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Reynolds-number-dependent turbulent inertia
and onset of log region in pipe flows
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A detailed analysis of the ‘turbulent inertia’ (TI) term (the wall-normal gradient
of the Reynolds shear stress, d〈−uv〉/dy), in the axial mean momentum equation
is presented for turbulent pipe flows at friction Reynolds numbers δ+ ≈ 500, 1000
and 2000 using direct numerical simulation. Two different decompositions for TI
are employed to further understand the mean structure of wall turbulence. In the
first, the TI term is decomposed into the sum of two velocity–vorticity correlations
(〈vωz〉 + 〈−wωy〉) and their co-spectra, which we interpret as an advective transport
(vorticity dispersion) contribution and a change-of-scale effect (associated with the
mechanism of vorticity stretching and reorientation). In the second decomposition,
TI is equivalently represented as the wall-normal gradient of the Reynolds shear
stress co-spectra, which serves to clarify the accelerative or decelerative effects
associated with turbulent motions at different scales. The results show that the
inner-normalised position, y+m , where the TI profile crosses zero, as well as the
beginning of the logarithmic region of the wall turbulent flows (where the viscous
force is leading order) move outwards in unison with increasing Reynolds number
as y+m ∼

√
δ+ because the eddies located close to y+m are influenced by large-scale

accelerating motions of the type 〈−wωy〉 related to the change-of-scale effect (due to
vorticity stretching). These large-scale motions of O(δ+) gain a spectrum of larger
length scales with increasing δ+ and are related to the emergence of a secondary
peak in the −uv co-spectra. With increasing Reynolds number, the influence of the
O(δ+) motions promotes viscosity to act over increasingly longer times, thereby
increasing the y+ extent over which the mean viscous force retains leading order.
Furthermore, the TI decompositions show that the 〈vωz〉 motions (advective transport
and/or dispersion of vorticity) are the dominant mechanism in and above the log
region, whereas 〈−wωy〉 motions (vorticity stretching and/or reorientation) are most
significant below the log region. The motions associated with 〈−wωy〉 predominantly
underlie accelerations, whereas 〈vωz〉 primarily contribute to decelerations. Finally, a
description of the structure of wall turbulence deduced from the present analysis and
our physical interpretation is presented, and is shown to be consistent with previous
flow visualisation studies.
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1. Introduction

This paper aims to further the mechanistic description of turbulent wall flows
by clarifying the Reynolds-number-dependent properties and vorticity transport
mechanisms that underlie the wall-normal gradient of the Reynolds shear stress. Since
this gradient term derives from the time rate of change of momentum (i.e. inertial)
part of the Reynolds-averaged Navier–Stokes equation, it is referred to here as the
net mean effect of the turbulent inertia (TI), or simply ‘TI’ for short, and constitutes
the dynamically most significant term in the mean momentum equation (cf. (1.3)).

Mechanistic depictions of wall-flow structure typically rely on collections of eddies
of different sizes that deform and/or advect and interact with each other in varying
ways (on average) for varying wall-normal positions. As extracted from numerical
or experimental data, or proposed phenomenologically, coherent motion-based
descriptions have long been utilised to concisely reflect our physical understanding of
turbulent boundary layers (e.g. Perry & Chong 1982; Townsend 1987; Robinson 1991;
Adrian 2007). A long-standing challenge, however, is connected to substantiating such
descriptions from the equations of motion.

Herein, we start from the mean momentum equation for turbulent pipe flow, and
decompose the TI term using two methods. (In both cases, the decomposed terms
are further represented by their Fourier spectra.) The first method provides a means
for understanding the advective transport and change-of-scale effect mechanisms
associated with the TI, whereas the second quantifies the net accelerative effects due
to turbulence at various length scales. In this regard, it is relevant to note that Bernard
& Handler (1990) found that two fundamental mechanisms contribute to the Reynolds
stress: one is due to the displacement of momentum-carrying fluid particles, and the
other is a result of acceleration or deceleration of fluid particles. Both mechanisms
are closely associated with the vortical motions in the flow.

