕ Y -2-hyperimmune, and a
finite set I ⊆ {0, ... , k – 1} with |I | ≤

∑
0<s<n dsdn–s such that for each 0 < s < n,

(∀� ∈ [Y ]s)(∃b)(∀� ∈ [Y ∩ (b,∞)]n–s)f(�, �) ∈ I.

Proof. For notational convenience, assume C = ∅. Apply Proposition 2.19 to
get an infinite set X0 ⊆ X so that H is X0-2-hyperimmune and for every � ∈ [�]<�

with 0 < |�| < n, there is an I� such that |I� | ≤ dn–|�| and

(∃b)(∀� ∈ [X0 ∩ (b,+∞)]n–|�|)f(�, �) ∈ I�.

For each 0 < s < n and � ∈ [�]s , let Fs(�) = I� . Since TSsds+1 strongly preserves
2-hyperimmunity, for each 0 < s < n, there is an infinite set Y ⊆ X0 such that H is
Y -2-hyperimmune and such that |Fs [Y ]s | ≤ ds for all 0 < s < n. Let Is = Fs [Y ]s

for each 0 < s < n, and let I =
⋃
J∈Is ,0<s<n J . Then

|I | ≤
∑

0<s<n

dsdn–s .

We now check that the property is satisfied. Fix an 0 < s < n, a � ∈ [Y ]s and let
b ∈ � be sufficiently large. Because Y ⊆ X0,

(∀� ∈ [Y ∩ (b,+∞)]n–s)f(�, �) ∈ I�.

So Fs(�) = I� , but � ∈ [Y ]s , hence I� ∈ Is . It follows that

(∀� ∈ [Y ∩ (b,+∞)]n–s)f(�, �) ∈ I.

This completes the proof. �

We need to prove a second lemma saying that if we have sufficiently many finite thin
sets, one of them can be extended to an infinite one. This argument is a generalization
of case 2 of Lemma 2.17.

Definition 2.24 (TS-sufficient). Let (Fi : i < p) be a p-tuple of finite collections
of finite sets. We say (Fi : i < p) is n- TS-sufficient iff for every sequence of colorings
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(fs,j : [�]s → dn + 1)0≤s<n,j<dn–s–1 , there is an i < p, an F ∈ Fi such that F is fs,j-
thin for color i for all 0 ≤ s < n, j < dn–s–1.

In our application, p will be smaller than dn. Let (Fi : i < p) be a p-tuple of finite
collections of finite sets.

Lemma 2.25. AssumeTSsds+1 strongly preserves 2-hyperimmunity for every 0 < s <
n. Suppose f ≤T C , (Fi : i < p) is n-TS-sufficient and for every i < p, Fi is f-thin
for color i.7 Then there exists an i < p, an F ∈ Fi and an infinite set Y ⊆ X such that
F ∪ Y is f-thin for color i and H is Y ⊕ C -2-hyperimmune.

Proof. Again, for notational convenience, assume C = ∅. Let E = ∪F∈Fi ,i<pF .
For every s < n, every � ∈ [E]s , let coloring f� : [�]n–s → dn + 1 be defined as
f�(�) = f(�, �). By Lemma 2.14, TSsds–1+1 admits preservation of 2-hyperimmunity
for 0 ≤ s ≤ n (set d–1 = 1), so there is an infinite set Y ⊆ X with H being Y -
2-hyperimmune such that for every 0 ≤ s < n, every � ∈ [E]s , there is a I� with
|I� | ≤ dn–s–1 such that

f� [Y ]n–s ⊆ I�.
For every 0 ≤ s < n and j < dn–s–1, letfs,j be the coloring on [E]s such thatfs,j(�)
is the jth element of I� .

By n- TS-sufficient of (Fi : i < p), there is a i < p, an F ∈ Fi such that F is
fs,j-thin for color i for all 0 ≤ s < n and j < dn–s–1. In particular, i /∈ I∅ since F is
f0,j-thin for color i (and f0,j ≡ the jth element of I∅). This means Y is f -thin for
color i.

We show that F ∪ Y is f -thin for color i. To see this, let � ∈ [F ]<�, � ∈ [Y ]<�

with |� ∪ �| = n. When |�| = n or |�| = n, f(�, �) �= i follows from f -thin for color
i of F and Y respectively. When |�| = s with 0 < s < n, since F is fs,j-thin for color
i for all j < dn–s–1, we have fs,j(�) �= i for all j < dn–s–1. This means i /∈ I� . Thus
f(�, �) �= i since f(�, �) ∈ I� (by choice of Y). �

We are now ready to prove the missing theorem.

Theorem 2.26. Fix some n ≥ 2, and suppose that TSsds+1 strongly preserves 2-
hyperimmunity for every 0 < s < n, and that TSndn–1+1 preserves 2-hyperimmunity.
Then TSndn+1 strongly preserves 2-hyperimmunity.

Proof. Fix a coloring f : [�]n → dn + 1, and a bifamily H which is 2-
hyperimmune. Let q =

∑
0<s<n dsdn–s . By Lemma 2.23, we assume that there exists

a finite set If of cardinality q such that for every 0 < s < n,

(∀� ∈ [�]s)(∃b)(∀� ∈ [� ∩ (b,+∞)]n–s)f(�, �) ∈ If. (2.4)

Let p = 1 + 2dn–1 +
∑

0≤s<n ds–1dn–s–1, so dn = p + q – 1. By renaming the
colors of f, we can assume without loss of generality that If = {p, p + 1, ... , dn}.
We will construct simultaneously p infinite sets G0, ... , Gp–1 such that H is Gi -2-
hyperimmune for some i < p. We furthermore ensure that for each i < p, Gi is
f -thin for color i. We construct our sets G0, ... , Gp–1 by a Mathias forcing whose

7Each member of Fi is f -thin for color i.
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conditions are tuples (F0, ... , Fp–1, X ), where (Fi , X ) is a Mathias condition for each
i < p and the following properties hold:

(a) (∀� ∈ [Fi ]s)(∀� ∈ [Fi ∪ X ]n–s)f(�, �) ≥ p for every 0 < s < n.
(b) Fi is f -thin for color i for every i < p.
(c) H is X -2-hyperimmune.

A precondition is a tuple of Mathias conditions satisfying (b) and (c). A precondition
d = (E0, ... , Ep–1, Y ) extends a precondition c = (F0, ... , Fp–1, X ) (written d ≤ c)
if (Ei , Y ) Mathias extends (Fi , X ) for each i < p. Obviously, (∅, ... , ∅, �) is a
condition. Therefore, the partial order is non-empty. We note the following simple
properties of conditions.

Lemma 2.27. (1) Every precondition can be extended to a condition.
(2) For every condition c = (F0, ... , Fp–1, X ), every i < p and every finite set
E ⊆ Xf-thin for color i, d = (F0, ... , Fi–1, Fi ∪ E,Fi+1, ... , Fp–1, X ) is a
precondition extending c.

Proof. Item (1) is trivial by (2.4). For item (2), by property (a) and (b) for
condition c and by f -thin for color i of E, we have i /∈ f[Fi ∪ E]n, so d is a
precondition. �

The next lemma states that every sufficiently generic filter yields infinite sets
G0, ... , Gp–1.

Lemma 2.28. For every condition c = (F0, ... , Fp–1, X ) and every i < p, there is an
extension d = (E0, ... , Ep–1, X ) of c such that |Ei | > |Fi |.

Proof. Fix c and some i < p, and let x ∈ X \ Fi . In particular, [x]n = ∅, so
i �∈ f[x]n. Thus, by Lemma 2.27, there is an extension d = (E0, ... , Ep–1, X ) of c
such that Ei = Fi ∪ {x}.

