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ABSTRACT
The DLR inverse design code computes the wing geometry for a prescribed target pressure
distribution. It is based on the numerical solution of the integral inverse transonic small
perturbation (TSP) equations. In this work, several extensions and modifications of the inverse
design code are described. Results are validated with corresponding redesign test cases. The
first modification concerns applications for high transonic Mach numbers or cases with strong
shocks. The introduced modifications enable converged design solutions for cases where the
original method failed. The second modification is the extension of the code to general non-
planar wings. Previously, the design code was restricted to non-planar wing designs with small
dihedral or to nacelle design. A third modification concerns aerofoil/wings designed for wind-
tunnel design. In order to design a swept wing between two wind-tunnel walls, the solution
method was extended to two symmetry planes. The introduced extensions and modifications
have increased the robustness and range of applicability of the inverse design code.
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NOMENCLATURE
c chord
CL lift coefficient
Cp pressure coefficient
�Cp pressure coefficient difference, Cp

target − Cp
computed

K transonic similarity parameter K = (γ + 1) · M2
∞

M Mach number
rfa asymmetrical geometry variation relaxation factor
rfs symmetrical geometry variation relaxation factor
Re Reynolds number based on chord length
s wing semispan length
t maximum aerofoil thickness
(u, v, w) velocity vector
U∞ free-stream velocity
(x, s, t) non-planar wing curvilinear coordinate system, x; streamwise, s; spanwise, t;

thickness direction
(x, y, z) Cartesian coordinate system, x; streamwise, y; spanwise, z; thickness

direction
(x̄, ȳ, z̄) transformed coordinates system with x̄ = x, ȳ = βy, z̄ = βz
z±(x, y) wing surface function
α angle-of-attack
β Prandtl-Glauert transformation constant,

β = √
1 − M2∞ for M∞ < 1, β = √

M2∞ − 1 for M∞ > 1
γ ratio of specific heats
χ(x̄, ȳ, z̄) non-linear term of the small perturbation equation,

χ = ∂
∂x̄ ( 1

2 (�̄x̄ + ��̄x̄)2 − 1
2 (�̄x̄)2)

χ∗(x̄, ȳ, z̄) modified non-linear term of the small perturbation equation
φ(x, y, z) velocity potential, ∇φ = (u, v,w)
�(x, y, z) small perturbation velocity potential, � = 1

U∞
(φ − U∞x)

�̄(x̄, ȳ, z̄) transformed small perturbation velocity potential with
�̄(x̄, ȳ, z̄) = K

β2 �(x, y, z).

��(x, y, z) increment of �(x, y, z), �� = �target − �actual geometry

η normalised span position η = y/s

Subscripts
a asymmetric
LE leading edge
TE trailing edge
s symmetric
∞ free-stream condition
± upper (respectively, lower) wing side

Abbreviations
ATPG Automated Target Pressure Distribution
DLR German Aerospace Center
NLF Natural Laminar Flow
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HLFC Hybrid Laminar Flow Control
RANS Reynolds-Averaged Navier-Stokes
TSP Transonic Small Perturbation

1.0 INTRODUCTION
Due to its computational efficiency and its capability to perform 3D transonic wing design
the German Aerospace Center (DLR) inverse design code based on the solution of the
Transonic Small Perturbation (TSP), equations has often been used for wing design in the
last years. Especially for applications concerning the design of transonic aerofoils/wings
with Natural Laminar Flow (NLF) and Hybrid Laminar Flow (HLFC), the inverse design
code was the preferred wing design tool within DLR. Examples of recent wing designs are
given in Ref. 1. But new applications and configurations have shown limitations as well as
extension possibilities of the inverse design code. In this work, modifications and extensions
are presented.

The inverse design method computes the wing geometry for a prescribed target pressure
distribution. For an actual wing geometry and pressure distribution, geometry corrections
are computed based on the difference between actual geometry pressure distribution
and target pressure distribution. The geometry corrections are computed by solving
numerically the integral inverse transonic small perturbation equation. The geometry
corrections are obtained in an iterative solution process. In DLR applications, the actual
wing surface pressure distribution is obtained using RANS solutions using either the
DLR CFD codes TAU(2) or FLOWer(3). But any analysis method which provides a wing
surface pressure distribution can be used. The inverse design transonic small perturbation
equations where first formulated by Takanashi(4). At DLR, the inverse design method was
introduced with the work by Bartelheimer(5,6), who introduced modifications which enabled
inverse design for transonic flow and which increased robustness of the inverse design
process.

In this work, we present extensions and modifications of the inverse code which increase its
robustness and range of applicability to new configurations. All modifications or extensions
are validated using redesign cases. In a redesign case, the target pressure distribution is the
pressure distribution, which is obtained for given flow conditions for an existing geometry.
Design is performed for the given flow conditions starting with a different geometry. For a
redesign case, the designed geometry must converge to the target geometry and its pressure
distribution must converge to the target pressure distribution.

The first modification concerns applications for high-transonic Mach numbers. For high
free-stream Mach numbers approaching Mach 1 from below or for strong shocks the inverse
code in certain cases was not able to reproduce the target pressure distribution for target
pressure distributions of known aerofoils/wings. This was considered as a drawback of the
present method(7). By altering the solution method in the region where the flow is supersonic,
the new DLR inverse code TSP module was changed and is now able to provide converged
design solutions for high-transonic Mach numbers for cases where it failed before.

The second modification is the extension of the code to non-planar wings. Previously the
design code was restricted to non-planar wing designs with small dihedral(6) or to nacelles
(ring wings)(8). Generalizing the modifications introduced to consider nacelles(8,9) the solution
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method of the TSP-equations was modified in such a way that now geometry corrections
are provided locally in a direction perpendicular to the local wing surface. This extends the
applicability to general non-planar wings, for example, wings with large vertical wings, or
non-conventional wing configurations like box wings, C-wings etc.