The present analyses suggest a possible physical mechanism for the observation that
the wall-normal location of the peak in the Reynolds shear stress moves outwards
under inner normalisation with increasing Reynolds number (e.g. Sreenivasan 1989;
DeGraaff & Eaton 2000; Wei et al. 2005; Buschmann, Indinger & Gad-el-Hak 2009),
as well as the associated (and sometimes independently presented) finding that the
wall-normal location of the beginning of the logarithmic region exhibits a dependence
on the square root of the Reynolds number (e.g. Wei et al. 2005; Klewicki 2010;
Marusic et al. 2013). Note that a Reynolds-number-dependent location for the onset
of the log region is distinct from classical (two-layer) theory, i.e. what is usually
presented in textbooks (e.g. Tennekes & Lumley 1972), which specifies that the log
region begins at a fixed O(ν/uτ ) location.

1.1. Streamwise mean momentum balance
The present study considers fully developed turbulent flow in a pipe. Before
providing further motivation, we present the relevant mean equations of motion.
Here the streamwise, radial and azimuthal directions are denoted as x, r and θ ,
with corresponding velocities represented as the sum of the mean and fluctuations,
i.e. Ux+ux, Ur+ur and Uθ +uθ , and similarly for the pressure, P+p. The streamwise
mean momentum equation for fully developed turbulent pipe flow is

0=− 1
ρ

∂P
∂x
+ ν

r
∂

∂r

(
r
∂Ux

∂r

)
− 1

r
∂

∂r
(r〈urux〉), (1.1)
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FIGURE 1. (Colour online) The three terms in (1.3). (a) For δ+≈ 1000, showing the mean
VF (dashed dotted line), mean effect of TI (dashed line) and PG (solid line). The grey
region is the layer III where VF ' TI ' PG. (b) An expanded view of the rectangle in
panel (a) encompassing layer III. Distributions for δ+≈ 500 and 2000, in thick (blue) and
thin (red) lines, respectively. The three dots are the location where VF = TI = −PG/2
(representing a central location within layer III) corresponding to the three δ+.

where ν is the kinematic viscosity, ρ is the density and 〈 〉 denotes ensemble-averaged
quantities. With a constant pressure gradient (PG) (which is related to the wall shear
stress, τw=−ρν dUx/dr|w), (1.1) can be written as (see e.g. Tennekes & Lumley 1972)

0= 1
δ

τw

ρ
+ ν ∂

2Ux

∂r2
+ ∂(−〈uxur〉)

∂r
. (1.2)

We define the wall-normal coordinate y= δ − r and the respective velocities U =Ux,
V = −Ur and W = −Uθ with the corresponding fluctuating components, u = ux,
v = −ur and w = −uθ . (Note that in the wall-normal system the direction of the
angular coordinate and the corresponding velocity have to reverse directions to keep
the coordinate system right-handed.) Superscript ‘+’ denotes inner normalisation,
i.e. scaling with the viscous length and velocity scales, ν/Uτ and Uτ , respectively,
where Uτ =√τw/ρ is the friction velocity. Rewriting (1.2) in terms of a coordinate
system fixed to the pipe wall and inner normalising yields the equation for the mean
momentum balance,

0= d〈−uv〉+
dy+︸ ︷︷ ︸

TI

+ d2U+

dy+2︸ ︷︷ ︸
VF

+ 1
δ+︸︷︷︸
PG

. (1.3)

The first term on the right-hand side of (1.3) is the time-averaged effect of the
turbulent inertia, TI, while the second and the third terms are the mean viscous force
(VF) and mean pressure gradient, PG, respectively. The corresponding equation for
turbulent channel flows has the same form as (1.3), whereas for a turbulent boundary
layer the PG term is replaced by the mean inertia term, which in order of magnitude
is similar to that of the PG term. These observations imply that the results herein also
have relevance to turbulent channel flow, and in large part to boundary layers as well.

