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Introduction

Given positive numbers ,  such that , it can happen that

: for example, , .  However,

such cases are exceptional. Can we identify conditions that ensure that

, or more generally  for all ?  More

generally still, conditions ensuring that  for a suitable

class of functions ?
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The ‘suitable’ class is, in fact, the class of convex functions. Recall that

a function  is convex (informally, curving upwards) if it lies below the
straight-line chord between any two points on its graph.  Formally, the
definition is:  is convex on the interval  if for ,  in  and ,
we have . It is strictly convex if
strict inequality holds for . Also,  is concave if  is convex.

f

f I x1 x2 I 0 ≤ λ ≤ 1
f [(1 − λ)x1 + λx2] ≤ (1 − λ)f (x1) + λf (x2)

0 < λ < 1 f −f
For differentiable functions, convexity is equivalent to  increasing

with .  Clearly, it is sufficient if  (and if , then  is
strictly convex).  In particular,  is strictly convex for  if  or

, and strictly concave if . Also,  is strictly concave
for .

f ′ (x)
x f ″ (x) ≥ 0 f ″ (x) > 0 f

xp x > 0 p > 1
p < 0 0 < p < 1 log x

x > 0
The property that matters to us here is that a differentiable convex

function lies above its tangents.  In other words,

f (x) − f (x0) ≥ (x − x0) f ′ (x0) (1)
for  and  in  (both for  and for ).  This is geometrically
compelling; a formal proof is by a simple application of the mean-value
theorem. Strict inequality holds if  is strictly convex and .

x x0 I x > x0 x < x0

f x ≠ x0

If  is convex but not differentiable, then it still has right and left
derivatives at interior points of , and (1) still holds with  replaced by
either of these one-sided derivatives.  This is not hard to prove, but we will
not elaborate on it here, because all our applications will involve
differentiable functions.

f
I f ′ (x0)

Majorisation and the main result
We shall denote an element  of  simply by .  We say

that  is positive if each  is positive, and that  is decreasing if  decreases

with . The sum  does not depend on the order of the , and it will

suit our purposes to assume that  is decreasing (after reordering if
necessary).

(x1, x2,  … , xn) �n x
x xj x xj

j ∑
n

j = 1
f (xj) xj

x
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The essential idea driving the results that follow is comparison of partial
sums.  Let  and  be decreasing.  Write  (similarly  for
a second element ).  If  for each , we write . If also

, we write , and say that  is majorised by .  (We warn the
reader that this is not standard notation; in fact, various different symbols
have been used in the literature for these relations.) 

x y Xk = x1 +  …  + xk Yk
y Yk ≤ Xk k y ≤S x

Yn = Xn y ≤M x y x

So, for example,  and .
For decreasing elements ,  of  with , the statement  is
equivalent to  and .

(5,  4,  2) ≤M (7, 3, 1) (6, 5,  5,  3) ≤M (9, 4, 4, 2)
x y �3 X3 = Y3 y ≤M x

y1 ≤ x1 y3 ≥ x3

Example 1:  Let  be decreasing and .  Let  for .
It is elementary that  (the sequence of averages) decreases with ,
hence for , we have .  So , hence .

(xj) x¯ = Xn / n yj = x¯ 1 ≤ j ≤ n
Xk / k k

k ≤ n Xk / k ≥ x¯ Yk = kx¯ ≤ Xk y ≤M x

Along with (1), the second ingredient of our reasoning is the well-
known Abel summation formula for finite sums: for any numbers , , we
have

aj xj

∑
n

j = 1

ajxj = a1X1 + ∑
n

j = 2

aj (Xj − Xj − 1) = ∑
n − 1

j = 1
(aj − aj − 1) Xj + anXn. (2)

The following Lemma is an obvious consequence of this identity.

Lemma:  Suppose that  are elements of  with .  Suppose also
that  and that either  or . Then

x, y �n y ≤S x
a1 ≥ a2 ≥  … ≥ an Yn = Xn an ≥ 0

∑
n

j = 1

ajyj ≤ ∑
n

j = 1

ajxj.