A third modification concerns aerofoil/wings designed for wind-tunnel design. The
solution of the TSP-equations used in the inverse design assumes that design is performed
for a symmetrical configuration, i.e. that in the solution method the required source terms
have to be computed only for one half configuration. For wind-tunnel applications, there are
cases where the influence of both lateral wind-tunnel walls (walls in wing spanwise direction)
has to be considered in the wing design. For these cases, the solution method of the inverse
TSP-equations has to be extended to two symmetry planes. The modified inverse method for
cases with two symmetry walls was applied to a constant chord swept redesign wing case. This
extension may be useful for transonic swept wing aerofoil design. With this modification, the
inverse design code can now be used to design swept wings for wind tunnels with a spanwise
constant (or nearly) constant pressure distribution which corresponds to the infinite swept-
wing pressure distribution.

In summary, in this work, several modifications have been introduced into the inverse
design code which have extended its range of applicability to new configurations and which
improve design convergence. After the introduction, the general inverse design process will
be described. It follows a section giving the underlying theory for the inverse design method
based on the TSP-equations. The underlying theory is described to an extent that enables
the reader to understand the introduced modifications. Next, the required modifications in
the numerical solution method of the TSP-equation are described. Three sections follow
describing the previously mentioned modifications. Each of the modifications is validated
with corresponding redesign test cases.

In this paragraph, reference is made to other 3D inverse design methods, extensions and
inverse design framework development. Extensions of Takanashi’s method to supersonic flow
and to multi-lifting surfaces are described in Refs 10 and 11. Applications of these extensions
are given in Refs 12 and 13. An efficient 3D inverse design method which uses a different
approach as the Takanashi method is the CDISC knowledge-based method(14). A hybrid
method which combines inverse design methods and optimisation is described in Ref. 15.
An alternative DLR inverse design method to the one based on the inverse TSP-equations,
uses a discrete adjoint method to find the geometry corrections which lead to the desired
target pressure distribution. This method is currently extended to 3D applications. Results for
2D inverse design are given in Ref. 7. This method requires a larger computational effort than
the method considered in this work. The formulation with the discrete adjoint method has
the advantage that it is universal, e.g. it does not require different formulations for turbulent
subsonic, transonic, or supersonic flow. The extension of a discrete-adjoint framework for
applications with flows with turbulent laminar transition is a current area of research (see Ref.
16 and references therein). Considering the design framework, the used inverse design method
is only one part of the inverse design process. In the complete inverse design process, all these
methods share common problems like: finding of appropriate target pressure distributions,
robust mesh deformation, multipoint design, off-design, etc. One useful part of the inverse
design framework is the development of automatic target pressure generators (ATPG)(17,18).
They are useful tools since they try to comprise the design knowledge of experienced users.
Their aim is to provide target pressure distributions for a robust design which satisfies the
design requirements and constraints. Furthermore, the target pressure is optimised according
to design objectives, e.g. for transonic hybrid or natural laminar flow wing a target pressure
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Figure 1. (Colour online) Inverse design process flowchart for application cases. Inner loop (dashed lines)
is the inverse design process for a given target pressure distribution. In the outer loop (solid lines), the

target pressure distribution is varied.

distribution is found which minimizes the drag, i.e. it compromises laminar flow extent against
wave drag(1,19).

According to the requirements, constraints and objectives of a given aerodynamic design
task the most appropriate design tool has to be selected. The different design tools may
also be used in a parallel or complementary way. Besides the inverse design methods, for
aerodynamic design DLR develops and uses many other surface shape design methods.
For multi-disciplinary optimisation see Refs 20–22. For design, tools based on surrogate
models(23), and tools for robust design (design under uncertainty)(24) are also considered.

2.0 INVERSE DESIGN PROCESS
In the DLR inverse design process, many steps are required, which are applied iteratively to
obtain a new designed geometry. A flowchart which describes the process for application cases
is given in Fig. 1. It consists of two iteration loops. The inner loop is the inverse design process
for a given target pressure distribution. For application cases, it may be required that the target
pressure distribution is changed or adapted. This is done in the outer loop. The inner loop is
described in detail in Ref. 5. It consists of an analysis step, a design step and a mesh generation
step. The analysis step provides the wing surface pressure distribution for the actual geometry.
For the design cases which have been considered by DLR, analysis is performed by solving
the Euler or RANS equations using the DLR CFD solvers FLOWer/TAU. However, any solver
which provides the Cp-distribution for the wing surface may be used. For cases with laminar
turbulent transition, the analysis step must be coupled to a stability analysis tool in order to
determine the transition line position. In the next step, the difference between this pressure
distribution and the target pressure distribution is computed. In the following design step,

https://doi.org/10.1017/aer.2017.101 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2017.101


1738 November 2017The Aeronautical Journal

a geometry correction is computed based on the pressure distribution difference by solving
the TSP-equations. Also in this design step, the geometry corrections are smoothed. This is
done in order to obtain geometries with a smooth curvature distribution. A special smoothing
procedure based on Bezier curves is used in which the geometry corrections are smoothed
in chord and spanwise direction(5). In the mesh-generation step, a mesh is generated for the
new geometry. This usually is done by deforming the mesh using the smoothed geometry
corrections. The steps in the inner loop are iterated until the design is converged or iterated
for a prescribed maximum number of inner loop iterations. For a redesign case, the designed
geometry must converge to the target geometry and its pressure distribution must converge to
the target pressure distribution. However, for application cases, the pressure distribution cor-
responding to the inner loop designed geometry may not agree with the proposed target pres-
sure distribution. In this case, the target pressure distribution is modified, based on the results
obtained in the design iterations of the inner loop. The new target pressure distribution must
also satisfy the design requirements or constraints. This process is done in the outer loop. In
this part of the process, it is useful to use ATPGs. The target pressure distributions, generated
with an ATPG in this process, is close to the pressure distribution of a real existing geometry
since it is generated based on existing pressure distributions. For a robust design process, it is
important that each step itself is robust and its results reliable. In addition to the inverse design
steps shown in the flowchart in Fig. 1, interface steps are also required, see Refs 9 and 13. In
the interface steps, the data required and generated by programs belonging to different steps
is interpolated. The described inverse process is a general one. Instead of the inverse design
module based on the TSP-equation, any other inverse method module can be used.

