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This paper presents a powerful approximate method for modelling the steady single-phase

flow into a horizontal well completed with an Inflow Control Device (ICD) in an anisotropic

reservoir. Two types of problems are investigated: the forward problem, which allows the

user to find the flux distribution along the wellbore for a specified pressure drawdown, and

the inverse problem to determine the ICD properties when the flux or reservoir pressure

drawdown along the wellbore is given. The method is based on structuring the flow patterns

around and, inside the wellbore and across the ICD and on the reduction of the dimensionality

of the problem by using boundary integral equations. The resulting one dimensional singular

nonlinear integro-differential equation is solved numerically, using the appropriate quadrature

formula for singular integrals with Cauchy kernels.

1 Introduction

This study was motivated by the problem of Inflow Control Devices (ICD) for horizontal

wells with sand control completions (a completion is a string of tubes lining the wellbore).

The completion is perforated to enable the inflow of hydrocarbons from the formation

into the wellbore, but should prevent sand invasion from the formation. The main focus

in this study is on the refinement of a hydrodynamic model, to provide better coupling of

the reservoir flow with the flow across the ICD and inside its basepipe. This enhancement

is necessary for a better estimation of the flow performance of horizontal wells completed

with ICD (the forward problem) and also for the determination of ICD properties (the

inverse problem) in order to achieve, say, uniform drainage of a reservoir. The second

usage is important because an ICD is designed as a passive inflow control device and

therefore its tuning prior to installation will be critical for the completion performance

during the entire production life of a horizontal wellbore.

The problem of reservoir development by long horizontal wells with sand control

completions must account for the frictional pressure losses due to blockage caused by

installed screens or liners. It is known that the frictional pressure drop along a pipe with

impermeable walls, ∆pf , is proportional to L/dαs , where L is the length of the pipe, ds is

its diameter and the exponent α varies from 3 for a laminar flow to approximately 4.5 for

a turbulent flow. For this reason, even a small restriction of the wellbore cross-sectional

area may induce a significant increase in the pressure loss along its length. Moreover, the
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diameters of basepipes of sand control devices can be much smaller than their external

diameters. This creates pressure losses along the horizontal wellbore comparable to the

applied drawdown pressure and therefore restricts the effective length of the horizontal

wellbore. At the same time, the pressure variation along the wellbore results in a non-

uniform reservoir drainage and leads to the premature water breakthrough into the

wellbore near its heel, the coning effect [4].

The aim of an ICD is to compensate for the expected pressure variation along the

wellbore by profiling the pressure drop across it. This should allow one to achieve uniform

drainage of a reservoir. This problem is challenging because it requires the coupling of the

flows in the reservoir, across the ICD and inside the basepipe. The main difficulties are that

the reservoir flow is three-dimensional and is on multiple scales, which vary from a few

millimetres (the diameter of holes in the ICD basepipe), a few centimetres (the wellbore

radius) to a few hundred metres (the wellbore length and the distance between wells).

The problem is also nonlinear because of the turbulent flows in the ICD basepipe and

through the holes in it. All this has forced previous investigators to use either approximate

solutions, based on additional assumptions, or numerical simulators, which usually have

limited resolution and accuracy or are very time-consuming [3, 5–9, 12, 15, 16].

The approach developed in this report is based upon the idea of flow structuring, which

allows one to reduce the dimensionality of the complex multi-scale problem, using the fact

that the three-dimensional effects are localised in the vicinities of the toe and heel of the

horizontal wellbore only. Indeed, the flow inside the reservoir is a one-dimensional plane

flow far from the wellbore and is locally two-dimensional near the wellbore except near

the vicinities of its toe and heel, which are small compared to the wellbore length. The

general solution of Laplace’s equation for a half plane in the form of the Poisson integral

can be used to describe the far field flow around the horizontal wellbore. This solution

is then modified, using the method of asymptotic matching, to take into account the

one-dimensional plane flow and the local increase in the effective hydraulic resistance of

the reservoir due to the convergence of the flow into the wellbore. The modified external

solution is coupled with the flow across the ICD and the one-dimensional flow inside its

basepipe through the pressure/flux continuity conditions at the ICD boundaries. Finally,

the resulting singular integro-differential equation is rewritten in dimensionless form and

solved numerically for the given total production rate or pressure drawdown, specified at

the toe or heel of the wellbore.

This paper is structured as follows. The general formulation of the problem is given

in § 2. It includes the description of the ICD design, the main assumption and equations

with boundary conditions.

The reservoir flow model is discussed in § 3, where the concept of flow structuring

is presented. A similar approach was used in the past for the modelling of the flow

performance of a fractured well with a partially penetrating hydraulic fracture [18].

In § 4, the coupling of the reservoir flow with the flow inside the ICD basepipe is

described. This leads to a boundary integral equation for the flux along the wellbore

as a function of the total production rate. If the flux is found, the pressure around the

horizontal wellbore, across the ICD and along the basepipe can be calculated.

The dimensional analysis of the integral equation is presented in § 5, allowing us to

reduce the number of parameters.
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Figure 1. Schematic of well with ICD installed in the horizontal section.

In § 6, the numerical method used is presented. It is based on a special quadrature

formula for singular integrals with Cauchy type kernels [10]. This quadrature formula

allows one to reduce the problem to a system of nonlinear algebraic equations, which can

be solved by standard inversion algorithms, using appropriate linearisation and iterations.

The ICD parameters have to be specified for the integral equation and therefore solving

the forward problem allows one to estimate the flow performance of a horizontal well

completed with a given ICD.

The inverse problem, for the determination of the completion parameters (the diameter

of perforations and/or the density of basepipe holes) for a given reservoir drawdown

pressure or flux distribution along the horizontal wellbore is discussed in § 7. Two basic

situations are considered, which correspond to a given reservoir drawdown and a given

production profile. Both allow one to find the ICD properties, such as the density of holes

in the basepipe and the hole diameters, for any particular requirements.

A few examples, presented in § 9, illustrate the power of the approach developed and

outline the steps to be undertaken to check the validity of this technique.

2 Problem formulation

2.1 General assumptions

Let us consider steady-state flow in a horizontal reservoir of thickness h into a nearly

horizontal well of radius rW . We assume that the reservoir occupies the layer 0 � z� h

with impermeable boundaries z= 0 and z= h. It may have different vertical and horizontal

permeabilities, kV and kH . The wellbore lies in the vertical plane y= 0, and is specified in

the parametric form

x = xW (s), z = zW (s), 0 � s � l, (2.1)

where s is the wellbore length measured along the wellbore axis from the toe to the heel,

and l is the total length (Fig. 1). We also assume that the reservoir thickness is small

compared to the wellbore length, but large compared to the wellbore radius, i.e. rW � h� l.

Lastly, the horizontal well has an openhole completion with an Inflow Control Device

(ICD). The ICD lies on the bottom of the wellbore and consists of a wire tightly wrapped
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Figure 2. Schematic of the ICD design.

around perforated basepipe (Fig. 2). Its purpose is to restrict the flux into the wellbore.

The spacing between the external diameter of the ICD and the openhole is assumed to be

small; we therefore neglect the axial flow in the annulus conduit. The wellbore pressure is

supposed to be uniform in each cross-section of the basepipe and the local pressure drop

across the ICD depends on its local hydraulic resistance and the local influx.

2.2 Reservoir flow

Darcy’s law for an anisotropic porous medium governs the reservoir flow

u(x, y, z) = −k

µ
· ∇p

k =


kH 0 0

0 kH 0

0 0 kV


 (2.2)

where u(ux, uy, uz) is the flow velocity, and µ is the fluid viscosity.

2.3 Flow across the ICD

The ICD is a device that consists of a wire wrapped around a perforated liner, as shown

in Fig. 2. The annular gap between the tubing and the wirescreen is adjusted by some

stand-offs, which separate the annulus into several sections evenly distributed around

the circumference, the so-called flow paths. Axial rods, slotting in or out of each section

between the stand-offs, control the number of open holes in the tubing, providing a simple

and easy way to adjust the hydraulic resistance of ICD during installation.

The flow across the ICD is controlled by the pressure difference across the screen

and its local hydraulic resistance. For typical production rates from horizontal wells, the

screen flow and the annulus flow are supposed to be laminar whereas the flow through

perforations is expected to be turbulent. The hydraulic resistance of the perforations

controls the pressure drop across the ICD, and therefore

∆pD ≈ RPq
2
W , RP =

8ρ(
πd2

PCdN
)2
, qW = 2πrW ū (2.3)

Here N is the density of holes per unit length in the basepipe, dP is their diameter, ρ is the
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fluid density, is ū the average radial inflow and Cd is the discharge coefficient for suction

flow into a pipe through a circular port. The discharge coefficient, Cd, is a function of the

parameter E= 2∆pICD/ρv
2, where v is the average axial flow velocity inside the basepipe.