Proof:  We apply (2).  For , we have1 ≤ j ≤ n − 1

(aj − aj + 1) Yj ≤ (aj − aj + 1) Xj.
Also, under either hypothesis, .anYn ≤ anXn

Our main result now follows very pleasantly by combining the Lemma
with inequality (1).

Proposition 1:  Let  be decreasing elements of  with . Suppose
that the function  is convex on an open interval  containing all  and ,
and that

x, y �n y ≤S x
f I xj yj

either (i)  (so that ),Yn = Xn y ≤M x
or (ii)  is increasing on .f I

Then 

∑
n

j = 1

f (yj) ≤ ∑
n

j = 1

f (xj) . (3)
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Proof:  Assume first that  is differentiable on .  Then by (1), f I

f (xj) − f (yj) ≥ (xj − yj) f ′ (yj)
for each .  Since  is convex,  increases with , so  decreases with
. Apply the Lemma, with .  Under either hypothesis, we

conclude that : in case (ii), this follows from the fact

that .

j f f ′ (t) t f ′ (yj)
j aj = f ′ (yj)

∑
n

j = 1
(xj − yj) f ′ (yj) ≥ 0

f ′ (yn) ≥ 0

If  is not differentiable at some , similar reasoning still applies with
 replaced by the right-derivative, as explained earlier.

f yj
f ′ (yj)

This result is known as the ‘majorisation principle’.  It seems to have
been first formulated by Hardy, Littlewood and Pólya in 1929 [1].  It was
rediscovered by Karamata in 1932 [2], and it has also been called
‘Karamata's inequality’.

Of course, the reverse of (3) holds if  is concave and either  or
 is decreasing. Some further comments are helpful.  First, strict inequality

holds in (3) if  is strictly convex and  for some . Second, under

condition (ii), it follows further that  for each ,

more closely reflecting the hypothesis  for each . In this form the
result extends to infinite sequences. 

f Yn = Xn
f

f yj ≠ xj j

∑
k

j = 1
f (yj) ≤ ∑

k

j = 1
f (xj) k ≤ n

Yk ≤ Xk k

In our applications the numbers  will be positive and the interval
will be .

xj, yj I
x > 0

General sequences
For sequences that are not decreasing, Proposition 1 can be restated as

follows (and often is in the literature).  Let  be the vector consisting of the
terms  arranged in decreasing order (the ‘decreasing rearrangement’ of ).
Of course, the sum  is unchanged by rearrangement.  So
Proposition 1 says that (3) holds if , or if  and  is
increasing.  The established terminology is that  is ‘majorised’ by  if

.

x∗

xj x
∑n

j =1 f (xj)
y∗ ≤M x∗ y∗ ≤S x∗ f

y x
y∗ ≤M x∗

Applications
Without further proof, we can write down what Proposition 1 says when

applied to  for different :xp p

Proposition 2:  Let  be decreasing, positive elements of  with .
Then:

x, y �n y ≤S x

(i) if , then  for each .p ≥ 1 ∑
k

j = 1
yp

j ≤ ∑
k

j = 1
xp

j k ≤ n
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(ii) if  and also , then .0 < p < 1 Yn = Xn ∑
n

j = 1
yp

j ≥ ∑
n

j = 1
xp

j

(iii) if  and also , then .p < 0 Yn = Xn ∑
n

j = 1
yp

j ≤ ∑
n

j = 1
xp

j

There is no question of (ii) or (iii) applying without the condition ,
since this would allow each  to be arbitrarily small.

Yn = Xn
yj

We mention that the case  was stated in [3], with a different proof
that is implied but not given in detail.

n = 3

Using the logarithmic and exponential functions, we can relate sums to
products.