A p-tuple of sets G0, ... , Gp–1 satisfies a condition c = (F0, ... , Fp–1, X ) if
Gi satisfies the Mathias condition (Fi , X ). A condition c forces a formula
ϕ(G0, ... , Gp–1) if the formula holds for every p-tuple of sets G0, ... , Gp–1 satisfying
c. For every e0, ... , ep–1 ∈ �, we want to satisfy the following requirement

Re0,...,ep–1 : Re0 ∨ ··· ∨ Rep–1 ,

where Rei is the requirement

If ΦGiei is a total, then ΦGiei meets H.
Lemma 2.29. For every condition c and every p-tuple of indices e0, ... , ep–1, there is

an extension d of c forcing Re0,...,ep–1 .

Proof. Fix c = (F0, ... , Fp–1, X ). By Lemma 2.27, for notational convenience,
we assume Fi = ∅ and X = � 8. We define a partial computable biarray as follows.

8More specifically, if we can always extends a condition of form (∅, ... , ∅, X ), then given a condition
(F0, ... , Fp–1, X ), we can find a desired extension (E0, ... , Ep–1) of (∅, ... , ∅, X ). But (F0 ∪ E0, ... , Fp–1 ∪
Ep–1, Y ) is a precondition by Lemma 2.27.
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Defining Un. Given r ∈ �, search computably for some finite set Ur > r (if it
exists) such that for every pair of colorings g, h : [�]n → dn + 1, there is a n- TS-
sufficient p-tuple (Ei : i < p) of finite collections of finite sets with Ei being g-thin,
h-thin for color i such that for every i < p, every E ∈ Ei , we have

ΦEei (r; 1) ↓⊆ Ur.

Defining Vr,m. Given r,m ∈ �, search computably for some finite set Vr,m > m
(if it exists) such that for every coloring g : [�]n → dn + 1, there is some i < p and
some Ei g-thin for color i such that

ΦEiei (r; 1) ↓⊆ Ur ∧ ΦEiei (r,m; 2) ↓⊆ Vr,m.
We now have multiple outcomes, depending on which Ur and Vr,m is found.
• Case 1: Ur is not found for some r ∈ �. By compactness, the following Π0

1
class P of pairs of colorings g, h : [�]n → dn + 1 is nonempty: there is no n-
TS-sufficient (Ei : i < p) finite collections of finite sets such that Ei is both
g-thin, h-thin for color i and for every i < p,E ∈ Ei , we have ΦEei (r; 1) ↓ .

As WKL preserves 2-hyperimmunity (Corollary 2.7), there is a member g, h
of P such that H is g ⊕ h-2-hyperimmune. Unfolding the definition of n- TS-
sufficient and using compactness, the following Π0,g⊕h

1 class Q of sequence
(fs,j : [�]s → dn + 1)0≤s<n,j<dn–s–1 of colorings is nonempty: for every i < p,
every finite set E which is both g-thin, h-thin for color i and is fs,j -thin for
color i for all 0 ≤ s < n, j < dn–s–1, we have ΦEei (r; 1) ↑ .

As WKL preserves 2-hyperimmunity (Corollary 2.7), there is a member
(fs,j : 0 ≤ s < n, j < dn–s–1) of Q such that H is g ⊕ h ⊕0≤s<n,j<dn–s–1 fs,j -
2-hyperimmune. Since TSsds–1+1 preserves 2-hyperimmunity for all 0 ≤ s ≤ n,
there is an infinite set Y such that |fs,j [Y ]s | ≤ ds–1 for all 0 ≤ s < n, j <
dn–s–1, |g[Y ]s |, |h[Y ]s | ≤ dn–1 and H is Y -2-hyperimmune. Since p > 2dn–1 +∑

0≤s<n ds–1dn–s–1, there is an i < p such that Y is fs,j -thin for color i for all
0 ≤ s < n, j < dn–s–1 and both g-thin, h-thin for color i.

Clearly d = (F0, ... , Fp–1, Y ) is an extension of c 9. We prove that d forces
Re0,...,ep–1 . This is because if Gi satisfies (Fi , Y ), then Gi is both g-thin and
h-thin for color i and fs,j -thin for color i for all 0 ≤ s < n, j < dn–s–1. Thus,
by definition of g, h, (fs,j : 0 ≤ s < n, j < dn–s–1), we have ΦGiei (r; 1) ↑.

• Case 2: Ur is found, but not Vr,m for some r,m ∈ �. By compactness, the
following Π0

1 class P of colorings g : [�]n → dn + 1 is nonempty: for every
i < p and every Eig-thin for color i,

ΦEiei (r; 1) ↓⊆ Ur ⇒ ΦEiei (r,m; 2) ↑ . (2.5)

As WKL preserves 2-hyperimmunity (Corollary 2.7), there is a member g of P
such that H is g-2-hyperimmune. By definition of Ur (where we take h = f),
there is a n-TS-sufficient p-tuple (Ei : i < p) of finite collections of finite sets
such that Ei is both g-thin and f -thin for color i and for every i < p, every
E ∈ Ei , we have

ΦEei (r; 1) ↓⊆ Ur.

9When we say “extension of c,” we mean a precondition extending c.
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By Lemma 2.25, there is an i < p,E ∈ Ei and an infinite set Y such thatE ∪ Y
is g-thin for color i and H is Y -2-hyperimmune. Consider the precondition
(F0, ... , Fi–1, Fi ∪ E,Fi+1, ... Fp–1, Y ).

It remains to show that d forces ΦGiei (n,m; 2) ↑. This is because if Gi satisfies
(E,Y ), then Gi is g-thin for color i. But ΦEei (r; 1) ↓⊆ Ur . Thus, by definition

of g (namely (2.5)), ΦGiei (r,m; 2) ↑.
• Case 3: Ur and Vr,m are found for every r,m ∈ �. By 2-hyperimmunity of H,

there is some r,m ∈ � such that (Ur,Vr,m) ∈ H. In particular, by definition of
Vn,m (where we take g = f), there is some i < p and some Eif-thin for color
i such that

ΦEiei (r; 1) ↓⊆ Ur ∧ ΦEiei (r,m; 2) ↓⊆ Vr,m.
Since i /∈ f[Ei ]n, we have d = (F0, ... , Fi–1, Fi ∪ Ei , Fi+1, ... , Fp–1, X ) is an

extension of c. Clearly d forces Re0,...,ep–1 .

This completes the proof of Lemma 2.29. �
Let F = {c0, c1, ... } be a sufficiently generic filter for this notion of forcing, where

cs = (F0,s , ... , Fp–1,s , Xs), and let Gi =
⋃
s Fi,s for every i < p. By property (b) of a

condition, for every i < p,Gi is f -thin for color i. By Lemma 2.28,G0, ... , Gp–1 are all
infinite, and by Lemma 2.29, there is some i < p such that H is Gi -2-hyperimmune.
This completes the proof of Theorem 2.26. �

2.6. FS2 preserves 2-hyperimmunity. The purpose of this section is to prove the
following theorem.

Theorem 2.30. FS2 preserves 2-hyperimmunity.

We start with a lemma very similar to Lemma 2.14, which establishes a bridge
between strong preservation for a principle over n-tuples and preservation for the
same principle over (n + 1)-tuples.

Lemma 2.31. Fix some n ≥ 1. If FSn strongly preserves 2-hyperimmunity, then
FSn+1 preserves 2-hyperimmunity.

Proof. Let H be a 2-hyperimmune family, and f : [�]n+1 → � be a computable
instance of FSn+1. Let �R = 〈R�,i : � ∈ [�]n, i ∈ �〉 be the computable family of sets
defined for every � ∈ [�]n and i ∈ � by

R�,i = {x ∈ � : f(�, x) = i}.