It varies in the range 0.45–1.0 with the variation of E between 0.2–100 [13].

2.4 Flow along the wellbore

The average axial flow along the wellbore is governed by the following momentum and

continuity equations:

d

ds
(ρv2A) = − d

ds
(PA) + 2πrSτ, P (s) = pT (s) − ρg[zW (s) − zW (0)] (2.4)

dv

ds
=
qW

A
(2.5)

where A= πr2S is the cross-sectional area of the ICD basepipe, P (s) is the normalised local

wellbore pressure, which takes into account the effect of gravity, g, pT (s) is the pressure

inside the basepipe, and τ(s) is the shear stress produced by friction on the internal walls

of the basepipe. The left-hand side of Eq. (2.4) represents the momentum variation due

to flow acceleration along the wellbore. It is usually small for flows in horizontal wells

compared to the frictional losses and can be neglected (see Appendix A). The shear stress

τ can be correlated to the kinetic energy of fluid by the relationship

τ = −Cf
ρv2

2
(2.6)

where Cf is the friction factor, which depends on the flow regime (laminar or turbulent),

the roughness of the tubing walls, etc., and is usually correlated to the Reynolds number

Cf = Cf(Re), Re =
2rSρv

µ
(2.7)

We will use in this study two simple correlations [11]:

• for the laminar pipe flow

Cf = 16Re−1, Re � Re∗; (2.8)

• for the turbulent pipe flow

Cf =
1

4

(
0.0032 +

0.221

Re0.237

)
, Re > Re∗. (2.9)

Here Re∗ is the critical Reynolds number, which is in the range 2000–4000, and the

transition from laminar to turbulent flow is accompanied by a jump in the friction factor,

reflecting the increase in frictional pressure losses in turbulent flow compared to laminar

one. Equation (2.8) is equivalent to the Poiseuille solution for the pipe flow and (2.9)

is an empirical approximation of the Prandtl law for the turbulent pipe flow given by

Nikuradze for smooth pipes [11]. Substituting (2.6) in (2.4) and neglecting the left-hand
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side, one has the Darcy–Weisbach equation

dP

ds
= −Cf(Re)ρv2

rS
(2.10)

A simple analysis (see Appendix A) shows that, in long enough horizontal wells, the flow

inside the well is usually laminar near the toe and turbulent at the heel with the transition

occurring somewhere in the middle due to the acceleration of the flow along the wellbore.

The pressure gradient dP/ds, in accordance with (2.8) and (2.9), is proportional to the

axial velocity v(s) in the laminar flow section of the wellbore and to approximately v1.763

at high flow rate when the flow is turbulent. Since the velocity v is proportional to q/A,

where q is the flux through the cross-sectional area of the pipe A= πr2S , the pressure

gradient dP/ds is proportional to r−3
S for the laminar flow and to r−4.536

S for the turbulent

flow inside the ICD basepipe.

2.5 Boundary conditions

There are two sets of boundary conditions: (1) for the flow in the reservoir (the external

flow), and (2) for the coupling between the reservoir flow and the flow inside the wellbore

through the ICD basepipe (the internal flow).

For the external flow, one has the zero-flux conditions at the top and bottom boundaries

of the reservoir:
∂p

∂z

∣∣∣∣
z=0

=
∂p

∂z

∣∣∣∣
z=h

= 0, (2.11)

and the external wellbore pressure at the surface of the openhole interval,

p = pW , (2.12)

where the pressure pW is initially unknown, and has to be determined from the coupling

with the internal flow.

Since the reservoir is assumed to be infinite in the horizontal direction, the far field

pressure has a logarithmic behaviour at infinity and therefore cannot be specified. The

appropriate boundary condition at infinity may be given in terms of the total flow rate

from the horizontal wellbore. Because the flow at a large distance from the wellbore has

to be radial, one has

p = Π log r + const, Π =
µq0

2πhkH
, as r =

√
x2 + y2 → ∞, (2.13)

where q0 is the production rate from the wellbore given by the formula

q0 =

∫ l

0

qW (s) ds, qW = 2πrW ū. (2.14)

Here ū can be expressed in terms of the normal velocity un in each cross-section x= xW (s)

as

ū(s) =

∫ 2π

0

un(xW (s), rW cosϕ, zW (s) + rW sinϕ)rWdϕ, (2.15)
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Figure 3. The structure of flow pattern around the horizontal wellbore in the reservoir plane.

where we have neglected the slight ellipticity of the wellbore cross-section. The external

and internal flows are coupled by the pressure and flux continuity conditions at the

wellbore surface

pW = pT + ∆pD, (2.16)

dv(s)

ds
=
qW (s)

πr2S
, v(0) = 0, (2.17)

where ∆pD is determined by (2.3), and pT is the pressure inside the ICD basepipe, which

is determined from (2.4) and (2.5).

Equation (2.17) can be integrated to give

v(s) =
1

πr2S

∫ s

0

qW (σ) dσ. (2.18)

3 Reservoir flow model

We exploit below the concept of flow structuring, to obtain an approximate solution for

the external flow problem. This concept has already been used for the modelling of flow

around a partially penetrating hydraulic fracture [13]. The main idea is to simplify the

flow pattern around the horizontal well and, using analytical solutions, to reduce the

problem dimensionality.

We have already mentioned that the flow should be parallel to the top and bottom of the

reservoir at relatively large distances from the horizontal well ∆rF =
√

[x− xW (s)]2 + y2,

0 � s� l. The estimate of ∆rF , which takes into account the permeability anisotropy

ω=
√
kH/kV , gives the result ∆rF �ωh. This means that within far field Zone I, shown

in Fig. 3, the flow pattern created by the horizontal wellbore is similar to the flow pattern

around fully penetrating vertical fractures.

In the internal domain, surrounding the wellbore, and shown in Fig. 3 as Zone II,

the flow is almost everywhere locally two-dimensional in each plane x= const, 0<z <h,

except in the proximity of the toe and the heel, where the flow is purely three-dimensional.

We shall, however, neglect these three-dimensional effects, assuming that the flow pattern

can be represented by the combination of the flow in Zones I and II.
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To obtain the far field pressure induced by the horizontal wellbore, we replace the

wellbore by an equivalent vertical fracture. We assume that the fracture is located in the

same plane as the horizontal wellbore, y= 0, and its length, L= xW (l) − xW (0), is equal

to the projected length of the wellbore on the horizontal plane z= 0. We also assume

that the fracture width is small compared to the reservoir thickness h, but the fracture

conductivity is large compared to the reservoir conductivity. Under these assumptions, the

pressure inside the fracture, and therefore inside the reservoir, does not depend on z.

If the pressure gradient at the fracture surface is

ψ(x) =
∂p

∂y

∣∣∣∣
y=0+

, 0 < x < L, (3.1)

then the pressure induced by the fracture is given by the Poisson integral [1]

p(x, y) =
1

2π

∫ L

0

log[y2 + (x− t)2]ψ(t) dt+ const. (3.2)

The arbitrary constant will be determined by the specification of the far-field reservoir

pressure at some distance from the wellbore, re �L. Bearing this in mind, we will assume

below this arbitrary constant to be equal to zero.

Obviously, the parameter Π = r∂p/∂r|r=∞ is

Π =
1

π

∫ L

0

ψ(t) dt. (3.3)

The pressure at the fracture surface, which can be identified with the pressure inside the

fracture, is given by

pF (x) =
1

π

∫ L

0

log |x− t|ψ(t) dt (3.4)

and the derivative of pressure variation along the fracture is the principal value integral

dpF (x)

dx
=

1

π

∫ L

0

ψ(t) dt

x− t
, 0 < x < L. (3.5)

The pressure at large distances from the fracture is related to the production rate from

the fracture q0 by

pe ≈ log re
π

∫ L

0

ψ(t) dt =
µq0 log re
2πhkH

, (3.6)

where q0 can be expressed in terms of ψ(x) as

q0 = 2h
kH

µ

∫ L

0

ψ(t) dt. (3.7)

The solution found (3.2) is not valid near the horizontal wellbore (say, 0<x<L, |y| � aωh,

a≈ 3–5), and it cannot predict correctly the drawdown pressure. To correct the pressure

field at the proximity of the wellbore, we now consider the local solution near the

horizontal wellbore.
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Figure 4. The 2D flow near the horizontal wellbore.

The two-dimensional flow near the horizontal wellbore is based on the following

assumptions:

1. The deviation of the wellbore trajectory (2.1) from horizontal is small.

2. The pressure variation along the wellbore is slow.

3. The flow near the wellbore is locally along planes x= const. orthogonal to the

horizontal projection of the wellbore trajectory on the vertical plane y= 0.