3.0 INVERSE DESIGN METHOD, GOVERNING
EQUATIONS AND SOLUTION METHOD

In this section, the governing equations and numerical solution method of the inverse design
method are described. Only cases for transonic free-stream Mach number with M∞<1 are
considered. In the inverse design problem the unknown quantity is the wing surface geometry
correction �z̄±(x̄, ȳ), i.e. the difference between target wing geometry and actual wing
geometry. Input or known quantity is the pressure distribution difference �Cp±(x̄, ȳ) between
the target pressure distribution and computed pressure distribution of the actual geometry.
Here ± denotes upper or lower wing surface. Let �actual geometry be the small perturbation
velocity potential for the actual geometry and �target be the small perturbation velocity
potential for the unknown geometry which leads to the desired target pressure distribution.
In the inverse design method proposed by Takanashi(4), the TSP-equation is derived for the
increment of the perturbation velocity potential ��, with �� = �target − �actual geometry. It
is given by:

��̄x̄x̄ + ��̄ȳȳ + ��̄z̄z̄ = ∂

∂x̄

(
1
2

(�̄x̄ + ��̄x̄)
2 − 1

2
(�̄x̄)

2
)

︸ ︷︷ ︸
χ(x̄,ȳ,z̄)

… (1)

Here instead of the small perturbation potential � and the coordinate x, y, z the transformed
quantities �̄, x̄, ȳ, z̄ are used. They are obtained using a Prandtl-Glauert transformation:

x̄ = x ȳ = βy z̄ = βz … (2)
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�̄(x̄, ȳ, z̄) = K
β2

�(x, y, z). … (3)

Note that Equation (1) is an inhomogeneous Laplace equation. The function χ(x̄, ȳ, z̄)
(which is the inhomogeneous part of Equation (1)) will be considered in the following
as a source term function. The quantities �z̄±(x̄, ȳ) and �Cp±(x̄, ȳ) are related to partial
derivatives of �̄, evaluated at the wing surface. The partial derivative of ��̄z̄ is related with
the wing surface geometry difference �z̄±(x̄, ȳ) and the partial derivative of ��̄x̄ is related
with �Cp±(x̄, ȳ) according to:

��̄z̄(x̄, ȳ,±0) = K
β3

∂�z̄±(x̄, ȳ)
∂x̄

… (4)

��̄x̄(x̄, ȳ,±0) = − K
2β2

�Cp±(x̄, ȳ). … (5)

K and ß are constants which depend on M∞:

K = (γ + 1) · M2
∞, β = √

1 − M2∞ … (6)

Using Green identities and several transformations, Takanashi(4) transformed the TSP-
equation into integro-differential equations which relate the unknown ��̄z̄ and the input
��̄x̄. These transformations are not given here and the reader can find them in Refs 4 and 5.
For the transformations, it was convenient to introduce new quantities defined as symmetrical
and asymmetrical transformations of ��̄x̄, ��̄z̄ and the source term χ with respect to the
upper and lower wing surface side:

�us(x̄, ȳ) = ��̄x̄(x̄, ȳ,+0) + ��̄x̄(x̄, ȳ,−0)
�ws(x̄, ȳ) = ��̄z̄(x̄, ȳ,+0) − ��̄z̄(x̄, ȳ,−0)

χs(x̄, ȳ) = χ(x̄, ȳ,+0) + χ(x̄, ȳ,−0)
… (7)

�ua(x̄, ȳ) = ��̄x̄(x̄, ȳ,+0) − ��̄x̄(x̄, ȳ,−0)
�wa(x̄, ȳ) = ��̄z̄(x̄, ȳ,+0) + ��̄z̄(x̄, ȳ,−0)

… (8)

Note that different signs have been used in (7) and (8) for �us and �ws, and �ua and
�wa. This is because a symmetrical/asymmetrical pressure distribution change leads to an
asymmetrical/symmetrical change in the geometry correction. For the numerical solution,
the integro-differential equations are discretised(4,5). A panel mesh with I x (J + 1) panels is
constructed for the wing surface. For the definition of indices and points on the panel mesh, see
Fig. 2, which shows a panel mesh for a half wing. In the discretisation process, it is assumed
that the quantities �wa,�us,�ua,χ and χs are constant for each panel. For panel (i, j), they
are evaluated at the panel centre coordinate (xj

i , y j ).
For the quantity �ws, it is assumed that for each panel this quantity varies linearly along the

x̄-direction, but is constant along the ȳ-direction. Therefore, for a panel row with constant span
ȳ j = const., �ws is discretised in x̄-direction at coordinates xj

i−1/2
, y j with 1 < i < I + 1.

Note that this discretisation leads to I+1 unknown for I given known quantities. In order to
have a unique solution Takanashi(4) proposed an additional condition for �ws which leads
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Figure 2. Discretised wing for inverse design method. The wing surface is discretised in I × (J+1) panels.
with I = 7 and J = 7. Figure is based on Fig. 4 from Ref. 5.

to closed aerofoils, provided the initial aerofoil is closed. In discretised form, this condition
requires that for each section:

∑I

i=1
0.5

[
�ws

(
x

j

i−1/2

, y j

)
+ �ws

(
xj

i+1/2
, y j

)](
xj

i+1/2
− xj

i−1/2

)
= 0 … (9)

Physically, this additional condition means that the trailing-edge thickness for each section
of the designed wing is the same as the trailing-edge thickness of the initial wing.

The discretised equations for the inverse problem for the case of a wing with symmetrical
flow are given by Refs 4 and 5.

�us

(
x̄ j

i , ȳ j

)
=

I+1∑
i=1

J∑
m=0

[
μs

i, j,l,m�ws

(
x̄m

l−1/2, ȳm

)]
+ χs

(
x̄ j

i , ȳ j

)

+
I∑

i=1

J∑
m=0

[
νs

i, j,l,mχ
(
x̄m

l , ȳm,+0
) + ν∗s

i, j,l,mχ
(
x̄m

l , ȳm,−0
)]

… (10)

�wa(x̄ j
i , ȳ j ) =

I∑
i=1

J∑
m=0

[
μa

i, j,l,m�ua
(
x̄m

l , ȳm
)]

+
I∑

i=1

J∑
m=0

[
νa

i, j,l,mχ
(
x̄m

l , ȳm,+0
) + ν∗a

i, j,l,mχ
(
x̄m

l , ȳm,−0
)]

… (11)