SinceCOH preserves 2-hyperimmunity (Corollary 2.9), there is an �R-cohesive set G10

such that H is G-2-hyperimmune. Let g : [�]n → � be the instance of FSn defined
for every � ∈ [�]n by

g(�) =
{

limx∈G f(�, x), if it exists,
0, otherwise.

10Here G is �R-cohesive iff for every � ∈ [�]n : either limx∈G f(�, x) exists, or {f(�, x) = i : x ∈ G}
is finite for all i ∈ �. We are not using exactly Corollary 2.9, but a similar proof applies here.
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By strong preservation of FSn, there is an infinite g-free set H ⊆ G such that H is
G ⊕H -2-hyperimmune. By thinning out the set H, we obtain an infinite G ⊕H -
computable f -free set H̃ ⊆ H . In particular, H is H̃ -2-hyperimmune. �

We shall define a particular kind of function called left trapped function. The
notion of trapped function was introduced by Wang in [21] to prove that FS does
not imply ACA over �-models. It was later reused by the second author in [13, 18].

Definition 2.32. A function f : [�]n → � is left (resp. right) trapped if for every
� ∈ [�]n, f(�) ≤ max � (resp. f(�) > max �).

The following lemma is a particular case of a more general statement proven by the
second author in [13]. It follows from the facts that FSn for right trapped functions is
strongly computably reducible to the diagonally non-computable principle (DNR),
which itself is strongly computably reducible to FSn for left trapped functions.

Lemma 2.33 (Patey in [13]). For each n ≥ 1, if FSn for left trapped functions
(strongly) preserves 2-hyperimmune, then so does FSn.

It therefore suffices to prove strong preservation of 2-hyperimmunity for FS1

restricted to left trapped functions. We first prove a technical lemma thinning out
colors while preserving 2-hyperimmunity. Fix a set C, an infinite set X ≤T C , a
C-2-hyperimmune bifamily H and a left trapped coloring f : [�]n → �.

Lemma 2.34. Assume FSs strongly preserves 2-hyperimmunity for each 0 ≤ s < n.
There exists an infinite set Y ⊆ X such that H is Y ⊕ C -2-hyperimmune, and for
every � ∈ [Y ]<� such that 0 ≤ |�| < n,

(∀x ∈ Y \ �)(∃b)(∀� ∈ [Y ∩ (b,+∞)]n–|�|)f(�, �) �= x.
Proof. By Proposition 2.19 and since TSsds+1 strongly preserves 2-hyper-

immunity for all s ∈ � (Theorem 2.22), there exists a set X0 ⊆ X with H being
X0-2-hyperimmune such that for all � ∈ [�]<� with |�| < n, there exists I� with
|I� | ≤ dn–|�| such that for every x /∈ I� ,

(∃b)(∀� ∈ [X0 ∩ (b,∞)]n–|�|)f(�, �) �= x.
For each s < n and i < dn–s , let fs,i : [�]s → � be the coloring such that fs,i(�)

is the ith element of I� . By strong preservation of FSs for each 0 ≤ s < n, there is
an infinite set Y ⊆ X0 such that Y is fs,i -free for all 0 ≤ s < n, i < dn–s and H is
Y -2-hyperimmune.

We prove that Y is the desired set. Fix s < n, � ∈ [Y ]s and x ∈ Y \ �. If (∀b)(∃� ∈
[Y ∩ (b,+∞)]n–s)f(�, �) = x, then by choice of X0 (and Y ⊆ X0), there exists an
i < dn–s such that fs,i(�) = x, contradicting fs,i -freeness of Y. So (∃b)(∀� ∈ [Y ∩
(b,+∞)]n–s)f(�, �) �= x. �

Theorem 2.35. FS1 for left trapped functions strongly preserves 2-hyperimmunity.

Proof. Fix some 2-hyperimmune bifamily H, and a left trapped coloring f :
� → �. By Lemma 2.34, we assume

(∀x ∈ �)(∃b)(∀y ∈ (b,+∞))f(y) �= x. (2.6)
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We will construct an infinite f -free set G such that H is G-2-hyperimmune by
forcing. Our forcing conditions are Mathias conditions (F,X ) such that

(a) H is X -2-hyperimmune.
(b) (∀x ∈ F ∪ X )f(x) �∈ F \ {x}.

A Mathias condition (F,X ) is a precondition if it satisfies (a) and F is f -free. Clearly
(∅, �) is a condition. It’s easy to see that:

Lemma 2.36. (1) Every precondition can be extended to a condition.
(2) For every condition (F,X ), every finite f-free setE ⊆ X withE > F , (F ∪ E,X )

is a precondition.

Proof. Item (1) follows from (2.6). For item (2): Since f is left trapped, for every
x ∈ F , f(x) /∈ E. Combined with f -freeness of F, f(x) /∈ (F ∪ E) \ {x}. Since
E is f -free, for every x ∈ E, f(x) /∈ E \ {x}. Combined with property (b) of a
condition, f(x) /∈ (F ∪ E) \ {x}. �

Lemma 2.37. For every condition (F,X ) there exists an extension (E,Y ) such that
|E| > |F |.

Proof. Pick any x ∈ X with x > F . Clearly {x} is f -free. Thus the conclusion
follow from Lemma 2.36. �

For every e ∈ �, we want to satisfy the requirement

Re : If ΦGe is total, then ΦGe meets H.
Lemma 2.38. For every condition c and every index e, there is an extension d of c

forcing Re .
Proof. Fix a condition c = (F,X ). By Lemma 2.36, for notational convenience,

assume F = ∅, X = �. We define a partial computable biarray as follows.
Defining Un. Given n ∈ �, search computably for some finite set Un > n (if it

exists) such that for every pair of left trapped colorings g, h : � → �, there is a pair
of disjoint finite setsE0, E1 which are both g-free and h-free such that for each i < 2,

ΦEie (n; 1) ↓⊆ Un.
Defining Vn,m. Given n,m ∈ �, search computably for some finite set Vn,m > m

(if it exists) such that for every left trapped coloring g : � → �, there is some g-free
finite set E such that

ΦEe (n; 1) ↓⊆ Un ∧ ΦEe (n,m; 2) ↓⊆ Vn,m.
We now have multiple outcomes, depending on which Un and Vn,m is found.

• Case 1: Un is not found for some n ∈ �. By compactness, the following Π0
1

class P of pairs of left trapped colorings g, h : � → � is nonempty: for every
pair of pairwise disjoint finite setsE0, E1 which are both g-free and h-free, there
is some i < 2 such that ΦEie (n; 1) ↑.

AsWKLpreserves 2-hyperimmunity (Corollary 2.7), there is a memberg, h of
P such that H is g ⊕ h-2-hyperimmune. There is an infinite g ⊕ h-computable
set Y which is both g-free and h-free. Let E0 (if it exists) be g-free, h-free and
ΦE0
e (n; 1) ↓; let b = maxE0 (or b = 0 if E0 does not exist). Clearly condition
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d = (F,Y \ [0, b]) is an extension of c. For every G satisfying d, G is both g-free
and h-free, so ΦGe (n; 1) ↑. Thus d forces Re .