Proposition 3:  Let  be distinct, decreasing, positive elements of .  If
, then . 

x, y �n

y ≤M x y1y2… yn > x1x2… xn

Proof:  Apply Proposition 1 with : since  is concave, (3) is
reversed.

f (t) = log t f

By Example 1, this applies, in particular, when  for each , then
stating that , in other words, the arithmetic mean  is not less
than the geometric mean.

yj = x¯ j
x¯ n ≥ x1x2… xn x¯

Note:  It is quite possible to have  and ,

for example (12, 5, 4) and (10, 8, 3).  In fact, if  and , , ,  are
given, then  and  are determined by a simple pair of linear equations.
What Proposition 3 tells us is that this cannot happen with either  or

.

∑
n

j =1
xj = ∑

n

j =1
yj x1x2… xn = y1y2… yn

n = 3 x1 x2 y1 y2
x3 y3

y ≤S x
x ≤S y

In the opposite direction, we can prove the following result.

Proposition 4:  Let  be decreasing, positive elements of .  Ifx, y �n

y1y2… yk ≤ x1x2… xk

for each , then for any , we have  for each .k ≤ n p > 0 ∑
k

j =1
yp

j ≤ ∑
k

j =1
xp

j k ≤ n

Proof:  Then  for each .  Let .  Then

 is convex and increasing, and .  The conclusion follows, by
Proposition 1.

∑
k

j = 1
log yj ≤ ∑

n

j = 1
log xj k ≤ n f (t) = ept

f f (log yj) = yp
j

In particular, the hypothesis in Proposition 4 implies that .  This,
with Proposition 2, implies the stated inequality for , but not for

.

y ≤S x
p ≥ 1

0 < p < 1
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Example 2:  By Proposition 4, we have  for all .
(Readers are invited to satisfy themselves that this is not at all easy to prove
by other methods.)

4p + 3p ≤ 6p + 2p p > 0

We describe a more general example illustrating the results.  It is taken
from the article [4], which contains a number of examples presented as
problems: this one is Problem 3.

Example 3:  Let 

y = (a, b, c)  x = (a + b − c, c + a − b, b + c − a) ,
where  and .  Then  and

, since , also  and .  So
by Propositions 2 and 3, we have

a ≥ b ≥ c > 0 b + c > a x1 ≥ x2 ≥ x3 > 0
y ≤M x x1 ≥ a X2 = 2a ≥ a + b X3 = a + b + c

ap + bp + cp ≤ (b + c − a)p + (c + a − b)p + (a + b − c)p

for , together with the opposite inequality for , alsop > 1 0 < p < 1

1
a

+
1
b

+
1
c

≤
1

b + c − a
+

1
c + a − b

+
1

a + b − c
.

(b + c − a) (c + a − b) (a + b − c) ≤ abc.
The pair (5, 4, 2) and (7, 3, 1), seen earlier, is a particular case.  One can
easily verify some actual values, for example , while

. 
52 + 42 + 22 = 45

72 + 32 + 12 = 59

We now describe a further application involving , in which there is no
longer any assumption about partial sums.

xp

Proposition 5:  Let  be non-negative elements of , both decreasing or
both increasing.  If , then

x, y �n

p > 1

(∑n

j = 1

xp
j y

p
j ) (∑n

j = 1

xj)p

≥ (∑n

j = 1

xjyj)p (∑n

j = 1

xp
j ) . (4)

The reverse inequality holds if .0 < p < 1

Proof:  We prove the statement for the case where  and  are
decreasing.  The case where they are increasing then follows by considering

 and  in reversed order.

(xj) (yj)

xj yj

Write  and .  We show that  for .  By

Proposition 2, it then follows, for , that , which

equates to (4).

zj = xjyj Zn = cXn cXk ≤ Zk k ≤ n

p > 1 cp ∑
n

j = 1
xp

j ≤ ∑
n

j = 1
zp

j

Let , so .  We have to show that .  This will

follow if we show that  for each .  Now ,

Zk = ckXk cn = c ck ≥ c
ck + 1 ≤ ck k < n Zk = ∑

k

j =1
xjyj ≥ ykXk
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so , hence .  Nowck ≥ yk ck ≥ yk + 1

Zk + 1 = ckXk + xk + 1yk + 1 ≤ ck (Xk + xk + 1) = ckXk + 1,
hence  , as required.ck + 1 ≤ ck

This result can be restated neatly in terms of -norms.  Define  to

be  (note that  is the ordinary Euclidean norm).  Then (4)

equates to

� p 	x	p

( ∑
n

j = 1
|xj|p)1/p

	x	2

	xy	p

	xy	1

≥
	x	p

	x	1

.