In these equations, μs
i, j,l,m, μa

i, j,l,m, νs
i, j,l,m, ν∗s

i, j,l,m, νa
i, j,l,m, ν∗a

i, j,l,m are influence coeffi-
cients. Equations (10) and (11) are two linear equation systems. For the computation of
the quantities �wa and �us for panel (i, j), the influence of all panels (l, m) of the wing
have to be taken into account, including panels on the not shown other wing half (see
Fig. 2). For a symmetrical flow for a given panel (l, m) and its corresponding symmetrical
panel (l,−m) the quantities �ws,�wa,�us,�ua,χ and χs are equal. When they appear
on the right side of Equations (10) and (11), they will be denoted as source terms. For a
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symmetrical case, the sum in Equations (10) and (11) can be restricted to one half-wing if
the influence coefficient with index i, j, l, m includes both, the contribution from panel (l, m)
and the contribution from the corresponding symmetrical wing panel with index (l,−m). The
influence coefficients are integrals over panel (l, m) and its corresponding symmetrical panel
(l,−m). For influence coefficients μs

i, j,l,m, μa
i, j,l,m, these integrals involve surface integrals

over the panel surface, whereas for νs
i, j,l,m, ν∗s

i, j,l,m, νa
i, j,l,m, ν∗a

i, j,l,m field integrals are required,
i.e. additional integration in direction normal to the panel surface is required. They are not
solved numerically but, as first proposed by Hua and Zhang(25), they can be solved analytically.
This simplifies the numerical solution method. The analytical expressions for the influence
coefficients are given in Ref. 5. Note that the asymmetrical geometry corrections �wa are
explicitly given by Equation (11), whereas to obtain the symmetrical geometry corrections
�ws the linear system of equations given in Equation (10) has to be inverted. Finally, the
obtained �wa and �ws are used to obtain the geometry correction according to:

�z̄±(x̄, ȳ) = β3

2K

x̄∫
x̄LE

(�wa(x̄, ȳ) ± �ws(x̄, ȳ))dx̄ … (12)

4.0 MODIFICATIONS FOR FLOW WITH HIGH
TRANSONIC MACH NUMBER

For transonic flow, Bartelheimer(6) introduced two modifications into the solution scheme
which improved the convergence of the design especially for regions in which the local flow
is supersonic. The first modification altered the governing equation for regions were the flow
is supersonic. The second introduced modification is smoothing of the geometry.

The solution algorithm of the governing equation (Equation (1)) does not distinguish
between an elliptic (subsonic) or a hyperbolic (supersonic) character of Equation (1). The
character of the governing equation (Equation (1)) is elliptic or hyperbolic if:

(1 − �̄x̄ − ��̄x̄) > 0 elliptic
(1 − �̄x̄ − ��̄x̄) < 0 hyperbolic.

… (13)

The integro-differential equation for the inverse design is obtained by using Green functions
for the Laplace equation, which has elliptic character. In order to extend the solution regions
also to hyperbolic regions an upwind discretisation scheme is used (see Ref. 6). If the upwind
discretisation of Equation (1) is written with central discretisation a modified governing
equation results:

��̄x̄x̄ + ��̄ȳȳ + ��̄z̄z̄ = ∂

∂x̄

[
1
2

(�̄x̄ + ��̄x̄)
2 − 1

2
(�̄x̄)

2 + �x̄��̄x̄x̄(1 − �̄x̄ − ��̄x̄)
]

︸ ︷︷ ︸
χ∗(x̄,ȳ,z̄)

… (14)
Note that Equation (14) is the same as Equation (1) with a modified right-hand side.

Therefore, the solution method for hyperbolic regions is the same but using the modified
function χ∗ instead of χ. This modification stabilised the convergence of the design for
transonic flow.
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The second modification introduced in Ref. 6 is smoothing of the geometry correction.
Since the computed pressure distribution is obtained with a CFD solution, it is provided with a
certain small amount of numerical error. This numerical error is included in the input pressure
distribution difference �Cp for the inverse design. The inverse design method may not be
able to damp this error. To avoid small oscillations in the designed geometry due to numerical
error transfer between two coupled numerical methods, smoothing of the geometry correction
is introduced in the design solution process. For transonic flow, this is even more important
since small geometry differences lead to large �Cp’s.

With these modifications, the inverse design method could be improved significantly for
transonic flow cases. However, in some test cases with high transonic Mach number, i.e. for
Mach numbers with 0.85 < M∞ < 1.00, it was not possible to obtain a converged design,
even if the previously mentioned modifications are used. For these cases, a relaxed geometry
change was used already in order to improve design stability. A relaxed geometry change is
one in which in each design iteration, the symmetrical and asymmetrical geometry change is
reduced by multiplying with factors rfs, respectively rfa (with 0 < rfa < 1, 0 < rfs < 1.

In this work, further modifications of the solution scheme were introduced in regions were
the governing equation has hypersonic character. Several modifications were tested with the
aim to take into account the upwind character of the solution. The following modification
improved the stability of the design process. First, the determination of the elliptical or
hyperbolical character according to Equation (13) was obtained with an upwind discretisation
of the partial derivatives. Second, additional supersonic influence terms gi, j and hi, j,l,m are
introduced in the linear equation system Equations (10) and (11). These terms introduce for
the source terms χ a region of influence within supersonic regions. Their value is either one
or zero by taking into account if at panel (i, j) or/and panel (l, m) the flow is supersonic.

�us(x̄
j
i , ȳ j ) =

I+1∑
i=1

J∑
m=0

[μs
i, j,l,m�ws(x̄m

l−1/2, ȳm)] + gi, j (+0)χ(x̄ j
i , ȳ j,+0)

+gi, j (−0)χ(x̄ j
i , ȳ j,−0)

+
I∑

i=1

J∑
m=0

[hi, j,l,m(+0)νs
i, j,l,mχ(x̄m

l , ȳm,+0) + hi, j,l,m(−0)ν∗s
i, j,l,mχ(x̄m

l , ȳm,−0)]

… (15)

�wa(x̄ j
i , ȳ j ) =

I∑
i=1

J∑
m=0

[μa
i, j,l,m�ua(x̄m

l , ȳm)]

+
I∑

i=1

J∑
m=0

[hi, j,l,m(+0)νa
i, j,l,mχ(x̄m

l , ȳm,+0) + hi, j,l,m(−0)ν∗a
i, j,l,mχ(x̄m

l , ȳm,−0)]

… (16)

By testing different choices for the supersonic influence terms, it was found that following
simple selection of supersonic influence terms gi, j and hi, j,l,m stabilises the iterative design
for high transonic numbers: hi, j,l,m = 0 if the flow is supersonic for panel (i, j) and
simultaneously for panel (l, m) it is satisfied that the flow is supersonic and xi > xl ,
otherwise, hi, j,l,m = 1, gi, j = 0; if the flow is supersonic at panel (i, j), otherwise gi, j = 1.
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These selections were obtained by first testing design cases in which only the solution of
Equation (15) is required. Such design cases are obtained if the design of symmetrical
aerofoils is considered for a constant angle-of-attack. Then, design cases were tested which
require the solution of both Equations (15) and (16).