The typical flow pattern in an arbitrary plane x= xW (s), 0<s< l is shown in Fig. 4. It

lies within the bounded strip ΩR(s) = {−∞<y<∞, 0<z <h} with zero-flux boundaries

z= 0 and z= h. Because the plane x= xW (s) is not perpendicular to the wellbore axis, the

cross-sectional area of the wellbore is not circular. Under the assumptions made above,

this ellipticity can be neglected. Thus, the pressure p(y, z) has to satisfy the modified

Laplace equation in the domain ΩR(s):

∂2p

∂y2
+

1

ω2

∂2p

∂z2
= 0, ω =

√
kH

kV
. (3.8)

The zero-flux boundary conditions at the top and bottom of the reservoir are

∂p

∂z

∣∣∣∣
z=0

=
∂p

∂z

∣∣∣∣
z=h

= 0, (3.9)

and the uniform pressure condition along the wellbore wall ΩW (s) is

p(y, z) = pW (s), y2 + [zW (s) − z]2 = r2W . (3.10)

The solution also has the same asymptotic behaviour at a large distance from the

wellbore as the pressure field generated by the flow through an equivalent vertical fracture

in the plane x= xW (s). Since we assume that the fluid is incompressible, this condition is

equivalent to the matching of the fluxes at infinity (|y| → ∞), where the flow is uniform

and parallel to the zero-flux horizontal boundaries z= 0 and z= h. This means that the

pressure behaviour at infinity has to be linear with respect to the distance from the
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wellbore:

p ≈ ψ(x)y + const, |y| → ∞. (3.11)

Using the fact that the wellbore radius rW is much smaller than the reservoir thickness

h, one can obtain an approximate solution of the problem (3.8)–(3.11) by replacing the

wellbore by a point source. The flux generated at infinity is the flux through the wellbore:

∂p

∂y

∣∣∣∣
y→∞

= ψ(x). (3.12)

The solution of the problem (3.8), (3.9) and (3.12) for the point source at y= 0, z= zW (s)

can be found using the Fourier transform with respect to the coordinate y [1]. The final

result is

pL(y, z) = pS (x)PL(y, z), pS (x) =
ωh

2π
ψ(x) (3.13)

PL(y, z) = log

{
cosh

(
πy

ωh

)
+ cos

[
π

h
(z + zW − h)

]}

+ log

{
cosh

(
πy

ωh

)
− cos

[
π

h
(z − zW )

]}
.

The index L is used to emphasise that (3.13) is the local solution for the pressure near

the horizontal wellbore.

It is easy to verify that the pressure at the wellbore surface, which corresponds to the

approximate solution (3.13), is not uniform: pW (s) is equal to the pressure, obtained by

averaging (3.13) over the wellbore surface y2 + [zW (s) − z]2 = r2W .

When the wellbore radius rW is small compared to the reservoir thickness h(rW/h→ 0),

which is usually the case, and the permeability anisotropy is negligible, the non-uniformity

in the local pressure at the wellbore surface will be negligible. The problem for highly

anisotropic reservoir, ω� 1, will however require a special consideration (see Appendix A).

For an arbitrary permeability anisotropy ratio, 0<ω<∞, the dimensionless pressure

at the wellbore, PW (s) = pW (s)/pS , found by the method of asymptotic matching under

the assumption ε= rW/h� 1, is

PW (s) = log

{
1 + cos

[
π

(
2zW (s) − h

h

)]}
+ 2 log

[
πε(ω + 1)

2
√

2ω

]
. (3.14)

To obtain this result, the solution (3.13) has been refined in the wellbore neighbourhood

to satisfy the uniform boundary condition for the pressure along the wellbore surface

asymptotically (see details in Appendix A).

Concerning the flux matching at the surface of the fracture, let us assume that the pres-

sure at the wellbore pW (s) = pSPW (s) is known, and then compare the far-field behaviour,

given by (3.13), with the local solution for the flow near a fully penetrating fracture (Fig. 5).

The latter does not depend upon the vertical coordinate z, because the flow into the

fracture is uniform over the reservoir thickness, and therefore the pressure must vary

linearly with the coordinate y

pG(y) = ψ(x)|y|. (3.15)
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Figure 5. The local flow pattern around the horizontal wellbore (a) is replaced by the equivalent

flow pattern around the fracture with additional skin (b).

Equation (3.15) is the limit of (3.2) near the fracture surface, having the same behaviour

at large y as the solution (3.13).

Considering the flow within the finite domain |y| � yM , one can find from (3.15) the

drawdown pressure over the length 0 � y� yM ,

∆pG(yM) = pG(yM) − pG(0) = ψ(x)yM, (3.16)

where yM is the parameter through which we match the two flow patterns.

The equivalent pressure drawdown, corresponding to the local flow near the wellbore,

can be found from (3.13) as

∆pL(yM, z) = pL(yM, z) − pW (s), (3.17)

where the dependence on z disappears with increasing yM .

The difference between the drawdown pressures (3.17) and (3.16) is

∆pF (yM) = ∆pL(yM) − ∆pG(yM), (3.18)

which is the additional pressure drop required to equalise the local influx into the wellbore

with the local flux into the equivalent fracture.

To eliminate the dependence of (3.18) on yM , one can find the asymptotic value of the

pressure drop ∆pF (yM) as yM → ∞:

∆pF (x) = −pW (s) − ωh log 2

π
ψ(x). (3.19)
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It can be proved that pW (s) is negative, and the additional pressure drop ∆pF is al-

ways positive. From (3.13), pW (s) is proportional to ψ(x), and therefore ∆pF (x) can be

represented as

∆pF (x) = ΠF (x)ψ(x), ΠF (x) = −ωh

π

[
1

2
PW (s) + log 2

]
, (3.20)

where PW (s) = pW (s)/pS is given by (3.14).

We note that this additional pressure drop, ∆pF , which is required to equate the local

hydraulic resistances for the two flow patterns shown in Fig. 5, can be represented in the

one-dimensional flow around the fracture as additional ‘skin’ along the fracture surface.

This allows one to preserve the dimensionality of the external solution, taking into account

the three-dimensional features of the problem in the boundary conditions only.

The additional pressure drop found above allows one to significantly simplify the solu-

tion for the flow inside the reservoir. Indeed, instead of solving the three-dimensional

problem for the flow around the horizontal wellbore, one can use the two-dimensional

solution for the equivalent fracture (3.2)–(3.4), corrected by ∆pF (x) given in (3.20). This

means that the external solution for the reservoir pressure at the fracture surface (3.4) has

to be replaced by

pF (x) =
1

π

∫ L

0

log |x− t|ψ(t) dt− ∆pF (x), 0 � x � L, (3.21)

and therefore, instead of (3.5), one has

dpF (x)

dx
=

1

π

∫ L

0

ψ(t) dt

x− t
− d∆pF (x)

dx
, 0 < x < L. (3.22)

4 Coupling of flow inside the reservoir with flow along the wellbore

The flow inside the ICD basepipe is governed by (2.10) and (2.18), which can be rewritten,

using the last relationship in (2.4), as

dpT

ds
= −Cfρv

2

rS
+ ρg

dzW

ds
(s), (4.1)

v(s) =
1

πr2S

∫ s

0

qW (σ) dσ. (4.2)

The cross-sectional flux qW = 2πrW ū can also be expressed in terms of the external flux

at the surface of the equivalent fracture as

qW (s) =
2hkH
µ

ψ(x)|x=xW (s). (4.3)

It is convenient to represent Cf(Re) as

Cf(Re) = Re−1 f(Re), Re =
2rSρv

µ
, (4.4)

where the function f(Re) takes into account the dependence of Cf(Re) on the flow regime.
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Substituting (4.4) into (4.1), one obtains

dpT

ds
= −f(Re)µv(s)

2r2S
+ ρg

dzW

ds
(s), Re =

2rSρv(s)

µ
. (4.5)

For a laminar flow inside the ICD basepipe, Re � Re∗, (4.5) gives a linear relationship

between the pressure derivative along the wellbore and the flow velocity. This relationship,

however, becomes nonlinear when the transition from a laminar to turbulent flow occurs.

Equations (4.2) and (4.6) determine the internal solution, which now has to be coupled

with the reservoir flow.