• Case 2: Un is found, but not Vn,m for some n,m ∈ �. By compactness, the
following Π0

1 class P of left trapped colorings g : � → � is nonempty: for
every g-free set E,

ΦEe (n; 1) ↓⊆ Un ⇒ ΦEe (n,m; 2) ↑ . (2.7)

As WKL preserves 2-hyperimmunity (Corollary 2.7), there is a member g of P
such that H is g-2-hyperimmune. There is an infinite g-computable g-free set
Y. By definition of Un (where we take h = f), there is a pair of disjoint finite
sets E0, E1 which are both g-free and f -free, and such that for every i < 2,

ΦEie (n; 1) ↓⊆ Un.
Consider the 2-partition A0 � A1 of � defined by x ∈ Ai if g(x) ∈ Ei and
x ∈ A0 if g(x) /∈ ∪i<2Ei . Since TS1

2 is computably true, hence preserves 2-
hyperimmunity, there is an i < 2 and an infinite setEi < Ỹ ⊆ Y such that H is
Ỹ -2-hyperimmune and g(Ỹ ) ∩ Ei = ∅. We claim that Ei ∪ Ỹ is g-free. Indeed,
Ei and Ỹ are both g-free; since g is left trapped, g(Ei ) ∩ Ỹ = ∅; and by choice
of Ỹ , g(Ỹ ) ∩ Ei = ∅.

By f -free of Ei , d = (Ei , Ỹ ) is a precondition extending c. We prove that
the d forces ΦGe (n,m; 2) ↑. Because ΦEie (n; 1) ↓⊆ Un and Ei ∪ Ỹ is g-free (so
every G satisfying (Ei , Ỹ ) is g-free), by definition of g (namely (2.7)), d forces
ΦGe (n,m; 2) ↑.

• Case 3: Un and Vn,m are found for every n,m ∈ �. By 2-hyperimmunity of H,
there is some n,m ∈ � such that (Un,Vn,m) ∈ H. In particular, by definition
of Vn,m (where we take g = f), there is some f -free finite set E such that

ΦEe (n; 1) ↓⊆ Un ∧ ΦEe (n,m; 2) ↓⊆ Vn,m.
Clearly (E,X ) is a precondition extending c and forcing Re .

This completes the proof of Lemma 2.38. �
Let F = {c0, c1, ... } be a sufficiently generic filter for this notion of forcing,

where cs = (Fs , Xs), and let G =
⋃
s Fs . By property (b) of a condition, G is

f -free. By Lemma 2.37, G is infinite, and by Lemma 2.38, H is G-2-hyperimmune.
This completes the proof of Theorem 2.35. �

2.7. FSn preserves 2-hyperimmunity. The purpose of this section is to prove the
following theorem.

Theorem 2.39. For every n ≥ 1, FSn strongly preserves 2-hyperimmunity.

Proof. We prove by induction over n ≥ 1 that FSn preserves and strongly
preserves 2-hyperimmunity. If n = 1, FS1 is a computably true statement, that
is, every instance has a solution computable in the instance, so FS1 preserves 2-
hyperimmunity. If n > 1, then by the induction hypothesis, FSn–1 strongly preserves
2-hyperimmunity, so by Lemma 2.31, FSn preserves 2-hyperimmunity. Assuming
by the induction hypothesis that FSt strongly preserves 2-hyperimmunity for every
t < n, and that FSn preserves 2-hyperimmunity, then by Theorem 2.43, FSn for
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left trapped functions strongly preserves 2-hyperimmunity. By Lemma 2.33, if FSn

for left trapped functions strongly preserves 2-hyperimmunity, so does FSn. This
completes the proof. �

We first need to prove a technical lemma which will ensure that the reservoirs
of our forcing conditions will have good properties, so that the conditions will be
extensible. Fix a set C, a C-2-hyperimmune bifamily H; a finite set F and an infinite
set X ≤T C ; fix a left trapped coloring f : [�]n → �.

Lemma 2.40. Suppose that FSs strongly preserves 2-hyperimmunity for each 0 <
s < n. Then there exists an infinite set Y ⊆ X such that H is Y ⊕ C -2-hyperimmune,
and for each 0 < s < n,

(∀� ∈ [F ]s)(∀� ∈ [Y ]n–s)f(�, �) �∈ Y \ �.
Proof. For each 0 < s < n, each � ∈ [F ]s consider the coloringf� : [�]n–s → �

defined as f�(�) = f(�, �). Since FSs strongly preserves 2-hyperimmunity for each
0 < s < n, there is an infinite set Y ⊆ X such that H is Y -2-hyperimmune and Y is
f�-free for all 0 < s < n, � ∈ [F ]s . Unfolding the definition of free, Y is desired. �

We need to prove a second lemma saying that if we have sufficiently many finite
free sets, one of them is extendible into an infinite one. This generalizes the argument
of case 2 of Lemma 2.38, where we showed that for every coloring g : � → � and
every pair of disjoint g-free finite sets E0, E1, there is an i < 2 and an infinite set Y
such that Ei ∪ Y is g-free.

Definition 2.41 (FS-sufficient). A collection F of finite sets is n- FS-sufficient iff
for every sequence (fs,i : [�]s → �)s<n,i<dn–s–1 of left trapped colorings, there exists
an F ∈ F such that F is fs,i -free for all s < n, i < dn–s–1.

In particular, for n = 1, a collection F of finite sets is 1- FS-sufficient iff for every
left-trapped coloring f0,0 : [�]0 → �, there exists an F ∈ F such that F is f0,0-free.
Note that a coloring [�]� → � is nothing but the choice of an element in �, which
means that for every x ∈ �, there exists an F ∈ F such that x �∈ F . This is true as
long as F contains two disjoint sets.

Let F be a collection of f -free finite sets.

Lemma 2.42. Assume that FSn preserves 2-hyperimmunity and that FSs strongly
preserves 2-hyperimmunity for each 0 < s < n. Supposef ≤T C , F is n- FS-sufficient
and f-free.11 Then there is an F ∈ F and an infinite subset Y ⊆ X such that F ∪ Y is
f-free and H is C ⊕ Y -2-hyperimmune.

Proof. Using a version of Proposition 2.19 and imitating Lemma 2.34 but for
preservation instead of strong preservation (which is feasible sincef ≤T C ), there is
an infinite setX0 ⊆ X withHbeingX0-2-hyperimmune such that for every� ∈ [�]<�

with |�| < n, there is a I� with |I� | ≤ dn–|�|–1 such that for every x /∈ I� ,

(∃b)(∀� ∈ [X0 ∩ (b,∞)]n–|�|)f(�, �) �= x.
For each s < n, i < dn–s–1, consider the coloring fs,i : [�]s → � such that fs,i(�) is
the ith element of I� .

11Each member of F is f -free.
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Since F is n-FS-sufficient, there is an F ∈ F such that F is fs,i -free for all
s < n, i < dn–s–1. By choice of X0, let b ∈ � so that for every � ∈ [F ]<� with
|�| < n,

(∀� ∈ [X0 ∩ (b,∞)]n–|�|)f(�, �) /∈ F \ I�. (2.8)

By preservation of 2-hyperimmune of FSn, let infinite f -free setX1 ⊆ X0 ∩ (b,∞) so
that H is X1-2-hyperimmune. By Lemma 2.40, let infinite set Y ⊆ X1 so that H is
Y -2-hyperimmune, Y > F and for every 0 < s < n,

(∀� ∈ [F ]s)(∀� ∈ [Y ]n–s)f(�, �) �∈ Y \ �. (2.9)

We show that F ∪ Y is f -free. To see this, let � ∈ [F ]<�, � ∈ [Y ]<� with |� ∪
�| = n, we need to prove f(�, �) /∈ F \ � and f(�, �) /∈ Y \ �. To see f(�, �) /∈
Y \ �, when |�| = n, the conclusion follows by f -free of Y ; when 0 < |�| < n, the
conclusion follows from (2.9); when |�| = 0, the conclusion follows by left trap of
f. To see f(�, �) /∈ F \ �, when |�| = n, the conclusion follows from f -freeness of
F. When |�| < n, suppose f(�, �) ∈ F (otherwise we are done). By (2.8), f(�, �) =
x ∈ F ∩ I� . Since x ∈ I� , it means for s = n – |�|, for some i < dn–s–1, fs,i(�) = x.
In particular, fs,i(�) ∈ F . But F is fs,i -free, so x /∈ �. Thus we are done. �

We are now ready to prove the missing theorem.