Finally, a comment is given, regarding the here-described extension for high-transonic
Mach numbers of the original Takanashi transonic inverse design method in comparison
to Matsushima’s inverse design method for supersonic flow(10,12). The approaches taken to
consider supersonic flow (or regions of supersonic flow in a transonic flow) are different.
Here we consider transonic free-stream Mach numbers very close to 1 but with M∞<1.
Therefore, the integro-differential TSP equations for the transonic flow considered here are
derived using elliptical Green functions. They are obtained following the original approach
given by Takanashi(4). In contrast, if the free-stream number is supersonic, hyperbolic Green
functions are required in order to obtain the integro-differential equations. For the supersonic
case, this is done by Matsushima(10) for the linearised small perturbation velocity equation.
For the case with transonic free-stream Mach number considered here, the character of the
complete non-linear TSP equation is hyperbolic or elliptic according to Equation (13). In
regions where the local flow becomes supersonic (or the equation character hyperbolic), the
above-described modified non-linear source term χ∗ is used. The original DLR inverse design
method(5) already used a modified source term, which was further modified in this work. The
results presented in the next section show that the use of the further modified source term has
improved the convergence of the design solutions for cases with mixed character, i.e. subsonic
and supersonic flow regions. Especially, for transonic free-stream Mach numbers close to 1
converged design solutions are obtained for cases where the original DLR inverse design
method failed.

4.1 Results for redesign test cases

Results for the modified method considering 2D aerofoil and 3D wing redesign cases
are described. The first case is a symmetrical aerofoil redesign test case in which only
Equation (15) is tested. Free-stream conditions are: M∞ = 0.9 for α = 0°. Initial geometry
is a NACA aerofoil with 1.2% thickness and the target pressure distribution is obtained
for a NACA0006 aerofoil for M∞ = 0.9, Rec = 30 · 106 for α = 0°. Due to the high
free-stream Mach number, very thin aerofoils have been selected. The initial aerofoil is
sufficiently thin so that with the specified free-stream conditions the pressure distribution of
the initial aerofoil is completely subsonic. In contrast, the target aerofoil pressure distribution
has a large supersonic region but with Mach numbers not exceeding M = 1.3. Figure 3
shows the initial, target and designed pressure distribution and aerofoil geometry. Figure 4
shows the convergence of the mean square pressure distribution change and the mean square
geometry deviation for design iterations. Thirty design iterations were performed. The original
method does not converge to the target design pressure distribution, even after decreasing
the factor rfs to the value rfs = 0.1. After 13 design iterations, the mean square change of
pressure distribution between design iterations increases. For the modified method, the design
converges to the prescribed target even with a four times larger geometry change between
design iterations (rfs = 0.4). The second case considered is a 2D aerofoil redesign case in
which both Equations (15) and (16) are tested. Here a NACA0006 geometry is designed into
an aerofoil based on a modified middle-wing section of the DLR F-11 wing(26). Free-stream
Mach number is 0.9. Since the DLR F-11 model has a swept wing and is designed for M∞
= 0.85, the aerofoil thickness of the selected modified DLR-F11 target section is reduced.
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Figure 3. (Colour online) Redesign case for symmetrical aerofoils for M∞ = 0.9, Rec = 30 · 106, α = 0°.
Results are given for the pressure distribution (left) and geometry (right) for the initial, target and design

solutions. Design results are obtained with original and new modified inverse design method.

Figure 4. (Colour online) Convergence history for redesign case considered in Fig. 3.

The initial solution is obtained for M∞ = 0.9, α = 0°, Rec = 30 · 106. The target pressure
distribution is obtained for M∞ = 0.9, α = 0.5°, Rec = 30 · 106. Figures 5 and 6 shows the
comparison between the redesign results for the original method and the new method. As in
the previous case the original method is not able to produce a converged design result even
with a small value for the geometry relaxation parameter rfa and rfs. The designed pressure
distribution oscillates around the target pressure distribution and after 13 design iterations the
mean square changes in pressure distribution begin to increase. The modified method design
result reproduces the target pressure distribution and geometry. The new method converges
with a 4 times larger value for the geometry relaxation parameters rfa and rfs.

The third redesign case considered is a 3D-case. For this case a constant chord swept wing
with untwisted constant aerofoil sections was selected. The sweep of the wing is 30°, chord
to semispan ratio is c/s = 0.2, free-stream conditions are M∞ = 0.95, Rec = 13 · 106. For
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Figure 5. (Colour online) Second aerofoil redesign case for M∞ = 0.9, Rec = 30 · 106. Initial geometry
and target pressure distribution for NACA0006 for α = 0°. Results are given for the pressure distribution

(left) and geometry (right) for the initial, target and design solutions. Design results are obtained with
original and modified inverse design method.

Figure 6. (Colour online) Convergence history for redesign case considered in Fig. 5.

the target geometry, a swept wing geometry, the modified DLR-F11 middle wing section
with a reduced thickness is used and the target pressure distribution was obtained for a lift
value cL = 0.5. For the initial swept-wing geometry, a NACA0006 aerofoil is used and the
starting solution for the design was computed at α = 0°. For the design iterations, the geometry
relaxation parameters were used with values rfa = rfs = 0.2. Similarly, as in the previous
2D cases, with the original inverse design method it was not possible to obtain a converged
design. Results for the modified method are shown for selected wing sections in Fig. 7. Except
for small suction peaks at the nose, the designed results match the target pressure distribution.
This shows that the introduced modifications are able to improve the inverse design method
for the 3D case.
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Figure 7. (Colour online) 3D redesign case for M∞ = 0.95, Rec = 13 · 106, 30° swept wing. Results are
given for geometry (left) and the pressure distribution (right) for the initial (dashed line), target (squares)

and design solutions (solid line). Wing planform is shown in the middle with lines indicating the position of
the selected sections. Design results are obtained with the new modified inverse design method.