Figure 1(a) shows the terms in (1.3) at δ+ (= δUτ/ν)≈ 1000. Following Wei et al.
(2005), we consider four regions, depending on the leading-order balance between
the terms in (1.3). Region II is where TI ' VF, region III is where all the terms
in (1.3) are of the same order (shown in filled grey colour), and region IV is the
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FIGURE 2. (Colour online) Peak location of the Reynolds shear stress (〈−uv〉+), y+m or the
zero crossing of TI as a function of

√
δ+. The open triangles are from the DNS database

used in this paper, whereas the filled circles correspond to the shear stress calculated from
the mean velocity profile of the smooth ‘superpipe’ data of Hultmark et al. (2013) using
(1.3). The dashed black line is a least-squares fit of all the data, y+m = 1.77

√
δ+, and the

shaded region is between the lines y+m = 1.6
√
δ+ and 2.0

√
δ+. The inset shows the same

data on a log–log scale with y+m versus δ+, and the three dashed (blue) lines have slopes
3/4, 1/2 and 1/4 from top to bottom.

inertial region where TI' PG. (Note that region I, where PG'VF, is very close to
the wall and not depicted in figure 1.) The end of region III (or the beginning of
region IV) is the beginning of the log region where the VF term loses leading order
(e.g. Wei et al. 2005; Klewicki 2013b). The location of layer III is enclosed in
figure 1(a) by a rectangle, which is again shown in figure 1(b) along with data from
δ+ ≈ 500 and 2000. The location surrounding layer III (approximately centred on the
dots that denote the position where VF= TI=−0.5PG) is clearly seen to be moving
to larger y+ with increasing δ+.

Notice that the effect of turbulence in the mean momentum equation is explicitly
contained in the TI term. In the near-wall region, TI acts like a momentum source
(a positive TI) that is counterbalanced by the mean VF. Away from the wall, the TI
motions act as a sink of momentum (a negative TI) to counterbalance the momentum
being input by the mean PG (Klewicki et al. 2007; Eyink 2008).

Overall, momentum transport in turbulent wall flows is largely dictated by the
mechanical stirring associated with inertia of the turbulent eddies. As made apparent
by the above discussion, this effect is embodied in the TI term of (1.3). Owing
to this, the overarching first aim of this investigation is to characterise the effects
of Reynolds-number variation on the TI, and to clarify the resulting consequences
relative to the structure of (1.3). As described above, attaining this goal is fostered
by decomposing the TI term into two different (albeit equally valid) spectral
decompositions. A central issue relating to Reynolds-number dependence is the
position of layer III, which, by its definition, always contains y+m , the location of the
zero crossing of TI (or the peak location of −〈uv〉+) and across which the VF term
in (1.3) loses leading-order importance. This behaviour is now briefly discussed.

1.2. Wall-normal location of the peak in Reynolds shear stress

Figure 2 shows y+m as a function of
√
δ+ over the range 500 . δ+ . 100 000. The

high-Reynolds-number y+m data of figure 2 (filled circles) are determined by employing
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the once-integrated form of (1.3) in combination with the (second-order-accurate)
numerically differentiated mean velocity profiles of Hultmark et al. (2013). Along
with the inset (which helps to compare the various power-law behaviours of y+m),
the figure clearly supports y+m ∼

√
δ+ scaling. The y+m scaling is already known both

empirically and analytically (e.g. Sreenivasan 1989; Sreenivasan & Sahay 1997; Wei
et al. 2005; Buschmann et al. 2009; Klewicki 2010), and figure 2 supports this
finding with new direct numerical simulation (DNS) and high δ+ experimental data.