Theorem 2.43. For each n ≥ 1, if FSs strongly preserves 2-hyperimmunity for
each 0 ≤ s < n and FSn preserves 2-hyperimmunity, then FSn for left trapped functions
strongly preserves 2-hyperimmunity.

Proof. Fix a left trapped coloring f : [�]n → �. By Lemma 2.34, we assume
that for every s < n, every � ∈ [�]s ,

(∀x ∈ � \ �)(∃b)(∀� ∈ [� ∩ (b,+∞)]n–s)f(�, �) �= x. (2.10)

We will construct an infinite f -free set G such that H is G-2-hyperimmune. Our
forcing conditions are Mathias conditions (F,X ) such that

(a) H is X -2-hyperimmune.
(b) (∀� ∈ [F ∪ X ]n)f(�) �∈ F \ �.
(c) (∀� ∈ [F ]s)(∀� ∈ [X ]n–s)f(�, �) �∈ X \ � for each 0 < s < n.

Clearly (∅, �) is a condition. A precondition (F,X ) is a Mathias condition satisfying
(a) and where F is f -free.

Lemma 2.44. (1) Every precondition can be extended to a condition.
(2) For every condition (F,X ), every f-free setY ⊆ X withY > F , F ∪ Y is f-free.
(3) For every condition (F,X ), every finite f-free setE ⊆ X withE > F , (F ∪ E,X )

is a precondition.

Proof. For item (1): Fix a precondition (F,X ). By (2.10) and f -freeness of F,
there is a b ∈ � so that for every � ∈ [F ]≤n,

(∀� ∈ [� ∩ (b,+∞)]n–|�|)f(�, �) /∈ F \ �,
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which verifies that (F,X ∩ (b,∞)) satisfies property (b). By Lemma 2.40, there is
a reservoir-extension12 of (F,X ∩ (b,∞)) satisfying property (c) while preserving
property (a). Thus we are done (property (b) is preserved by reservoir-extension).

For item (2): Let � ∈ [F ]<�, � ∈ [Y ]<� with |� ∪ �| = n. We need to show that
f(�, �) /∈ F \ � and f(�, �) /∈ Y \ �. It follows from property (b) of (F,X ) that
f(�, �) /∈ F \ �. To see f(�, �) /∈ Y \ �, the conclusion follows from property (c) of
(F,X ) when |�|, |�| > 0; the conclusion follows by left trap of f when |�| = 0; the
conclusion follows from f -freeness of Y when |�| = n.

Item (3) follows from item (2) directly. �
Lemma 2.45. For every condition (F,X ) there exists an extension (E,Y ) such that

|E| > |F |.
Proof. Pick any x ∈ X so that x > E and set E = F ∪ {x}. Since {x} is f -free,

so by Lemma 2.44, (E,X ) is a precondition. �
For every e ∈ �, we want to satisfy the requirement

Re : If ΦGe is a total, then ΦGe meets H.
Lemma 2.46. For every condition c and every index e, there is an extension d of c

forcing Re .
Proof. Fix c = (F,X ). By Lemma 2.44, for notational convenience, assume F =

∅ and X = �. We define a partial computable biarray as follows.
Defining Un. Given r ∈ �, search computably for some finite set Ur > r (if it

exists) such that for every pair of left trapped colorings g, h : [�]n → �, there is a
finite n- FS-sufficient collection E of finite sets which is both g-free and h-free such
that for every E ∈ E ,

ΦEe (r; 1) ↓⊆ Ur.
Defining Vr,m. Given r,m ∈ �, search computably for some finite set Vr,m > m (if

it exists) such that for every left trapped coloring g : [�]n → �, there is some g-free
finite set E such that

ΦEe (r; 1) ↓⊆ Ur ∧ ΦEe (r,m; 2) ↓⊆ Vr,m.
We now have multiple outcomes, depending on which Ur and Vr,m is found.
• Case 1:Ur is not found for some r ∈ �. By compactness, the following Π0

1 class
P of pairs of left trapped colorings g, h : [�]n → � is nonempty: there is no
n-FS-sufficient finite collection E of finite sets which are both g-free and h-free,
such that for every E ∈ E , we have ΦEe (r; 1) ↓.

As WKL preserves 2-hyperimmunity (Corollary 2.7), there is a member g, h
of P such that H is g ⊕ h-2-hyperimmune. Unfolding the definition of n-FS-
sufficient and use compactness, the following Π0,g⊕h

1 class Q of sequence (fs,i :
[�]s → �)s<n,i<dn–s–1 of left trapped colorings is nonempty:

for every finite set E which is g-free, h-free and
fs,i -free for each s < n, i < dn–s–1,Φ

E
e (r; 1) ↑ . (2.11)

12A Mathias condition (E,Y ) reservoir-extends (F, X ) if it extends (F, X ) and E = F .
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As WKL preserves 2-hyperimmunity (Corollary 2.7), there is a member (fs,i :
s < n, i < dn–s–1) of Q such that H is g ⊕ h ⊕s<n,i<dn–s–1 fs,i -2-hyperimmune.
As FSn preserves 2-hyperimmunity, there is an infinite set Y which is both
g-free, h-free and fs,i -free for each s < n, i < dn–s–1 and such that H is Y -
2-hyperimmune. Clearly for every G satisfying condition (F,Y ), G is g-free,
h-free and fs,i -free for each s < n, i < dn–s–1, so ΦGe (r; 1) ↑. i.e., The condition
d = (F,Y ) is an extension of c forcing Re .

• Case 2: Ur is found, but not Vr,m for some r,m ∈ �. By compactness, the
following Π0

1 class P of left trapped colorings g : [�]n → � is nonempty: for
every g-free set E,

ΦEe (r; 1) ↓⊆ Ur ⇒ ΦEe (r,m; 2) ↑ . (2.12)

As WKL preserves 2-hyperimmunity (Corollary 2.7), there is a member g of P
such that H is g-2-hyperimmune. By definition of Ur (where we take letting
h = f), there is a n- FS-sufficient finite collection E of finite sets which is both
g-free and f -free and such that for each E ∈ E ,

ΦEe (r; 1) ↓⊆ Ur.
By Lemma 2.42, there is an infinite set Y and some E ∈ E such that H is
Y -2-hyperimmune andE ∪ Y is g-free. Consider the precondition d = (E,Y ).
It remains to prove that d forces ΦGe (r,m; 2) ↑. SinceE ∪ Y is g-free, so every G
satisfying (E,Y ) is g-free. By definition of g (namely (2.12)) and ΦEe (r; 1) ↓⊆
Ur , for every G satisfying (E,Y ), ΦGe (r,m; 2) ↑.

• Case 3: Ur and Vr,m are found for every r,m ∈ �. By 2-hyperimmunity of H,
there is some r,m ∈ � such that (Ur,Vr,m) ∈ H. In particular, by definition of
Vr,m (where we take g = f), there is some f -free finite set E such that

ΦEe (r; 1) ↓⊆ Ur ∧ ΦEe (r,m; 2) ↓⊆ Vr,m.
Consider the precondition (E,X ). Clearly it forces Re .