5.0 EXTENSION OF THE INVERSE CODE TO
NON-PLANAR CONFIGURATIONS

The second modification is the extension of the inverse design program to non-planar wings.
Since geometry deformations are in the z-direction the original design code is restricted to
non-planar wing designs with small dihedral. The solution method of the TSP-equations was
modified in such a way that now geometry corrections are provided locally in a direction
perpendicular to the local wing surface. This extends the applicability to non-planar wings
with large dihedral for example wings with large vertical wings, or non-conventional wing
configurations like box wings, C-wings etc. Previously, the inverse design code had been
modified for the design of nacelles, see Refs 8 and 9. Nacelles can be considered as a ring wing
with a circular trailing edge. Following the modifications introduced in Ref. 9, here the inverse
code is generalised to arbitrary non-planar wings. In the generalisation, it is assumed that there
is a wing surface line in spanwise direction which remains fixed in the design process and
which defines the non-planar front shape of the wing (see Fig. 8). To solve the corresponding
TSP-equations here the YZ-projection of the trailing-edge line is selected as such a wing front
line. Similarly, as shown in Fig. 1, a panel mesh is defined for the non-planar wing.

The front line is discretised in the span direction. For the discretised points on this line,
aerofoil sections are defined in the corresponding plane perpendicular to the front line
and discretised in streamwise direction. Also, the computed design deformations will be
performed in these perpendicular planes. The coordinate perpendicular to the front line is
denoted t, the span position coordinate is denoted s. In contrast to the planar case in which for
a given point (i, j) the design span coordinate is defined by the distance yi, j to the symmetry

https://doi.org/10.1017/aer.2017.101 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2017.101


Streit and Hoffrogge 1747DLR transonic inverse design…

Figure 8. (Colour online) Front line of a non-planar wing with a planar inner part and a 1/4th ring wing in
the outer part. The unit vectors �et , �ey and �ez are shown for the point with index j. The arc-length s j of the

front line defines the spanwise coordinate of the non-planar wing.

plane, here the span position sí, j is defined by the arc-length s j of the corresponding trailing-
edge point computed on the wing front line. Note that the so-selected curvilinear coordinate
system (x, s, t) is the coordinate system of a planar wing which corresponds to the unrolled
non-planar wing. The discretised TSP-equations (Equations (10) and (11)) for the non-planar
wing, are obtained by replacing the panel surface Cartesian coordinates xi, j, yi, j, zi, j with

the non-planar coordinates xi, j, si, j, ti, j Finally, the computed design deformations �tn+1
i, j,

computed in the curvilinear system for design iteration n+1 are computed in the Cartesian
coordinate system using:

xn+1
i, j = xn

i, j

yn+1
i, j = yn

i, j + �tn+1
i, j �et ( j) · �ey

zn+1
i, j = zn

i, j + �tn+1
i, j �et ( j) · �ez

… (17)

�et ( j), �ey and �ez are unit vectors with �et ( j) the normal vector to the wing front line for point
j and �ey, �ez are unit vectors in the Cartesian directions y, z, see Fig. 8. In the original inverse
design method, the wing planform, defined as the wing projection in the XY-plane is kept
constant in the design. For the non-planar inverse design TSP method presented here, the
constant planform is obtained by spanwise locally projecting the wing with the vector �et ( j).
It was mentioned above that the front line was obtained using the YZ projection of the wing
trailing edge. This means that in the design all local twist changes are performed around the
trailing edge. If design requirements specify that aerofoils have to be twisted around a point
lying at a different chord position xT ( j)/c( j), the computed geometry deformation with fixed
trailing edge are shifted by redistributing them linearly as function of streamwise direction so
that a zero deformation results for the point xT ( j)/c( j). After each design iteration, a shift of
twist line transformation is performed. This guarantees a constant planform.

Next, results for the extended non-planar inverse design code are presented. As a test case,
a constant unswept chord non-planar wing was selected. In the inner part of the wing, it has a
planar planform, whereas the outer part has a 1/4th ring wing geometry (see insert in Fig. 9).
The free-stream Mach number is M∞ = 0.82. The initial wing geometry was constructed using
a constant NACA0006 aerofoil twisted 2° down around the trailing edge (with twist direction
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Figure 9. (Colour online) Non-planar wing redesign case for M∞ = 0.82, Rec = 15 · 106. For different
selected sections, the pressure distributions are shown for the initial geometry on the upper side and for

the designed geometry (lines) and target (symbols) on the lower side. An insert is given showing the wing
geometry and the position of the selected sections.

in a plane perpendicular to the trailing edge). At the tip, the 2° twist difference was blended
to 0°. The target pressure distribution is obtained using a wing geometry constructed with an
untwisted modified DLR-F11-wing reduced-thickness aerofoil. Flow solutions were obtained
for M∞ = 0.82, Rec = 15 · 106, α = 4°. In Fig. 9 pressure distribution results for selected
sections are given for initial, design and target pressure. Note that since the used wing has
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Figure 10. (Colour online) z-component of aerofoil geometry for selected wing sections. Upper part
shows initial geometry. Design results are compared to target geometry for iteration 22 (middle part) and

iteration 33 (lower part).

no sweep, the target pressure distributions have strong shocks. Therefore, it was necessary to
use the inverse method with the modifications for transonic flow described before. Results are
given for the design iteration 22. But results for iteration 15 show that the agreement between
designed pressure distribution and target pressure distribution is good. But the convergence
to the target geometry is slower than the convergence to the target pressure distribution.
Especially in the tip region after 22 design iterations the target geometry and design geometry
results still shows deviations. Also the twist has not reached the target twist. It oscillates
around the target twist value, its absolute value differing at maximum by 0.2°. For geometry
additional design iterations are required. This is shown in Fig. 10, where the initial geometry
and the designed geometry are given for design iterations 22 and 33. Figure 11 shows the
convergence history. As described above, the mean square pressure distribution deviations do
not change largely after 16 iterations, while the mean square geometry deviations still decrease
by an order of magnitude between 16 and 33 design iterations. The used value of the geometry
relaxation parameter rfa and rfs is 0.5. Here the results were presented for a case in which the
target wing geometry has aerofoils which differ from the ones of the initial wing geometry in
thickness, camber and twist. Also, the case in which the initial and target geometry wing had
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Figure 11. Convergence history for redesign case considered in Figs. 8 and 9.

the same twist distribution but different baseline aerofoils were studied. In this case, a better
geometry convergence is obtained.