Note that the classical two-layer description of the turbulent boundary layer might
seem to ‘predict’ the

√
δ+ scaling of y+m . This is usually obtained by substituting the

log-law distribution of U+ into the mean momentum equation (1.3), and substituting
d〈−uv〉+/dy+ = 0. There are at least two serious problems with this approach.
(i) With reference to figure 1, it is shown that the zero crossing of TI (or the
location of the peak in the Reynolds shear stress distribution, y+m) is ‘below’ layer
IV or the inertial/log region, and not ‘inside’ the log region (since VF is still
of importance at y+m , unlike in layer IV, where VF loses its dominance), and the
two-layer ‘prediction’ of y+m assumes y+m to be inside the log region, which is not
correct. (ii) The classical theory first finds the solution for U+(y+), the log law,
when both U+(y+) and 〈−uv〉+ are unknowns in a single unclosed mean momentum
equation, whereas in the determination of the logarithmic law for the mean velocity
from the theory described in Fife, Klewicki & Wei (2009), both U+(y+) and 〈−uv〉+
are simultaneously determined, as they must be since they are the unknowns in the
mean momentum equation (1.3).

The outward movement of y+m ∼
√
δ+ is directly associated with the outward

movement of layer III, and, along with the fact that the width of layer III is
≈1.0
√
δ+ (see Wei et al. (2005) for an analytical description and experimental

evidence), shows that the beginning of layer VI or the lower bound of the logarithmic
region moves outwards like

√
δ+ (e.g. Afzal 1982; Wei et al. 2005; Klewicki 2013b).

This Reynolds-number dependence is seen empirically in both the mean streamwise
velocity profiles and the streamwise turbulence intensity profiles for both pipes and
boundary layers (Marusic et al. 2013). The detailed physical mechanisms that give
rise to this behaviour are, however, not known.

Our second more specific aim is to present a plausible explanation of this movement
of the beginning of the log region (in viscous scaling) with Reynolds number (and the
corresponding scaling of y+m) using the spectral decomposition described in § 2.

1.3. Organisation of the rest of the paper
The rest of the paper is organised as follows. Section 2 presents the two types
of decompositions and their spectral representations that will be used throughout
this paper. Section 3 presents the primary results from the decompositions and
provides some physical interpretations of these results. The decompositions are also
analysed in terms of the large- and small-scale contributions, the results of which
have implications regarding the onset of the logarithmic region. In § 4 we summarise
the main results from the analyses, and subsequently present further interpretations
regarding the underlying physical mechanisms.

2. Decomposition of the turbulent inertia term
The TI term is decomposed into two different forms to aid in educing the flow

physics. Although only sparingly employed, owing to the inherent measurement
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challenges, these decompositions have been explored previously by Klewicki (1989),
Guala, Hommema & Adrian (2006), Balakumar & Adrian (2007) and Morrill-Winter
& Klewicki (2013). These two decompositions have, however, never previously been
employed in concert. As will become apparent, this significantly clarifies the relevant
flow physics.

The first decomposition is

∂〈−uv〉+
∂y+

= 〈vωz〉+ + 〈−wωy〉+, (2.1)

which holds for a streamwise-independent mean quantity (Tennekes & Lumley 1972).
The relevant vorticity (ω =∇ × u) component fluctuations are −ωz = ωθ = ∂ur/∂x−
∂ux/∂r and −ωy =ωr = (1/r) ∂ux/∂θ − ∂uθ/∂x.

A physical interpretation of the two terms on the right-hand side in (2.1) (consistent
with Taylor (1932), Tennekes & Lumley (1972) and Klewicki (1989)) aids in forming
a mechanistic view of wall-bounded turbulent flows from the data. In his vorticity
transport theory, Taylor (1932) considered 〈vωz〉 and interpreted it in terms of gradient
transport. Tennekes & Lumley (1972) applied scaling arguments to 〈−uv〉∼ u∗l ∂U/∂y
by employing a generic mixing length representation, where u∗ is a characteristic
constant velocity and l(y) is a length scale that depends on wall normal position
(the usual case for wall-bounded turbulent flows). Here, we note that for a generic
turbulent flow a mixing-length-based description is inadequate. In the context of wall-
bounded turbulence, however, these arguments have use in qualitatively describing
the scaling of the terms in (2.1). Considering this, the TI term is seen to scale as
−(u∗l ∂Ωz/∂y)− (u∗Ωz ∂l/∂y), where Ωz =−∂U/∂y.