This completes the proof of Lemma 2.46. �
Let F = {c0, c1, ... } be a sufficiently generic filter for this notion of forcing, where

cs = (Fs , Xs), and let G =
⋃
s Fs . By property (b) of a condition, G is f -free. By

Lemma 2.45, G is infinite, and by Lemma 2.46, H is C ⊕G-2-hyperimmune. This
completes the proof of Theorem 2.43. �

§3. Erdős–Moser theorem has no universal instance. In this section, we prove
Theorem 3.6, that EM does not have a universal instance. To this end, we construct a
pair of computable EM instances T0, T1 such that for every computable EM instance
T, T admits a solution that either computes no solution of T0 or computes no
solution of T1. Given an EM instance T and two sets A,B , we write A→T B iff for
every x ∈ A, y ∈ B , T (x, y)13; we say T diagonalizes against (A,B) if: A→T B and
for all but finitely many x ∈ �, B →T x →T A. The point is, when T diagonalizes
against (A,B), for any set H that has nonempty intersection with both A,B , there
is no solution to T containing H.

13It is helpful to picture T as a directed graph.
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Definition 3.1. (1) A 4-array is a sequence of 4-tuple of finite sets (of
integers) 〈En,En,m,l , Fn,m, Fn,m,l : n,m, l ∈ �〉 such that for every n,m, l ∈ �,
En > n,En,m,l > m, Fn,m > n and Fn,m,l > l .

(2) A pair ofEM instances (T0, T1) is C-4-hyperimmune if for every C-computable
4-array 〈En,En,m,l , Fn,m, Fn,m,l : n,m, l ∈ �〉, there exist n,m, l ∈ � such that
T0 diagonalizes against (En,En,m,l ) and T1 diagonalizes against (Fn,m, Fn,m,l ).

For notational convenience, in this section we regard each Turing machine Φ as
computing a 4-array. We will therefore assume that whenever Φ(n; 1) converges, then
it will output (the canonical index of) a finite set En > n. Similarly for Φ(n,m, l ; 2),
Φ(n,m; 3) and Φ(n,m; 4) with the appropriate lower bound.

By finite injury argument (as Proposition 2.10), we have:

Proposition 3.2. There exists a pair of computable stable 4-hyperimmune EM
instance.

Proof. We build the tournaments T0 and T1 by a finite injury priority argument.
For simplicity, we see T0 and T1 as functions over f0, f1 : [�]2 → 2 by letting for
every x < y and i < 2, Ti(x, y) hold iff fi(x, y) = 0. For every e ∈ �, we want to
satisfy the following requirement:

Re :If Φe is total, then there is some n,m, l ∈ � such that

T0 diagonalizes against (Φe(n; 1),Φe(n,m, l ; 2)) and

T1 diagonalizes against (Φe(n,m; 3),Φe(n,m, l ; 4)). (3.1)

The requirements are given the usual priority ordering R0 < R1 < ··· Initially, the
requirements are neither partially, nor fully satisfied.

(i) A requirement Re requires a first attention at stage s if it is not first
satisfied and Φe,s(n; 1) ↓= En for some set En ⊆ {e + 1, ... , s – 1} such that
no element inEn is restrained by a requirement of higher priority. If it receives
attention, then it puts a restraint on En, commits the elements of En to be in
C0(f0), and is declared first satisfied.

(ii) A requirement Re requires a second attention at stage s if it is not
second satisfied and Φe,s(n; 1) ↓= En and Φe,s(n,m; 3) ↓= Fn,m for some sets
En, Fn,m ⊆ {e + 1, ... , s – 1} such that no element in En ∪ Fn,m is restrained
by a requirement of higher priority and such that f0(x, y) = 0 for every
x ∈ En and y ∈ {m + 1, m + 2, ... , s – 1}. If it receives attention, then it
puts a restraint on En ∪ Fn,m, commits the elements of En to be in C0(f0)
and the elements of Fn,m to be in C0(f1). Then the requirement is declared
second satisfied.

(iii) A requirement Re requires a third attention at stage s if it is not fully satisfied,
and Φe,s(n; 1) ↓= En, Φe,s(n,m, l ; 2) ↓= En,m,l , Φe,s(n,m; 3) ↓= Fn,m and
Φe,s(n,m, l ; 4) ↓= Fn,m,l for some setsEn,En,m,l , Fn,m, Fn,m,l ⊆ {e + 1, ... , s –
1} which are not restrained by a requirement of higher priority, and such
that f0(x, y) = 0 for every x ∈ En and y ∈ {m + 1, m + 2, ... , s – 1}, and
f1(x, y) = 0 for every x ∈ Fn,m and y ∈ {l + 1, l + 2, ... , s – 1}. If it receives
attention, then it puts a restraint on En ∪ En,m,l ∪ Fn,m ∪ Fn,m,l , commits the
elements of En to be in C1(f0), the elements of En,m,l to be in C0(f0), the
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elements of Fn,m to be in C1(f1), the elements of Fn,m,l to be in C0(f1), and
is declared fully satisfied.

At stage 0, we let f0 = f1 = ∅. Suppose that at stage s, we have defined f0(x, y)
and f1(x, y) for every x < y < s . For every x < s and i < 2, if it is committed
to be in some Cj(fi), set fi(x, s) = j, and otherwise set fi(x, s) = 0. Let Re be
the requirement of highest priority which requires attention. If Re requires a third
attention, then execute the third procedure. Otherwise, if it requires the second
attention, then execute the second procedure, and in the last case, execute the first
one. In any case, reset all the requirements of lower priorities by setting them
unsatisfied, releasing all their restraints, and go to the next stage. This completes the
construction. On easily sees by induction that each requirement acts finitely often,
and is eventually fully satisfied. This procedure also yields stable colorings, hence
stable tournaments. �

Before proving our core argument which will be Theorem 1.7, we prove a few
preservation results. These results will be used to assume some good properties on
our tournaments.

Proposition 3.3. COH preserves 4-hyperimmunity. i.e., For every set C and C-4-
hyperimmune EM instance pair (T0, T1), and every C-computable COH instance �R,
there exists a solution G of �R such that (T0, T1) is C ⊕G-4-hyperimmune.

Proof. Let B be the class of all 4-arrays such that for every m, n, l ∈ �, either
T0 does not diagonalize against (En,En,m,l ) or T1 does not diagonalize against
(Fn,m, Fn,m,l ). The class B can be coded as a closed set in the Baire space �� . By
hypothesis, B has no C-computable member. By [13, Corollary 2.9], there is an
�R-cohesive set G such that B has no C ⊕G-computable member. By definition of
B, (T0, T1) is C ⊕G-4-hyperimmune. �

We also need the preservation of 4-hyperimmunity of WKL.

Proposition 3.4. WKL preserves 4-hyperimmunity. i.e., For every set C and C-4-
hyperimmune EM instance pair (T0, T1), every nonempty Π0,C

1 class P ⊆ 2� , there is
a G ∈ P such that (T0, T1) is C ⊕G-4-hyperimmune.

Proof. Assume C = ∅, and fix (T0, T1) and a Π0
1 class P ⊆ 2� . We will prove

our proposition with a forcing with Π0
1 non-empty subclasses of P . We satisfy the

requirement:

Re :If ΦGe is total, then for some n,m, l ∈ �,
T0 diagonalizes against (ΦGe (n; 1),ΦGe (n,m, l ; 2)) and

T1 diagonalizes against (ΦGe (n,m; 3),ΦGe (n,m, l ; 4)).