The external flow inside the reservoir and the internal flow inside the wellbore are con-

nected by the ICD. The continuity of fluxes is guaranteed by (4.2) with qW (s) determined

by (4.3). The pressure drop across the ICD is given by (2.3):

∆pD(s) = Rp(s)q
2
W (s), (4.6)

and it has to satisfy (2.16) with pW replaced by pF , determined in (3.21), i.e.

pF (x)|x=xW (s) = pT (s) + ∆pD(s), (4.7)

hence

pF (x) = [pT (s) + ∆pD(s)]x=xW (s). (4.8)

We can differentiate (4.8) with respect to x, and then it will be sufficient to require that

(4.8) is satisfied at x= s= 0 only. Finally, we have

dpF (x)

dx
=

1

x′
W (s)

[
dpT (s)

ds
+
d∆pD(s)

ds

]
x=xW (s)

, (4.9)

pF (0) = pT (0) + ∆pD(0). (4.10)

Finally, substituting (3.22), (4.5) and (4.6) in (4.9) and using (4.2) and (4.3), we arrive at a

nonlinear integro-differential equation for the function ψ(x) in the interval 0<x<L:

1

π

∫ L

0

ψ(t) dt

x− t
− d

dx
[ΠF (x)ψ(x)] + a1(x)

∫ x

0

ψ(t) dt

b1(t)
= a2

d

dx
[b2(x)ψ

2(x)] + a3(x), (4.11)

where

ΠF (x) = −ωh

π

[
1

2
PW (s) + log 2

]
,

a1(x) =
f(Re)hkH

πr4S
dxW
ds

(s)

∣∣∣∣∣
x=xW (s)

, b1(t) =
dxW (σ)

dσ

∣∣∣∣
t=xW (σ)

,

a2 =

(
2hkH
µ

)2

, b2(x) = Rp(s)|x=xW (s),

a3(x) = ρg
dzW (s)

dxW (s)

∣∣∣∣
x=xW (s)

. (4.12)
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The nonlinearity is caused by the function a1(x) when the flow in the basepipe is turbulent,

and by the first term in the right-hand side of the equation, representing the pressure drop

across the ICD.

Equation (4.11) has to be closed with the normalisation condition (3.7), which specifies

the production rate from the horizontal wellbore:∫ L

0

ψ(x) dx =
µq0

2hkH
. (4.13)

Equations (4.11), (4.13) can now be used for two purposes:

• The forward problem for the determination of the function ψ(x), which determines the

production profile from the horizontal wellbore with or without ICD.

• The inverse problem for the determination of the ICD properties (the density of holes in

the basepipe, N, and the hole diameter, dP , along the wellbore) for a specified reservoir

drawdown pressure along the wellbore or the production profile.

5 Dimensional analysis

The integro-differential equation (4.12) and the normalisation condition (4.14) can be

rewritten in the dimensionless forms:∫ 1

0

Ψ (T ) dT

X − T
− d

dX
(ΩΨ ) + A1

∫ X

0

Ψ (T ) dT

B1(T )
= A2

d

dX
(B2Ψ

2) + A3, 0 < X < 1, (5.1)

∫ 1

0

Ψ (X) dX = 1, (5.2)

where

X =
x

L
, Ψ (X) =

2hkHL

µq0
ψ, Ω(X) = −ωh

L

[
1

2
PW (s) + log 2

]
X=xW (s)/L

,

A1(X) =
f(Re)hkHL

r4S
dxW

ds
(s)

∣∣∣∣∣∣∣
X=xW (s)/L

, B1(X) =
dxW

ds
(s)

∣∣∣∣
X=xW (s)/L

(5.3)

A2 =
16hkHρq0

πµd4
PM

2
, B2(X) = (CdNS )

−2, A3(X) =
2πhkHLρg

µq0

dzW (s)

dxW (s)

∣∣∣∣
X=xW (s)/L

,

M =
L

LS
, NS (X) = NLS .

Here LS is the length of a single ICD section, M is the total number of ICD sections

installed and NS is the number of holes in the basepipe of an ICD section. Although NS

varies discretely with X (from section to section), we shall assume for the time being that

NS (X) is a continuous function of the dimensionless coordinate X.

Let us estimate the parameters involved in (5.1) for the typical data:

Production rate q0 = 103 m3/day

Wellbore length l= 300 m
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Wellbore radius rW = 0.10 m

Reservoir thickness h= 10 m

Horizontal permeability kH = 100 mD

Vertical permeability kV = 100 mD

Fluid viscosity µ= 1 cp

Fluid density ρ= 1000 kg/m3

Gravity g= 9.8 m/s2

Internal radius of ICD basepipe rS = 0.03 m

Length of ICD section LS = 3.66 m

Diameter of holes in ICD tubing dP = 0.002 m.

We also assume for simplicity that the wellbore is purely horizontal and located in the

middle of the reservoir pay-zone, i.e.

xW (s) = s,
dxW (s)

ds
= 1, zW (s) = h/2,

dzW (s)

ds
= 0 and L = l.

For these data, one obtains Ω≈ 0.1 and A2 ≈ 0.3. If the flow is laminar A1 ≈ 5 · 10−5, and

it is independent of the production rate. For the turbulent case, A1 depends upon the

production rate through the Reynolds number:

Remax =
2rSρvmax

µ
=

2ρq0

πrSµ
. (5.4)

Thus, for the production rate q0 = 1000 m3/day, we have Remax ≈ 2.7 · 105 and A1 ≈ 0.37.

The parameter A1 is responsible for the frictional pressure losses along the wellbore and,

as one can see, these pressure losses are not negligible. Furthermore, we shall see that

they are usually comparable to the pressure drop in the reservoir and across the ICD.

It also follows from (5.3) that the diameter of holes in the ICD basepipe, dP , can have

a significant effect on the ICD flow performance because A2 ∝ d−4
P , as can the number of

holes in each ICD section, NS , since B2 ∝N−2
S .

6 Numerical method for the forward problem

To illustrate the numerical method, consider the linear equation

∫ 1

0

Ψ (T ) dT

X − T
− d

dX
(ΛΨ ) + Γ (X)

∫ X

0

Ψ (T ) dT = Φ(X), 0 < X < 1, (6.1)

which, together with the normalisation condition (5.2), can be solved by Lifanov’s method

[10], which is based on a special quadrature formula for singular integrals.

This method requires the two sets of nodes in the interval 0 �X � 1,

Xi = i∆X, ∆X =
1

n+ 1
, i = 1, 2, . . . , n,

Xi0 = Xi +
∆X

2
, i = 1, 2, . . . , n− 1,

(6.2)
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where n is the number of nodes X=Xi in the interval 0 �X � 1, where the unknown

function Ψi =Ψ (Xi) has to be found.

One obtains the equations for Ψi by substituting X=Xi0 for i= 1, 2, . . . , n− 1 into (6.1)

and using the normalisation condition (5.2) as the last equation. Replacing integrals by

finite sums, which are calculated using the values of integrand expressions at the points

T =Xj , we arrive at the linear algebraic equations:

n∑
j=1

Ψj

Xi0 −Xj

∆X−Λ(Xi+1)Ψi+1 −Λ(Xi)Ψi

∆X
+Γ (Xi0)

i∑
j=1

Ψj∆X=Φ(Xi0), i= 1, 2, . . . , n− 1,

(6.3)
n∑
j=1

Ψj ∆X = 1,

which can be solved by the Gauss method with partial pivoting.

When Λ�0 and Γ (X) is constant as X → 0, The asymptotic form of the solution of

(6.1) near the end x= 0 can be shown to be of the form

Ψ (X) = A(−|Λ| +X lnX) + BX + . . . , (6.4)

which can be checked by direct substitution in (6.1), the constants A and B being

determined by from a full numerical solution. The numerical method has been tested for

the simplified linear equation

∫ 1

0

Ψ (T ) dT

X − T
= 0, 0 < X < 1;

∫ 1

0

Ψ (X) dX = 1, (6.5)

having the analytical solution

Ψ (X) =
2

π
[1 − (2X − 1)2]−1/2, (6.6)

which is more singular than (6.4). The results of calculations of the function

F(X) =
π

2
[1 − (2X − 1)2]1/2Ψ (X), (6.7)

which should be 1 everywhere in the interval 0 �X � 1, are shown in Fig. 6 for n= 100,

200, 300, 400, 500 and 600. Even in this worst case, where the function is singular at both

ends, the numerical method gives accurate numerical results for
∫ X

0 Ψ (T ) dT , although

Ψ (T ) is of necessity inaccurate near the ends. Hence, we conjecture that for the full

problem (Λ�0) our numerical method is sufficiently accurate.

The nonlinearity of (5.1) requires us to solve the system (6.3) iteratively, and update the

coefficients Λ(Xi) and Γ (Xi0) at each iteration.

7 Inverse problem

For the inverse problems, one of the functions ∆pR(x) = pe − pF (x) or ψ(x) is specified,

and one has to find the number of holes in each ICD section, NS (x), and their diameter,
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Figure 6. The convergence analysis of the numerical solutions at Ω= 0 versus the number of

nodes, n, in the interval 0 �X � 1.

dP . If the diameter dP is predefined then the density of holes per ICD section, NS (x), is

the only ICD property to be determined.