6.0 EXTENSION OF INVERSE DESIGN CODE TO CASES
WITH TWO SYMMETRY WALLS

The original inverse design method assumes that design is performed for a symmetrical
configuration. In this section, the extension of the inverse design code to cases with two
symmetry walls is described and redesign results are presented(27). This extension is required
for wind-tunnel design in order to take into account the influence of the lateral wind tunnels.
There are cases in which this influence is large, for example for a swept wing placed between
the two lateral wind-tunnel planes. Figure 12 illustrates such a case. The symmetry planes are
placed at y = 0 and y = s. This case is equivalent to an infinite wing obtained by reflecting the
wing along the symmetry planes. Contrary to the symmetrical configuration case where for a
source term located at panel (l, m), there is only one equal-valued symmetrical image source
term located at panel (l, -m). In the case of two symmetry planes for the panel (l, m), there
are two infinite series of equal-valued image source panels which have to be considered. For
a given span position yl,m, which is the centre of panel (l, m), the corresponding position for
the equal-valued image source panels is placed periodically with a period of 2·s (see Fig. 12),
according to following equations:

yl,n1 = 2 · s · n1 − yl,m, n1 ∈ Z
yl,n2 = 2 · s · n2 + yl,m, n2 ∈ Z

… (18)

Note that there are two series of images. The solution of the TSP-equations for the
equivalent infinite wing constructed by reflecting the wing between the two symmetry walls
can now be obtained by taking into account only panels for the physical wing between the two
symmetry planes. For this case, equivalent influence coefficients for the point with indices (i,
j) due to a source at panel (l, m) are introduced. For a given panel with indices (l, m), these
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Figure 12. (Colour online) Swept wing between two symmetry planes placed at y = 0 and y = s and its
reflected wings (around these symmetry planes). The equal valued image sources corresponding to a

source placed on the physical wing at a point with indices (l, m) are indicated on the reflected wings. The
two possible series of sources are indicated with symbols (x) and (+).

equivalent influence coefficients, denoted μ̄s
i, j,l,m, μ̄a

i, j,l,m, ν̄s
i, j,l,m, ν̄∗s

i, j,l,m, ν̄a
i, j,l,m, ν̄∗a

i, j,l,m are
obtained by a sum which includes all influence coefficients with equal-valued source terms.
For example, μ̄s

i, j,l,m is given by:

μ̄s
i, j,l,m =

∑n1=+∞
n1=−∞ μs

i, j,l,n1
+

∑n2=+∞
n2=−∞ μs

i, j,l,n2
… (19)

Here the centre span position of panel (l, n1) and panel (l, n2) is given by Equation (18).
The corresponding equivalent TSP-equations for the case with two symmetry walls, are
obtained by using the equivalent influence coefficients in Equations (10) and (11), i.e. using
for example μ̄s

i, j,l,m instead of μs
i, j,l,m. As mentioned above, in this case, the indices (l, m)

only take into account panels lying between the two symmetry planes, i.e. only the physical
wing is considered and not the equivalent infinite wing. The dependency of the influence
coefficients on the distance between panel (i, j) and panel (l, n1), respectively, panel (l, n2),
shows a strong decay with increasing distance. Therefore, source images on reflected wings
placed at a distance large from the physical wing may be neglected. For the implementation
of the modified TSP-equations into the program, the infinite sum given in Equation (19) was
restricted, so that only an equal number of reflected wings to the left- and right-hand side of
the physical wing are considered.

To test the extended inverse design code, a constant chord swept wing with sweep 20° was
selected. The wing is placed between two side wind-tunnel walls which are considered as
symmetry walls (i.e. the boundary layer of the wind-tunnel walls is neglected). Since here
redesign cases are considered in order to show that the extended inverse code is taking into
account correctly the side walls, the upper and lower wind-tunnel walls are not considered.
The separation between the side walls of the wind tunnels is 0.73 m, which corresponds to
the Laminar Wind Tunnel Stuttgart. In order to consider a case with strong wind-tunnel
wall influence, the chord length was chosen as 1.00 m. Since in the spanwise direction, the
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wing pressure distribution shows a larger variation close to the symmetry walls, meshes
were constructed with small cells at the symmetry walls with a spacing which increases
exponentially towards the middle of the wing. The used structured meshes had 65 spanwise
sections. Each section was discretised in chordwise direction with 257 points. As in Section
5, first a redesign case for symmetrical aerofoils without twist was considered. This has the
advantage that only symmetrical modifications of the inverse design TSP-equations (modified
Equation (10)) are tested. Free-stream conditions are: M∞ = 0.18, Rec = 7 · 106, α = 0°.
The initial swept wing geometry has a NACA symmetrical aerofoil with thickness 0.024c.
Target pressure distribution is obtained using a symmetrical NACA aerofoil with thickness
0.06c. Note, that near to the symmetry walls the initial and pressure distributions show a larger
variation in spanwise direction. The design with the original inverse design method which only
takes into account the 1st symmetry plane, does not converge, especially at the 2nd symmetry
plane. Even if small values of the relaxation factors of geometry variation were selected
(rfa = rfs = 0.2). In contrast, the extended inverse design reaches an almost converged design
after 6 iterations with rfa = rfs = 0.4. The design was stopped after 10 iterations. Results
of the symmetrical redesign case are shown in Fig. 13 for five wing sections including span
positions corresponding to the wall sections and the wing middle section.