Some further results
There is a converse to Proposition 1, essentially showing that the

property stated there characterises majorised pairs.  For this we will use non-
differentiable convex functions, in fact functions of the following form: for
fixed , let x

f (t) = (t − x)+ =
⎧

⎩
⎨
⎪
⎪

t − x if t ≥ x,
0 if t < x.

Such functions are obviously convex and increasing.

Proposition 6:  Let  be decreasing elements of .  If (3) holds for all
increasing, convex , then .  If (3) holds for all convex , then .

x, y �n

f y ≤S x f y ≤M x

Proof:  Suppose first that (3) holds for all convex .  Then it holds, in
particular, for .  This implies at once that .

f
f (t) = ±t Yn = Xn

Now suppose that (3) holds for increasing, convex .  Choose ,
and let .  Then  is convex and increasing, and 

f k ≤ n
f (t) = (t − xk)+ f

∑
n

j = 1

f (xj) = ∑
k

j = 1
(xj − xk) = Xk − kxk.

Also, since  is not less than both  and 0 for all , we havef (t) t − xk t

∑
n

j = 1

f (yj) ≥ ∑
k

j = 1
(yj − xk) = Yk − kxk,

hence .Yk ≤ Xk

Finally, there is a continuous version of majorisation, in which integrals
replace discrete sums. The proof is analogous, but Abel summation is
replaced by integration by parts.
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Proposition 7:  Let  be decreasing, differentiable functions on ,
with values in an interval .  Write , similarly .
Suppose that  for .  Let  be a function that is
convex and twice differentiable on .  Suppose further that either

 or  is increasing.  Then

x, y [a, b]
I X (t) = ∫

 t
a x (s)  ds Y (t)

Y (t) ≤ X (t) a ≤ t ≤ b f
I

Y (b) = X (b) f

∫
 b

a
f [y (t)] dt ≤ ∫

 b

a
f [x (t)] dt.

Proof:  By inequality (1),

f [x (t)] − f [y (t)] ≥ [x (t) − y (t)] f ′ [y (t)] .
Integrating by parts, we find 

∫
 b

a
[x(t) − y(t)] f ′ [y(t)] dt

= [[X(t) − Y (t)] f ′ [y(t)]]b
a − ∫

 b

a
[X(t) − Y (t)] f ″[y(t)] y′ (t) dt

= [X(b) − Y (b)] f ′ [y(b)] − ∫
 b

a
[X(t) − Y (t)] f ″[y(t)] y′ (t) dt.

Under either of the alternative hypotheses, the first term is non-negative.
Since  and , the second term is non-negative.f ″ [y (t)] ≥ 0 y′ (t) ≤ 0

Applications analogous to Propositions 2 and 5 can be derived as
before.

There is a substantial further body of theory concerning majorisation
and its applications.  An account of it can be seen in chapters 2 and 3 of [5],
and it forms the topic of the whole book [6].  More recent developments are
given in [7].  Here we just mention without proof a purely algebraic
characterisation [5, pp. 46-49].  An  matrix  is doubly
stochastic if the entries are non-negative and all row sums and all column
sums equal 1:

n × n P = (pj.k)

∑
n

j = 1

pj,k = 1 for each  k,  ∑
n

k = 1

pj,k = 1 for each  j.

The statement  is equivalent to the existence of a doubly stochastic
matrix  (not necessarily unique) such that .  One way round is quite

easy: if , so that , then Jensen's inequality gives

 for convex .  Summation over  then gives (3). By

Proposition 6, this implies that .

y∗ ≤M x∗

P y = Px
y = Px yj = ∑

n

k = 1
pj,kxk

f (yj) ≤ ∑
n

k = 1
pj,k f (xk) f j

y∗ ≤M x∗
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