7.1 Uniform reservoir drainage

Let us consider first the important inverse problem, which corresponds to the ICD tuning

with the goal to achieve uniform reservoir drawdown along the horizontal wellbore

∆pR(x) = ∆pR0 = const, i.e.

pe − pF (x) = ∆pR0, (7.1)

where pF (x) is the pressure at the wellbore wall (i.e. at the external boundary of the ICD),

and pe is the far field reservoir pressure, calculated at some distance from the wellbore.

The pressure pF (x) is related to the flux through the wellbore, determined by the function

ψ(x), by (3.22) and (3.20), which can be combined together to the equation

dpF (x)

dx
=

1

π

∫ L

0

ψ(t) dt

x− t
− d

dx
[ΠF (x)ψ(x)], 0 < x < L, (7.2)

which does not depend upon any ICD properties. Substituting (7.1) into (7.2), one obtains

1

π

∫ L

0

ψ(t) dt

x− t
− d

dx
[ΠF (x)ψ(x)] = 0, 0 < x < L. (7.3)
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As above, this equation has to be complemented with the normalisation condition (4.14):

∫ L

0

ψ(x) dx =
µq0

2hkH
. (7.4)

Using the dimensionless variables (5.3), (7.3) and (7.4) can be represented in the dimen-

sionless form∫ 1

0

Ψ (T ) dT

X − T
− d

dX
(ΩΨ ) = 0, 0 < X < 1;

∫ 1

0

Ψ (X) dX = 1. (7.5)

Problem (7.5) has to be solved before the calibration of the ICD properties. The solution

Ψ (X) depends upon a single dimensionless function, Ω(X), which combines all the

reservoir/wellbore parameters affecting the reservoir flow. In accordance with (5.3), one

has

Ω(X) = −ωh

L

[
1

2
PW (s) + log 2

]
X=xW (s)/L

,

PW (s) = log

{
1 + cos

[
π

(
2zW (s) − h

h

)]}
+ 2 log

[
πε(ω + 1)

2
√

2ω

]
,

(7.6)

where ε= rW/h is the dimensionless wellbore radius. In the simplest situation, when the

wellbore is parallel to the reservoir boundaries, we have zW (s) = const and xW (s) = s. In

this case, the dependence on the parameter s disappears, Ω(X) becomes uniform along

the wellbore, and Ψ (X) depends upon a single parameter Ω. Due to its importance, this

solution is computed in Fig. 10 for Ω varying in a wide range.

Equation (5.1) can thus be represented in a simplified form:

A1

∫ X

0

Ψ (T ) dT

B1(T )
=

d

dX
(B3Ψ

2) + A3, 0 < X < 1, (7.7)

where

A1(X) =
f(Re)hkHL

r4S
dxW

ds
(s)

∣∣∣∣∣∣∣
X=xW (s)/L

, B1(X) =
dxW

ds
(s)

∣∣∣∣
X=xW (s)/L

B3 =A2B2 =
B(

d2
P NS

)2
, B =

16hkHρq0

πµM2C2
d

, A3(X) =
2πhkHLρg

µq0

dzW (s)

dxW (s)

∣∣∣∣
X=xW (s)/L

.

(7.8)

In (7.7), the first term on the LHS represents the frictional pressure losses along the

basepipe, whilst the first term on the RHS represents the pressure drop across the ICD

and the last term is the gravity effect. Thus, the ICD calibration has to equalise the

frictional pressure losses along the basepipe with the pressure drop across the ICD. If the

horizontal wellbore is not parallel to the reservoir boundaries, the small contribution into

this balance, A3, is attributed to the gravity effect.

The ICD properties to be tuned are only involved in the parameter B3, wherein the

parameter NP characterises the open for flow area of the ICD basepipe section. Let us
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consider as an example the case B1 = 1, A3 = 0. We shall neglect for simplicity the slight

dependence of the discharge coefficient Cd on the flow rate through the basepipe and the

pressure drop across the ICD, involved in the parameter E=2∆pICD/ρv
2 (see Folefac

et al. [6]). Assuming that Ψ (X), and therefore A1(X) are known, and integrating (7.7), we

obtain the following equation for the unknown parameter B3(X):

∫ X

0

A1(Θ)

∫ Θ

0

Ψ (T ) dT dΘ = B3(X)Ψ 2(X), B3(X) =
B

N2
P (X)

. (7.9)

The left-hand side of (7.9) tends to zero as X → 0, and therefore if B3(0) = 0 or NP (0) = ∞,

i.e. the ICD hydraulic resistance at the toe of the horizontal wellbore has to vanish. This

result reflects the fact that there are no frictional pressure losses at the very end of the

toe of the horizontal wellbore, and therefore there should not be any flow restrictions for

the influx into the wellbore.

When Ω= 0, the flux Ψ (X) is given by (6.5), and therefore has the following asymptotic

behaviour at X → 0:

Ψ (X) ∼ 1

π
√
X
, X → 0. (7.10)

Substituting (7.10) into (7.9) and integrating its left-hand side, we have

4A1

3π
X3/2 =

B

π2N2
P (X)

X−1, (7.11)

i.e.

NP (X) ∼ CIX
−5/4, CI =

√
3B

4πA1
, X → 0. (7.12)

Similarly, it can be shown that, at the heel of the horizontal wellbore, X= 1, where the

frictional pressure losses along the basepipe are finite, NP (X) is also singular:

NP (X) ∝ Ψ (X) ∼
√

1 −X, X → 1, (7.13)

when Ω> 0. In this case, the flux Ψ (X) is finite at the both ends of the wellbore, and

therefore

Ψ (X) ∼ Ψ0 = const., X → 0. (7.14)

Using (7.9), we arrive at the relationship

NP (X) ∼ CIIX
−1, CII =

√
2BΨ0

A1
, X → 0. (7.15)

There is no singularity in NP (X) behaviour at X= 1 because, in this case, Ψ (X) is finite

everywhere and NP (X) ∝Ψ (X) at X → 1.

Another interesting result, which follows from (7.6)–(7.9), is the effect of the produc-

tion rate, q0, on the hole density, NS , or the combined parameter NP = dPNS . This

effect is nonlinear due to nonlinearity of the friction factor Cf(Re) for a turbulent flow

through the basepipe. Indeed, the Reynolds number along the basepipe, which can be
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expressed as

Re =
2ρq0

πrSµ

∫ X

0

Ψ (X) dX, (7.16)

is proportional to the production rate q0, and therefore, in accordance with (4.5) at

Re>Re∗, one has

f(Re) = ReCf(Re) ∝ q0.763
0 . (7.17)

This means that the two parameters, A1 and B in (7.9) behave as follows:

A1 ∝ q0.763
0 , B ∝ q0, Re > Re∗, (7.18)

and therefore one finally has

NP ∝ qα0 , α ≈ 0.12. (7.19)

Hence, the dependence of the hole density on the production rate should be weak.

7.2 Specified production profile

In another inverse problem of ICD calibration, the function Ψ (X) is supposed to be

specified in such a way that it satisfies the normalisation condition (5.2), and (5.1) has to

be used to determine NP such that NP (X) = d2
PNS . Hence

∫ 1

0

Ψ (T ) dT

X − T
− d

dX
(ΩΨ ) + A1

∫ X

0

Ψ (T ) dT

B1(T )
= B

d

dX

(
Ψ

NP

)2

+ A3, 0 < X < 1, (7.20)

so that

[
B
Ψ 2(T )

N2
P (T )

]T=X

T=0

=

∫ 1

0

log

∣∣∣∣X − T

T

∣∣∣∣Ψ (T ) dT − [Ω(T )Ψ (T )]T=X
T=0

+

∫ X

0

A1(Θ) dΘ

∫ Θ

0

Ψ (T ) dT

B1(T )
− A4(X), (7.21)

where

B =
16hkHρq0

πµM2C2
d

, A4(X) =
2πhkHρg

µq0
[zW (s) − zW (0)]X=xW (s)/L. (7.22)

Equation (7.21) can be used for the calculation of the function NP (X) for the specified

Ψ (X). It requires, however, an additional condition for the determination of its boundary

value NP0 =NP (0).

Let us consider as an example the uniform flux solution Ψ (X) = 1, assuming also that

Ω(X) = const. The gravity term A4 can be neglected. Then (7.21) can be rewritten in the

form

B

N2
P (X)

=
B

N2
P0

+X logX + (1 −X) log(1 −X) +

∫ X

0

A1(Θ) dΘ

∫ Θ

0

dT

B1(T )
. (7.23)
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Figure 7. Partially producing horizontal wellbore.