The term 〈vωz〉+ (=〈urωθ 〉+), the first term on the right-hand side of (2.1),
represents the mean effect of motions bearing spanwise vorticity being advected by
the wall-normal velocity fluctuations. Following Morrill-Winter & Klewicki (2013),
this mechanism is herein called ‘vorticity dispersion’ (or advection of vorticity). The
second term corresponds to 〈−wωy〉+ (=〈−uθωr〉+), and may be interpreted as a body
force associated with the change of scale of eddies in a flow field of varying length
scale (∂l/∂y), called the ‘vorticity-stretching inertial force’ (Tennekes & Lumley
1972). Note that, strictly, ‘vortex stretching’ has a form of strain rate operating on a
component of vorticity (e.g. Tennekes & Lumley 1972, p. 83). However, in the case
of wall-bounded turbulent flows, consistent with the scaling arguments of Tennekes &
Lumley (1972, pp. 80, 85), the analysis of the vorticity transport equation and mean
enstrophy equation by Klewicki (2013a) reveals that 〈−wωy〉+ has an effect that is
associated with the physical mechanism of vorticity stretching and reorientation.

The 〈vωz〉+ and 〈−wωy〉+ contributions can further be decomposed into their
respective co-spectra. This allows analysis of the contributions from different
streamwise wavelengths (λ+x ). Thus,

〈vωz〉+ =
∫ ∞

0
Φ+vωz

d log(λ+x ),

〈−wωy〉+ =
∫ ∞

0
Φ+−wωy

d log(λ+x ),

 (2.2)

where Φ+vωz
= kxφ

+
vωz

is the premultiplied co-spectrum of v and ωz, kx is the streamwise
wavenumber, and a similar definition holds for Φ+−wωy

.
The representation of the correlations in terms of their spectral content allows

the contributions to TI to be characterised relative to their scale. Apart from
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δ+ Lx/δ 1x+ 1y+|wall 1rθ+|wall TUb/Lx

500 20π 6.83 0.070 8.2 22
1002 8π 7.87 0.033 6.6 12
2003 3π 9.22 0.024 7.6 6

TABLE 1. DNS computational parameters. Here, Lx is the computational domain length;
1x+, 1y+ and 1rθ+ correspond to the streamwise, radial and azimuthal grid resolutions;
and TUb/Lx is the wash-through time based on bulk velocity Ub and domain length Lx
where the statistics are averaged.

the well-known near-wall streaks that are ∼1000 viscous scales long and spaced
∼100 viscous scales wide (e.g. Kline et al. 1967; Robinson 1991), the existence of
large-scale motion (LSM) having a streamwise extent of 2δ–3δ has been documented
in boundary layers, pipes and channels (e.g. Kim & Adrian 1999; Adrian, Meinhart &
Tomkins 2000; Marusic 2001; Balakumar & Adrian 2007; Dennis & Nickels 2011).
There also exists very-large-scale motion (VLSM) in pipes and channels whose
lengths are in excess of 10δ (Monty et al. 2007; Lee & Sung 2013) and similarly
superstructures in boundary layers (Hutchins & Marusic 2007). These LSM and
VLSM have been evidenced to modulate the small scales in layer II (Mathis et al.
2009; Marusic, Mathis & Hutchins 2010) and contribute to an increasing fraction of
the total turbulence kinetic energy with increasing δ+.