The core of the argument is the following lemma:

Lemma 3.5. For every index e, every condition c admits an extension forcing Re .
Proof. Let Q ⊆ P be a condition. We define a partial computable 4-array as

follows.
DefiningUn. Given n ∈ �, search computably for some finite setUn > n such that

for every X ∈ Q,

ΦXe (n; 1) ↓⊆ Un.
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Defining Vn,m. Given n,m ∈ �, search computably for some finite set Vn,m > n
such that for every X ∈ Q,

ΦXe (n,m; 2) ↓⊆ Vn,m.
Defining Un,m,l , Vn,m,l . Given n,m, l ∈ �, search computably for some finite sets

Un,m,l > m,Vn,m,l > l such that for every X ∈ Q,

ΦXe (n,m, l ; 3) ↓⊆ Un,m,l ∧ ΦXe (n,m, l ; 4) ↓⊆ Vn,m,l .
We now have multiple outcomes, depending on which Un and Vn,m is found.

• Case 1:Un is not found for some n ∈ �. Then by compactness, the Π0
1 class W

of X ∈ Q so that ΦXe (n; 1) ↑ is nonempty. Thus W is the desired extension.
• Case 2: Vn,m is not found for some n,m ∈ �. Then by compactness, the Π0

1
class W of X ∈ Q so that ΦXe (n,m; 2) ↑ is nonempty. Thus W is the desired
extension.

• Case 3: Un or Vn,m is not found for some n,m ∈ �. Then by compactness, the
Π0

1 class W of X ∈ Q so that

ΦXe (n,m, l ; 3) ↑ ∨ΦXe (n,m, l ; 4) ↑
is nonempty. Thus W is the desired extension.

• Case 4: Un,Vn,m,Un,m,l , Vn,m,l are found for every n,m ∈ �. Since (T0, T1)
is 4-hyperimmune, there exist n,m, l such that T0, T1 diagonalizes against
(Un,Un,m,l ) and (Vn,m, Vn,m,l ) respectively. Thus Q already forces Re . �

Let F = {P0,P1, ... } be a sufficiently generic filter for this notion of forcing,
where cs = (Fs , Xs), and let G ∈

⋂
s Ps . In particular, G ∈ P and by Lemma 3.5,

(T0, T1) is C ⊕G-4-hyperimmune. This completes the proof of Theorem 3.4. �
The rest of this section will be dedicated to the proof of Theorem 3.6, from which

Theorem 1.7 follows.

Theorem 3.6. If a pair of EM instance (T0, T1) is C-4-hyperimmune, then for every
C-computable EM instance T, there exists a solution G to T such that either C ⊕G
does not compute a solution to T0, or C ⊕G does not compute a solution to T1.

Proof. For notational convenience, we assume C = ∅. Fix (T0, T1) and T as in
Theorem 3.6. By Proposition 3.3, we may assume that T is stable (for every x ∈ �,
either x →T y for all but finitely many y, or y →T x for all but finitely many y).

In the rest of the proof, every Turing functional ΦG is computing a set of integers,
namely {n : ΦG(n) ↓= 1}; so it makes sense to write ΦG ∩ A. Let A0 � A1 be a
2-partition (of �) such that x ∈ A0 if and only if x →T y for all but finitely many
y ∈ � (which is well defined since T is stable). This automatically ensures that
x ∈ A1 iff y →T x for all but finitely many y ∈ �. For a set Z ⊆ �, a 2-partition
X0 � X1 of �, we say Z is compatible with X0 � X1 if Z ∩ X0 →T Z ∩ X1. Note that
if Z ⊆ Xi for some i, then Z is compatible with X0 � X1.

A condition is a Mathias condition (F,X ) with the following properties:

(a) F is T-transitive and compatible with A0 � A1;
(b) F ∩ A0 →T X →T F ∩ A1; and
(c) (T0, T1) is X -4-hyperimmune.
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A precondition is a Mathias condition satisfying (a)(c).

Lemma 3.7. Let (F,X ) be a condition and Y ⊆ X .

(1) If Y is T-transitive, then F ∪ Y is T-transitive.
(2) If Y is compatible with A0 � A1, then F ∪ Y is compatible with A0 � A1.
(3) For every precondition (E,Y ), there is a b ∈ � so that (E,Y ∩ (b,∞)) is a

condition.

Proof. Items (1) and (2) follow from property (b) of (F,X ). Item (3) follows
from definition of A0, A1. �

Lemma 3.8. For every condition (F,X ) there exists an extension (E,Y ) such that
|E| > |F |.

Proof. Let x ∈ X \ F . Clearly {x} is T-transitive and compatible withA0 � A1.
By Lemma 3.7 item (1)(2), (F ∪ {x}, X ) is a precondition. �

For e ∈ �, i ∈ 2, let Rie denote the requirement:

ΦGe is not a solution to Ti .

We will construct a solution G of T satisfying:

Re0,e1 : R0
e0
∨R1

e1

for all e0, e1 ∈ �. A condition (F,X ) forces Re0,e1 if: for every solution G of T
satisfying (F,X ), G satisfies Re0,e1 . Note that the definition of forcing is slightly
different from that in Section 2, that we restrict to T-transitive set. This restriction
cannot be applied in Section 2 since there we deal with arbitrary instance instead of
computable instance.

Lemma 3.9. For every condition c and indices e0, e1 ∈ �, there is an extension of c
forcing Re0,e1 .

Proof. Fix c = (D,X ). By Lemma 3.7, for notational convenience, we assume
D = ∅ andX = �. We firstly describe a process to partially compute a 4-array. Then
we show that if the computation diverges, we obtain an extension d ≤ c forcing
Re0,e1 in the Π0

1 way: one of ΦGei is not infinite; and if the computation converges, we
obtain d ≤ c forcing Re0,e1 in a Σ0

1 way: for some n,m, l so that T0, T1 diagonalizes
against (Vn,Vn,m), (Un,m,Un,m,l ) respectively, either ΦGe0 ∩Un �= ∅ ∧ ΦGe0 ∩Un,m �= ∅;
or ΦGe1 ∩ Vn,m �= ∅ ∧ ΦGe1 ∩ Vn,m,l �= ∅ (which means for some i < 2, ΦGei is not a
solution to Ti).

DefiningUn. Given n ∈ �, search computably for some finite setUn > n such that
for every 8-partition X0 � ··· � X7 = �, there exists an i < 8, a finite T-transitive set
E ⊆ Xi such that ΦEe0 ∩Un �= ∅.

DefiningUn,m, Vn,m. Given n,m ∈ �, search computably for some finite setUn,m >
m,Vn,m > n such that for every 4-partition X0 � ··· � X3:

(a) either there exists an i < 4, a finite T-transitive set E ⊆ Xi such that ΦEe0 ∩
Un �= ∅ and ΦEe0 ∩Un,m �= ∅ and

(b) or there exist j �= i < 4 and two finite T-transitive sets F ⊆ Xj,E ⊆ Xi such
that ΦEe0 ∩Un �= ∅ and ΦFe1 ∩ Vn,m �= ∅.
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Defining Un,m,l , Vn,m,l . Given n,m ∈ �, search computably for some finite sets
Un,m,l > m,Vn,m,l > l such that for every 2-partition X0 � X1, there exists a finite
T-transitive set E compatible with X0 � X1 such that:

(p) either ΦEe0 ∩Un �= ∅ and ΦEe0 ∩Un,m,l �= ∅;
(q) or ΦEe1 ∩ Vn,m �= ∅ and ΦEe1 ∩ Vn,m,l �= ∅.

Case 1: Un is not found for n.
This is straightforward. By compactness, the following Π0

1 class P of 8-partitions
X0 � ··· � X7 is nonempty: for every i < 8, every T-transitive finite set E ⊆ Xi ,
ΦEe0 ∩ (n,∞) = ∅. AsWKLpreserves 4-hyperimmunity (Proposition 3.4), there exists
a memberX0 � ··· � X7 ofP so that (T0, T1) is⊕i<8Xi -4-hyperimmune. Fix any i < 8
such that Xi is infinite. Then (D,Xi) is an extension of c forcing Re0,e1 .