It follows from (7.23) that the normalised hole density, NP (X), is bounded as X → 0.

Similarly, for a small 1 −X > 0, the variation of NP (X) is determined by the term

(1 −X) log(1 −X), and the boundary value is given by the formula

B

N2
P (1)

=
B

N2
P0

+

∫ 1

0

A1(Θ) dΘ

∫ Θ

0

dT

B1(T )
. (7.24)

8 Reservoir drawdown calculations

In all reservoir drawdown calculations, we must remember that the frictional pressure drop

along the basepipe of the horizontal wellbore (from its heel to the toe) cannot exceed the

reservoir drawdown pressure at the heel. The typical situation that may occur is shown in

Fig. 7, where the frictional pressure losses inside the basepipe reduce the effective length

of the horizontal wellbore.

To satisfy this constraint, one must verify whether the restriction on the drawdown has

been reached or not, and if it has been exceeded, reduce the production rate.

Now the reservoir drawdown pressure is determined as

∆pR(x) = pe − pF (x), 0 � x � L, (8.1)

where pe is the pressure at the distance re to the middle of the horizontal wellbore along

the plane x=L/2:

pe = p

(
L

2
, re

)
=

1

π

∫ L

0

log

√
r2e +

(
L

2
− t

)2

ψ(t) dt. (8.2)
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Figure 8. The far field radial flow around the horizontal wellbore.
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Figure 9. The definition of the far-field pressure for neighbouring horizontal wells.

This definition is consistent with that given in (3.6) for a single horizontal wellbore, in

a circular reservoir with the radius re �L, as shown in Fig. 8:

pe ∼ log re
π

∫ L

0

ψ(t) dt =
µq0 log re
2πhkH

. (8.3)

Thus, in all our examples, we use (8.2) as an approximation for parallel horizontal wells

when the distances between them are of the order or smaller than their producing lengths.

The example of two horizontal wells is shown in Fig. 9. In those cases, the distance to the

far field reference point, re, can be determined as half of the distance between the wells.

The pressure at the wellbore wall, pF (x), in accordance with (3.21) and (3.20), is

pF (x) =
1

π

∫ L

0

log |x− t|ψ(t) dt−ΠF (x)ψ(x), (8.4)

and therefore the reservoir drawdown pressure along the wellbore can be expressed by

using (8.1) and (8.2) as

∆pR(x) =
1

π

∫ L

0

log

√
r2e + (0.5L− t)2

|x− t| ψ(t) dt+ΠF (x)ψ(x), (8.5)
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Figure 10. Flux along the horizontal wellbore for a uniform wellbore pressure.

or in the dimensionless form

∆PR(X) =
2πhkH ∆pR

µq0
=

∫ 1

0

log

√
(re/L)2 + (0.5 − T )2

|X − T | Ψ (T ) dT + ΩΨ (X). (8.6)

9 Examples

9.1 Uniform pressure drawdown

9.1.1 Forward problem – flux calculation

The calculations have been carried out for a uniform Ω along the wellbore length

(0 �X � 1) for 600 nodes. The results, Ψ (X), are shown in Fig. 10 for Ω= 0, 0.1, 1.0, 10

and ∞.

When Ω is small, Ψ (X) is close to the analytical solution (6.5), corresponding to Ω= 0.

This solution represents the situation when the horizontal wellbore behaves like a vertical

fracture of infinite conductivity, and therefore can be considered as an approximation for

the case of a very large wellbore radius.

The behaviour of the numerical solution at small Ω is demonstrated in Fig. 11, where

the function F(X), determined in (6.6), is plotted. One can see that the numerical solution

at Ω= 0.001 becomes very close to the numerical solution, corresponding to Ω= 0. These

calculations have been carried out for 600 nodes.
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Figure 11. The behaviour of the numerical solution at small Ω in the case of uniform

reservoir drainage.

9.1.2 Productivity of horizontal well

The productivity of the wellbore is usually characterised by its productivity index

Λ0 = q0/∆pR0, (9.1)

and its productivity ratio

I0 = Λ0/Λ, (9.2)

where q0 is the production rate, ∆pR0 is the pressure drawdown and Λ is the reference

productivity index, which is used for comparison. In our case,

Λ = ΛF =
2πhkH

µ log(re/r0)
, r0 =

L

4
, (9.3)

where re �L is the distance from the fracture, where the far field pressure is determined,

and r0 is the radius of an equivalent vertical wellbore, having the same productivity as

the fracture of length L.

Since the drawdown is uniform along the wellbore, ∆pR(x) = ∆pR0, the middle of the

wellbore, can be chosen as a reference point for the calculation of the wellbore pressure
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pF . Using (7.33) and assuming that re �L, we have

∆pR0 = ∆pR

(
L

2

)
=
µq0 log re
2πhkH

− 1

π

∫ L

0

log

∣∣∣∣L2 − t

∣∣∣∣ψ(t) dt+ΠFψ

(
L

2

)
. (9.4)

Using the evenness of the function ψ(x) with respect to the middle of the wellbore,

x=L/2, the following formula can be deduced:

∆pR0 =
µq0 log re
2πhkH

+ΠFψ

(
L

2

)
− 2

π

∫ L/2

0

log

∣∣∣∣L2 − t

∣∣∣∣ψ(t) dt, (9.5)

which can be rewritten in dimensionless variables as

∆pR0 =
µq0

2πhkH

[
log

(
re

L

)
+ ΩΨ

(
1

2

)
− 2

∫ 1/2

0

log

(
1

2
− T

)
Ψ (T ) dT

]
. (9.6)

When Ω= 0, one can use (6.5) to show that, the integral term in the RHS brackets is

2 log 2, and therefore the drawdown ∆pR0 matches the drawdown of a vertical fracture of

infinite conductivity:

∆pR0 =
µq0

2πhkH
log

(
4re
L

)
. (9.7)

Finally, the productivity ratio (8.2) is

I0 = log

(
4re
L

)[
log

(
4re
L

)
+ SF (Ω)

]−1

,

where SF (Ω) = ΩΨ

(
1

2

)
− 2

[
log 2 +

∫ 1/2

0

log

(
1

2
− T

)
Ψ (T ) dT

]
,

(9.8)

where SF can be considered as the additional skin, induced by the hydraulic resistance of

the near wellbore zone. The advantage of the dimensionless parameter SF compared to

the productivity ratio is that it does not depend on the definition of the far field reservoir

radius, re, and the far field pressure, pe, but only on the parameter Ω, which characterises

the reservoir and wellbore geometry (Fig. 12).

9.2 ICD calibration for uniform flux

Finally, let us consider a horizontal wellbore with uniform production profile. The reser-

voir pressure drawdown is shown in Fig. 13 (solid curve). The uniform pressure draw-

down, which corresponds to the same production rate, is also shown for comparison

(dashed line). As one could expect, the uniformity of the flux leads to nonuniform

reservoir drainage, enhancing the risk of coning development in the middle part of the

wellbore.

The hole density per ICD section, NS , is shown in Fig. 14, for NS0 =NS (0) = 5, 6, 7 and 8.

An interesting result is that the solution of the inverse problem, NS (X), exists only for

NS0 smaller than some critical number N∗
S0. In this case, 8<N∗

S0< 9. The attempt to
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Figure 14. Hole density along the wellbore with uniform production profile.

calculate NS (X) for N∗
S0 = 9, shown in Fig. 14 by the dashed curve, demonstrates that the

hole density, NS , becomes infinite somewhere in the middle of the wellbore. Inside the

zone where NS = ∞, the uniform flux cannot be achieved, and therefore this solution has

to be rejected. The critical parameter N∗
S0 is found from the requirement that NS (X) → ∞

at a single point in the middle of the wellbore. The solution of the inverse problem, which

corresponds to this parameter N∗
S0, provides the ICD with uniform flux performance,

having the highest hydraulic conductivity across it.

The explanation is that the uniform flux condition requires the suppression of fluxes

near the end of the wellbore, which are exposed to larger drainage areas. This can be

accomplished only by choosing relatively small hole densities near the wellbore ends. If

the hole density is not small enough near the ends, the required pressure drawdown profile

along the wellbore, shown in Fig. 13, cannot be achieved by an increase in the hole density

in the middle part of the wellbore, where NS (X) obviously should have a maximum. At

the same time, the smaller the parameter NS0 is, the flatter the hole density profile along

the wellbore should be. Indeed, the higher the hydraulic resistance of the ICD is, the

less is the difference between the two production regimes is, which correspond to uniform

drawdown and uniform flux, as was demonstrated in Fig. 10 when Ω → ∞.