Next, a redesign case was studied which involves changes in thickness, camber and twist.
In this case both inverse design TSP-equations have to be solved. The previous initial
swept wing geometry was used. Free-stream conditions are: M∞ = 0.18, Rec = 4.19 · 106,
α = 0°. The target pressure distribution is obtained using a swept wing with a transonic
laminar aerofoil modified for low speed. It is obtained for α = 1°. Since design is performed
at α = 0°, in the design the wing surface has to be twisted by one degree. Again, initial and
target pressure distribution show a larger variation in spanwise direction near to the symmetry
planes. Note also that the differences between initial and target pressure distribution are large.
Figure 14 shows the untwisted target wing surface geometry and the wing surface design
result. Figure 15 shows pressure distribution results for this redesign case after eight design
iterations. A converged design (convergence in both: geometry and pressure distribution)
could not be obtained, even with the modified inverse design code. This, despite the use of
fine mesh and several design parameter variations. Also the solution method was changed,
i.e. solution of modified TSP (equations (10) and (11)) was applied sequentially, by setting
alternatively rfa or rfs to zero with the intention to have separate smoothing on the symmetrical
and asymmetrical geometry corrections. After eight iterations, the pressure distribution of
the designed geometry is very close to the target pressure distribution but close to the
walls there are differences between target and designed geometry. For a redesign case, this
result is unexpected, since for a unique solution, a good agreement is expected between
target and design for both quantities pressure distribution as well as geometry. On the other
hand, at wing wall intersections, geometry changes required to obtain a certain geometry
distribution are larger than corresponding ones on the wing itself. This is due to the fact that
in order to reach the target pressure distribution, the new aerofoil sections close to the wall
have to compensate the flow imposed by the wall without altering the wall (except for the
intersection). The remaining small differences in the pressure distribution for the rear loading
for the complete span (see Fig. 15) are considered uncritical, since usually they disappear
with further design iterations. Unfortunately, with further design iterations, the geometry
differences at the walls increase, generating regions with larger twist oscillations as shown
in Fig. 14. As a consequence, the designed pressure distribution then also deviates from the
target pressure distribution. Due to the difficulties for the case with twist changes, for the third
redesign case, the previous redesign case was selected but without a twist change between
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Figure 13. (Colour online) Swept wing redesign case between two symmetry planes with symmetric
aerofoils. Initial wing geometry has a symmetrical NACA aerofoil with t/c = 0.024. Target pressure

distribution was obtained for wing with NACA0006 aerofoil. Design result for design iteration 8.

Figure 14. (Colour online) Swept wing redesign case between two symmetry planes with twist, thickness
and camber change. Designed wing surface is given in dark colour shade and target wing geometry

(untwisted) in light colour shade.
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Figure 15. (Colour online) Swept wing between two symmetry planes for a redesign case with twist
thickness and camber change. Initial wing geometry has NACA aerofoil with t/c = 0.024. The target
pressure distribution was obtained for a wing with a laminar aerofoil for α = 1°. Design results are for

design iteration 8. Free-stream condition is M∞ = 0.18, Rec = 4.19 · 106, α = 0°.

initial and target geometry. It also involves both symmetrical (thickness) and asymmetrical
(camber) geometry corrections. Therefore, both modified TSP equations (Equations (10) and
(11)) are tested. The initial configuration is the same as in the previous case, but the free-
stream conditions for the design are changed to M∞ = 0.18, Rec = 4.19 · 106, α = 1°. The
target pressure distribution is the same as in the previous redesign case. Figure 16 shows
results for this redesign case after 15 design iterations. For the design, both the pressure
distribution and the wing geometry converge to the target pressure distribution, respectively,
target wing geometry.
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Figure 16. (Colour online) Swept wing between two symmetry planes. Results for a redesign case with
thickness and camber changes and without twist change. Initial wing geometry has NACA aerofoil with

t/c = 0.024. Target pressure distribution was obtained for wing with a laminar aerofoil for α = 1°. Design
results for design iteration 15. Free-stream condition is M∞ = 0.18, Rec = 4.19 · 106, α = 1°.

A variation of number of considered mirror wings to the left and right of the physical wing
was performed. Results show that the influence of mirror wings placed far away from the
physical wings is negligible and their consideration does not improve the design convergence.
All results presented here were obtained restricting the sum in Equation (19) to only one
mirror wing to the left and to the right of the physical wing. The modifications required
for the extension of the inverse design code for the two symmetry cases were described
in this section and validated with selected redesign cases. An application to a design case
is described in Ref. 28. Using the modified inverse design code, a constant chord swept
wing was designed for a wind tunnel with a spanwise constant (or nearly) constant laminar
pressure distribution. The constant pressure corresponds to an infinite swept wing pressure
distribution.
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7.0 CONCLUSIONS AND OUTLOOK
The DLR 3D inverse design method is an efficient design method based on the numerical
solution of the integral inverse small transonic perturbation (TSP) equations. In this work,
modifications and extensions have been introduced in the DLR 3D transonic inverse design
method. They were described and validated using redesign test cases.

The first modification concerns applications for high transonic Mach numbers close to
Mach 1 or transonic flow applications with strong shocks. For cases in which the original
inverse design failed to converge to the target pressure distribution, now the modified inverse
code provides a converged design. The second modification is the extension of the code
to general non-planar wings. Previously the design code was restricted to non-planar wing
designs cases with small dihedral or to nacelles (ring wing). A third modification concerns
aerofoil/wings designed for wind-tunnel design. For wind-tunnel applications, there are cases
where the influence of both lateral wind-tunnel walls (walls in wing spanwise direction) has
to be considered in the wing design. For such applications, the solution method of the inverse
TSP-equations was extended to two symmetry planes.

Concerning geometry, the used redesigned test cases involved a varying range of
complexity, so that both modified inverse TSP equations could be validated separately and
together. The most complete changes in geometry between initial and target geometry were
for redesign cases in which changes in thickness, camber and angle-of-attack/twist (2D/3D)
were required. A converging design was obtained for all redesign test cases, for target pressure
as well as for geometry, except for one of the cases considered in the modification taking into
account the two symmetry planes. Here the pressure distribution converged initially but not
the geometry. This case requires further study

The extensions and modifications introduced have increased robustness and the range of
applications of the DLR inverse design method. Here, for the validation of the modifications
redesign cases were used, in future real design cases can now be considered.
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