Case 2: Un is found but not (Un,m, Vn,m) for some n,m.
By compactness, the following Π0

1 class P of 4-partitions X0 � ··· � X3 is
nonempty:

(a) for every i < 4, every finite T-transitive set E ⊆ Xi , we have ΦEe0 ∩Un =
∅ ∨ ΦEe0 ∩ (m,∞) = ∅ and

(b) for every j �= i < 4 and every two finite T-transitive sets F ⊆ Xj,E ⊆ Xi , we
have ΦEe0 ∩Un = ∅ ∨ ΦFe1 ∩ (n,∞) = ∅.

AsWKL preserves 4-hyperimmunity (Proposition 3.4), there exists a memberX0 �
··· � X3 of P so that (T0, T1) is ⊕i<4Xi -4-hyperimmune. Consider the 8-partition
(Xi ∩ Ak : i < 4, k < 2). By definition of Un, there exist i < 4, k < 2 and a finite
T-transitive set E ⊆ Xi ∩ Ak , such that ΦEe0 ∩Un �= ∅.

Subcase 1: Xi is infinite.
Since E ⊆ Ak , E is compatible with A0 � A1. So d = (E,Xi) is a precondition

extending c. Note that by property (a) of X0 � ··· � X3, for every T-transitive set G
satisfying d (so G ⊆ Xi), we have ΦGe0 ∩ (m,∞) = ∅ (since ΦGe0 ∩Un �= ∅). Thus, d
forces Re0,e1 .

Subcase 2: Xi is finite.
Then there exists a j �= i such that Xj is infinite. Note that by property (b) of

X0 � ··· � X3, for every T-transitive setG ⊆ Xj , we have ΦGe1 ∩ (n,∞) = ∅. Thus the
condition (D,Xj) extends c and forces Re0,e1 .

Case 3: Un,Un,m, Vn,m are found but not (Un,m,l , Vn,m,l ) for some n,m, l ∈ �.
By compactness, the following Π0

1 class P of 2-partitions X0 � X1 is nonempty:
for every finite T-transitive finite set E compatible with X0 � X1, we have

(p) ΦEe0 ∩Un = ∅ ∨ ΦEe0 ∩ (m,∞) = ∅ and
(q) ΦEe1 ∩ Vn,m = ∅ ∨ ΦEe1 ∩ (l,∞) = ∅.

By Proposition 3.4, there exists a member X0 � X1 of P so that (T0, T1) is
⊕j<2Xj-4-hyperimmune. Consider the 4-partition (Xj ∩ Ak : j, k < 2). By property
(p) of X0 � X1, for every j, k < 2 and E ⊆ Xj ∩ Ak (so E is compatible with
X0 � X1),

ΦEe0 ∩Un = ∅ ∨ ΦEe0 ∩ (m,∞) = ∅. (3.2)
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Combine with the definition ofUn,m, Vn,m (where we take the 4-partition to be (Xj ∩
Ak : j, k < 2) and note that by (3.2), property (a) fails, so property (b) occurs), we
have: there are (j, k) �= (ĵ, k̂) and finite T-transitive setsE ⊆ Xj ∩ Ak, F ⊆ Xĵ ∩ Ak̂
such that

ΦEe0 ∩Un,Φ
F
e1
∩ Vn,m �= ∅.

Subcase 1: Either Xj or Xĵ is infinite.
Suppose Xj is infinite. Consider the precondition d = (E,Xj) extending c. Note

that for every T-transitive set G satisfying d, G is compatible with X0 � X1 (since
G ⊆ Xj). Thus by property (p) of X0 � X1 and ΦEe0 ∩Un �= ∅, for every T-transitive
set G satisfying d, we have ΦGe0 ∩ (m,∞) = ∅. Thus d forces Re0,e1 . Suppose now Xĵ
is infinite. Then, taking d = (F,Xĵ), a similar argument shows that by property (q)
of X0 � X1, for every T-transitive set G satisfying d, we have ΦGe1 ∩ (l,∞) = ∅. Thus
d forces Re0,e1 . Thus we are done in this subcase.

Subcase 2: Both Xj , Xĵ are finite.

This implies j = ĵ since X0 � X1 = �, and then k �= k̂ since (j, k) �= (ĵ, k̂). Let b
be sufficiently large to witness the limits of the elements of F and E with respect to
the tournament.

If j = ĵ = 0 (so X1 is infinite) and k̂ = 0, k = 1, consider the condition d =
(F,X1 \ [0, b]). Since F ⊆ A

k̂
= A0, we have F →T X1 \ [0, b]. Therefore for every

G ⊆ X1 \ [0, b], F ∪G is compatible with X0 � X1 (since F ⊆ X0). Thus for every
T-transitive set G satisfying d, by property (q) of X0 � X1 and since ΦFe1 ∩ Vn,m �= ∅,
we have ΦGe1 ∩ (l,∞) = ∅. Thus d forces R1

e1
.

If j = ĵ = 1 (so X0 is infinite) and k̂ = 0, k = 1, consider the condition d =
(E,X0 \ [0, b]). Since E ⊆ Ak = A1, we have X0 \ [0, b] →T E. Therefore for every
set G ⊆ X0 \ [0, b], E ∪G is compatible with X0 � X1 (since E ⊆ X1). Thus for
every T-transitive set G satisfying d, by property (p) of X0 � X1 and ΦEe0 ∩Un �= ∅,
we have ΦGe0 ∩ (m,∞) = ∅. Thus d forces R0

e0
.

If j = ĵ = 0 (soX1 is infinite) and k̂ = 1, k = 0, then the condition (E,X1 \ [0, b])
forces R0

e0
by a similar argument using property (p) of X0 � X1.

If j = ĵ = 1 (soX0 is infinite) and k̂ = 1, k = 0, then the condition (F,X0 \ [0, b])
forces R1

e1
by a similar argument using property (q) of X0 � X1.

Case 4: Un,Un,m, Vn,m,Un,m,l , Vn,m,l is found for all n,m, l .
Since (T0, T1) is 4-hyperimmune, there exist n,m, l such thatT0 andT1 diagonalize

against (Un,Un,m,l ) and (Vn,m, Vn,m,l ), respectively. By definition of Un,m,l , Vn,m,l
(where we take X0 � X1 to be A0 � A1), there exists a finite T-transitive set F
compatible with A0 � A1 such that

(p) either ΦFe0 ∩Un �= ∅ and ΦFe0 ∩Un,m,l �= ∅ and
(q) or ΦFe1 ∩ Vn,m �= ∅ and ΦFe1 ∩ Vn,m,l �= ∅.

Let d = (F,X ). We claim that d forces Re0,e1 by forcing R0
e0

on case (p) and R1
e1

on
case (q). Let G be a set satisfying d. In the case (p), ΦGe0 has a non-empty intersection
with bothUn andUn,m,l , in which case ΦGe0 is not a solution toT0 (recall the definition
of diagonalizes against); and in the case (q), ΦGe1 has non-empty intersection with
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both Vn,m and Vn,m,l , in which case ΦGe1 is not a solution to T1. This completes the
proof of the lemma. �

Let F = {c0, c1, ... } be a sufficiently generic filter for this notion of forcing, where
cs = (Fs , Xs), and let G =

⋃
s Fs . By property (a) of a condition, G is T-transitive.

By Lemma 3.8, G is infinite, and by Lemma 3.9, G satisfies Re0,e1 for all e0, e1. By
pairing argument, this means either G does not compute a solution to T0, orG does
not compute a solution to T1. This completes the proof of Theorem 3.6. �
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