The drawdown across the ICD is shown in Fig. 15. One can see that the smaller

the parameter NS0 is (i.e. the higher is the hydraulic resistance across the ICD), the

more uniform is the drawdown across the ICD along the wellbore. At large NS0, for

example NS0 = 8, the flow restriction is needed mainly near the ends of the producing

interval, whereas the drawdown across the ICD tends to zero in the middle part of the

wellbore.
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Figure 15. Drawdown across the ICD along the wellbore with uniform production profile.

10 Conclusions

• A model of steady single-phase flow into a horizontal wellbore with Inflow Control

Device (ICD) in an anisotropic reservoir has been developed. This model is based

on the concept of flow structuring, and it allows one to reduce a complicated three-

dimensional problem to a one-dimensional singular integro-differential equation, which

can be efficiently solved numerically.

• The flow pattern around a horizontal wellbore has been investigated. We have represen-

ted it by the flow around a vertical fracture, having the same length with an additional

skin distributed along its length.

• The inverse problem of calibration of the ICD has been formulated and solved, allowing

one to find the open area of the basepipe that is required to achieve either uniform

drawdown or a desired influx distribution along the horizontal wellbore.

• We have demonstrated that the optimal hole density of the basepipe is not affected

very much by changes in the production rate, and therefore the ICD can be effectively

tuned just once before installation to provide a required flow control during the entire

production life of the wellbore.

• An extension of the model should allow one to investigate the transient cleanup

of a horizontal wellbore, surrounded by an invasion zone with impaired hydraulic

conductivity, during the initial phase of production.
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Appendix A Local two-dimensional flow near a horizontal wellbore

The geometry of the problem to be investigated is shown in Fig. A.1.

We are looking for the solution of the modified Laplace equation

∂2p

∂y2
+

1

ω2

∂2p

∂z2
= 0, ω =

√
kH

kV
(A.1)

which satisfies zero-flux conditions at its horizontal boundaries,

∂p

∂z

∣∣∣∣
z=0

=
∂p

∂z

∣∣∣∣
z=h

= 0, (A.2)

and has uniform pressure distribution along the wellbore surface

p = const., y2 + (z − zW )2 = r2W . (A.3)

This solution also has to match the flux into the equivalent vertical fracture at a large

distance from the wellbore, where the flow is horizontal:

∂p

∂y

∣∣∣∣
y→∞

= ψ(x). (A.4)

A.1 Outer solution

The solution of the problem (A.1)–(A.4) at large distance from the wellbore should not

be sensitive to the local flow pattern near the wellbore. It should only depend upon the

local production rate across the unit wellbore length:

qW (x) =
2hkH
µ

ψ(x), (A.5)
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and we assume that the ratio of the wellbore radius to the reservoir thickness is small:

ε = rW/h � 1. (A.6)

This means that one can neglect the boundary condition on the wellbore (A.3), and replace

the wellbore by a point source with the appropriate strength. The solution of this problem

can be found using the method of images [9]. If we introduce the outer coordinates ȳ= y
h

and z̄= z
h
, the result is

p1 = p0(x)P1(ȳ, z̄), p0(x) =
ωh

2π
ψ(x) (A.7)

P1(ȳ, z̄) = log

{
cosh

(
πȳ

ωh

)
+ cos

[
π

h
(z̄ + z̄W − h)

]}

+ log

{
cosh

(
πȳ

ωh

)
− cos

[
π

h
(z̄ − z̄W )

]}
. (A.8)

We call p1(ȳ, z̄) the outer solution of the problem (A.1)–(A.4). This solution involves also

an additive arbitrary constant, which has been chosen above equal to zero. One can verify

that the dimensionless pressure P1(ȳ, z̄), given by (A.8), has a logarithmic singularity in

the middle of the wellbore, where the source point is located.

The solution (A.7) could be used for the approximate determination of the wellbore

pressure by averaging P1(ȳ, z̄) over the wellbore surface ȳ2 + (z̄ − z̄W )2 = ε2.

When the reservoir permeability is isotropic, i.e. ω= 1, then the outer solution (A.7)

satisfies the condition (A.3) with the error o(ε). In this case, the dimensionless wellbore

pressure is

P1W ≈ log

{
1 + cos

[
π

(
2z̄W
h

− 1

)]}
+ 2 log

(
πε√
2

)
. (A.9)

Unfortunately, if ω�1, the outer solution (A.6) generates at the wellbore a nonuniform

pressure, and therefore the requirement (A.3) is not satisfied even approximately. This

means that the outer solution does not match the local pressure behaviour at the wellbore,

and has to be corrected. One can achieve this, considering the asymptotic solution

of the problem (A.1)–(A.4) near the wellbore, which we subsequently call the inner

solution.

A.2 Inner solution

Let us introduce the inner coordinates with the origin in the centre of the wellbore:

ȳ = εY , z̄ − z̄W =
εZ

ω
. (A.10)

The geometry of the problem in these coordinates is shown in Fig. A2.

The modified Laplace equation (A.1) becomes the conventional Laplace equation in

these coordinates:

∂2p

∂Y 2
+

∂2p

∂Z2
= 0. (A.11)
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At the same time, the circular wellbore wall becomes an ellipse

Y 2 +

(
Z

ω

)2

= 1. (A.12)

The local solution of the Laplace equation (A.11) around the elliptic hole with uniform

pressure at its boundary (A.12) can be easily found if one neglects all other boundary

conditions, which become the far field conditions in the inner coordinates (A.10). The

wellbore radius is indeed of the order of 1 in these coordinates whereas the distance to

the reservoir boundaries is of the order of ε−1 � 1.

Let us consider the elliptic coordinate system with the origin in the centre of the

wellbore:

Y = c sinh ξ sin η, Z = c cosh ξ cos η (A.13)

Here ξ is similar to the radial distance, η is the angle and c is an arbitrary constant, which

has to be chosen from a set of additional conditions.

The advantage of the elliptic coordinates, ξ and η, over the Cartesian ones, Y and Z ,

is two-fold: (1) the transformation (Y ,Z) → (ξ, η) fulfils the conformal mapping, which

preserves angles between curves on the planes (Y ,Z) and (ξ, η); and (2) the confocal

ellipses on the plane (Y ,Z) have very simple equations in the plane (ξ, η): ξ= const.

Indeed, eliminating η between (A.13), one has

(
Y

c sinh ξ

)2

+

(
Z

c cosh ξ

)2

= 1. (A.14)

To match the ellipse (A.12), which corresponds to the wellbore, at ξ= ξ0 = const., one has

to choose the parameters c and ξ0 from the conditions

c sinh ξ0 = 1, c cosh ξ0 = ω, (A.15)
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resulting in

c =
√
ω2 − 1, ξ0 = log

√
ω + 1

ω − 1
. (A.16)

This solution is valid for ω> 1 only, which is usually the case. If, however, ω< 1, then

one has to introduce the coordinates (ξ, η) as follows:

Y = c cosh ξ cos η, Z = c sinh ξ sin η, (A.17)

instead of (A.13). We shall assume, however, for the time being that ω> 1.

The solution of the Laplace equation (A.11), which satisfies the condition p= const at

the wellbore surface ξ= ξ0, is

p2 = p0(x)P2(Y ,Z), P2(Y ,Z) = C1 + C2ξ, (A.18)

where C1 and C2 are the parameters to be determined, p0(x) is the same as in (A.6), and

P2 is the dimensionless pressure.

A.3 Asymptotic matching

The parameters C1 and C2 have to be chosen from the condition that the inner and outer

solutions overlap somewhere in the middle zone, which is far from the wellbore, and also

far from the external boundaries – the top and bottom of the reservoir in our case. This

can be achieved, using the method of matched asymptotic expansions [16].

To construct the global solution of the problem (A.1)–(A.4), we require that the far

field behaviour of the inner solution P2 in the stretched coordinates Y ,Z matches the

local behaviour of the outer solution P1 in the same coordinates, i.e.

lim
ξ→∞

P2(Y ,Z) = lim
ξ→0

P1

(
εhY ,

εhZ

ω
+ zW

)
. (A.19)

Using (A.7) and (A.8), one obtains the leading terms of the asymptotic behaviour of the

outer solution P1 for small Y and Z

P1 ≈ log

{
1 + cos

[
π

(
2zW − h

h

)]}
+ 2 log

(
πε

ω

)
− log 2 + log(Y 2 + Z2). (A.20)

Using the expansion

log(Y 2 + Z2) = 2 log

(
c

2

)
+ 2ξ − 2

∞∑
n=1

(−1)n

n
e−2nξ cos(2nη), (A.21)

one can write

lim
ξ→∞

P2(Y ,Z) =
C2

2
log(Y 2 + Z2) − C2 log

( c
2

)
+ C1, (A.22)

and therefore the unknown parameters C1 and C2 have to be chosen as

C1 = log

{
1 + cos

[
π

(
2zW − h

h

)]}
+ 2 log

(πε

ω

)
− log 2 + 2 log

( c
2

)
, C2 = 2. (A.23)
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This allows one to obtain the dimensionless pressure at the wellbore, P1W , which

corresponds to ξ= ξ0. Using (A.18), (A.23) and (A.16), we arrive at the following

expression:

P1W = C1 + C2ξ0 = log

{
1 + cos

[
π

(
2zW − h

h

)]}

+ 2 log

(
πε

ω

)
− log 2 + log

(
ω2 − 1

4

)
+ log

(
ω + 1

ω − 1

)

= log

{
1 + cos

[
π

(
2zW − h

h

)]}
+ 2 log

[
πε (ω + 1)

2
√

2ω

]
. (A.24)

This result is valid not only for ω > 1, but also for an arbitrary permeability anisotropy

ratio ω (0 < ω < ∞), and it matches the solution (A.9), which has been obtained above

for ω= 1.

Appendix B ICD calibration for uniform reservoir drainage

We consider below a few series of calculations, which have been carried out for the

data, corresponding to a conceptual reservoir model with characteristics similar to certain

North Sea provinces [2]:

Production rate q0 = 33 & 66 m3/h = 5 & 10 kbbl/day

Wellbore length L = 1200m

Reservoir thickness h = 24 m

Horizontal permeability kH = 700mD

Vertical permeability kV = 350mD

Wellbore radius rW = 0.0762 m

Internal radius of ICD basepipe rS = 0.038m

Diameter of holes in basepipe dP = 0.003m

Fluid viscosity µ = 1 cp

Fluid density ρ = 750 kg/m3

Length of ICD section LS = 3.66m= 12 ft

We assumed that the horizontal wellbore is parallel to the reservoir boundaries, and it

is located in middle of the reservoir thickness. The far field reservoir pressure has been

determined at the distance re =L/2 from the wellbore along the plane perpendicular to

its trajectory. The parameter Ω was therefore constant along the wellbore and equal to

0.135.

We started from the determination of the optimal hole densities (per ICD section)

needed to achieve a uniform reservoir drainage for two production rates (5 kB/D and

10 kB/D), N(5)
S (X) and N

(10)
S (X). The solutions of the forward problem (i.e. the flux and

the pressure drawdown), corresponding to both hole densities, have then been found for

each production rate and compared. This allowed us to estimate the effect of deviation

from the production regime on the reservoir drainage for a passive flow control device,

which can be tuned only once before installation.
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Figure B.1. Hole density along the wellbore length.

Case I

The production rate, q0, was equal to 10 kB/D. First, the inverse problem has been solved

and the optimal hole density, NS (X), has been determined. This hole density then was used

to solve the forward problem. The obtained flux and pressure along the wellbore have

been compared with the solution, corresponding to the uniform hole density, NS (X) =NS0,

which has been found by averaging the entire hydraulic resistance of the ICD, i.e.

N−2
S0 =

∫ 1

0

N−2
S (X) dX (B.1)

The optimal hole density is shown in Fig. B.1 by a dashed curve. The uniform hole

density NS0 occurred to be equal to 7 in this case. One can clearly see the steep drop in

the optimal hole density near the toe, which is explained by the transition of the laminar

flow in the basepipe to the turbulent one. Thus, except the short initial interval near the

toe, the flows is turbulent in the basepipe. This transition is accompanied by an increase

in frictional pressure losses along the wellbore and, for this reason, further restriction of

the hydraulic conductivity of the ICD downstream is required.

The slight increase in the hole density near the heel can be explained by the flux

behaviour near the ends of the producing interval of the horizontal wellbore, shown in

Fig. B.2, which is much more pronounced for the optimal hole density. The uniform

reservoir drawdown generates a symmetrical flux distribution with respect to the middle

of the wellbore (dashed curve) whereas the flux, corresponding to the uniform hole

density, is asymmetrical (solid curve) with a substantial increase near the heel. For the

uniform hole density, the horizontal wellbore under-produces near the toe and the heel

but over-produces in the middle part of the wellbore.
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Figure B.2. Flux along the horizontal wellbore.
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Figure B.3. Reservoir pressure drawdown along the wellbore.

This results in the reservoir drawdown behaviour, shown in Fig. B.3. For the uniform

hole density, the drawdown has a maximum at approximately one third of the wellbore

length from its heel. If such an ICD is installed, coning near the heel of the horizontal

wellbore may occur.
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Figure B.4. Drawdown across the ICD along the wellbore.
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Figure B.5. Wellbore pressure profile inside the ICD basepipe.

The drawdown across the ICD and the frictional pressure losses along then wellbore are

shown in Figs. B.4 and B.5, respectively. At the optimal hole density, the drawdown across

the ICD compensates completely for the frictional pressure losses along the wellbore. The

drawdown across the ICD for the uniform hole density is flatter and therefore the frictional

pressure drop along the wellbore is not fully compensated.

https://doi.org/10.1017/S0956792504005546 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792504005546


Flow performance of horizontal wells 445

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Optimal Hole Density at q
0
 = 10 kB/D

Uniform Drawdown

q
0
 = 5 kB/D

NORMALISED WELLBORE LENGTH,   X

H
O

LE
 D

E
N

S
IT

Y
 P

E
R

 IC
D

 S
E

C
T

IO
N

,  
 N

 S

Figure B.6. Hole density along the wellbore length at two production rates.

The wellbore pressure profiles along the ICD basepipe, which are shown in Fig. B.5, are

normalised with respect to the pressures at the heel (X= 1). One can see that, although

the difference between the total pressure drops along the wellbore due to friction is of the

order of 10% in the two cases, the maximum reservoir drawdown, shown in Fig. B.6, is of

the order of 50% of the minimal drawdown at the toe of the wellbore. This is the typical

situation where the frictional pressure losses inside the basepipe are comparable with the

applied reservoir drawdown.

Case II

In this series of calculations, the production rate, q0, was halved and the forward problem

was then solved for two profiles of hole densities: the optimal one, corresponding to the

current production rate q0 = 5 kB/D; and the hole density, found above for q0 = 10 kB/D.

The results are shown in Figs. B.6–B.10.

The differences between the two computed hole densities are really small (see Fig. B.6),

as well as the differences between the fluxes (Fig. B.7) and the reservoir drawdowns

(Fig. B.8), everywhere except the heel neighbourhood. These results are consistent with

the correlation (7.19). The differences between the pressure drops across the ICD are

substantial near the heel of the wellbore due to differences in flux in this zone (Fig. B.9),

but are very small along the rest of the wellbore. The frictional pressure losses are smaller

than at doubled production rate (q0 = 10 kB/D) but again are rather close to each others

(Fig. B.10).

These results confirm the expectation, based on the relationship (7.19), that the initial

calibration of the ICD should allow one to maintain a uniform or close to uniform

pressure drawdown for a wide range of production rate.
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Figure B.7. Flux along the horizontal wellbore.
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Figure B.8. Reservoir drawdown along the wellbore.

Case III

In this series, the same calculations were carried out for the production rate q0 = 10 kB/D.

The optimal hole density profiles calculated for q0 = 5 kB/D and q0 = 10 kB/D, which are

shown in Fig. B.6, were used. The results are presented in Figs. B.11–B.14.
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Figure B.9. Drawdown across the ICD along the wellbore.
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Figure B.10. Wellbore pressure profile inside the ICD basepipe.

One can see that the increase in production rate affects the flux along the wellbore

in the same way the decrease in production rate did (Fig. B.11). The flux goes up with

respect to the optimal flux in the middle part of the wellbore and down near the heel. The

reservoir drawdown changes modestly (Fig. B.12). The changes in the pressure drop across
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Figure B.11. Flux along the horizontal wellbore.
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Figure B.12. Reservoir drawdown along the wellbore.

the ICD are more pronounced than in the case of smaller production rate q0 = 5 kB/D

(Fig. B.13). The frictional pressure losses are higher at higher production rate and the

change with the increased production rate is also more pronounced (Fig. B.14).
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Figure B.13. Drawdown across the ICD along the wellbore.
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Figure B.14. Wellbore pressure profile inside the ICD basepipe.

The examples considered above clearly demonstrate the importance of calibration of the

ICD to achieve a uniform reservoir drainage, and therefore to prevent the manifestation of

the coning effect. The good news is that the ICD tuning, which is supposed to be done only

once, just before the installation, should guarantee a good performance within a wide range
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of variation of the production rate. One should thus expect that the installation of an ICD,

which is a passive flow control device, can be considered as a valuable complementary

option to the package of services available now for the horizontal well completions.
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