The second decomposition of TI is given by the integral of the derivative of the
co-spectrum of u and v,

∂〈−uv〉+
∂y+

=
∫ ∞

0

∂Φ+−uv

∂y+
d log(λ+x ), (2.3)

which can be written as contributions from small and large scales:

∂〈−uv〉+
∂y+

=
[∫ λ+c

0

∂Φ+−uv

∂y+
d log(λ+x )

]
SS

+
[∫ ∞
λ+c

∂Φ+−uv

∂y+
d log(λ+x )

]
LS

. (2.4)

In (2.4), SS and LS correspond to cut-off wavelengths at the small scales and the
large scales, respectively. The values of the cut-off wavelengths employed herein are
specified later. Equation (2.3) is interpreted as the net turbulent force spectra by Guala
et al. (2006) (since TI is part of the mean momentum balance or the streamwise force
balance), whereby positive contributions are associated with accelerations and negative
contributions are associated with decelerations.

3. Results and discussion

Data from DNS by Chin et al. (2010) and Chin, Monty & Ooi (2014) are used
to carry out an analysis of the TI term in (1.3). The Reynolds number ranges from
δ+≈ 500 to 2000. A summary of the DNS datasets is shown in table 1. More details
regarding the simulations can be found in Chin et al. (2010, 2014).

Figure 3(a,b) shows the variation of Reynolds stress and its wall-normal gradient
with wall-normal location (y+) for three different δ+. The peak value of 〈−uv〉+
increases correspondingly with δ+, and is attained on an increasingly broad plateau
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FIGURE 3. (Colour online) Reynolds-number effect on (a) the Reynolds stress 〈−uv〉+
and (b) the TI (∂〈−uv〉+/∂y+). The arrow in (a) denotes increasing Reynolds numbers,
with δ+ ≈ 500 (blue dot-dashed line), 1000 (black solid line) and 2000 (red dashed line).

with increasing δ+, as described by Sreenivasan & Sahay (1997). The value of y+m
increases with δ+ and is observed to increase like

√
δ+, as presented in figure 2,

and in agreement with a number of previous analyses and measurements (e.g. Afzal
1982; Sreenivasan & Sahay 1997; Abe, Kawamura & Matsuo 2001; Wei et al. 2005;
Buschmann et al. 2009; Klewicki et al. 2012).

3.1. Velocity–vorticity decomposition
The TI term is decomposed into a velocity–vorticity form according to (2.1),
and the wall-normal variations of each correlation are shown in figure 4(a,b) for
δ+ ≈ 500, 1000 and 2000 (and the inset shows a zoomed-in view of a portion of the
distribution). Note that the relationship between figures 3(b) and 4(a,b) is given by
(2.1). Figure 4(a) presents the 〈vωz〉+ term, which appears to remain nearly invariant
over the given Reynolds-number range. The 〈−wωy〉+ term in figure 4(b) exhibits
more readily noticeable changes under inner normalisation with increasing δ+. The
contributions from 〈vωz〉+ and 〈−wωy〉+ to the TI vary with y+ and δ+. Their relative
contributions to TI are clarified by taking the ratio of 〈vωz〉+ and 〈wωy〉+, as shown
in figure 5(a). From (2.1), it is apparent that this ratio must pass through unity at
y+m . Figure 5(b) is a zoomed-in view of the region surrounding y+m . Beyond y+m , the
〈vωz〉+ term becomes larger than the 〈−wωy〉+ term.

Given the information in figures 2, 3 and 5, we now use figure 4 to clarify
which scales are responsible for the increase in the 〈−wωy〉+ contribution with δ+
in the region interior to y+m . Spectra of 〈vωz〉+ and 〈−wωy〉+ (figure 4c–h, left and
right column, respectively) reveal the underlying scale contributions according to
the decomposition of (2.2). In pre-multiplied form, the area under the spectrogram
quantifies the contribution to the correlation. Almost independent of Reynolds number,
the 〈vωz〉+ co-spectra seem to be relatively fixed. Conversely, the 〈−wωy〉+ term,
however, exhibits much more apparent changes in scale with δ+. Note further that
we have plotted a dashed line at y+ = y+m in figure 4(d, f,h), denoting where the peak
of 〈−uv〉+ occurs, or equivalently where the TI term passes through zero. These
spectra indicate that the 〈−wωy〉+ contributions vary with δ+ primarily at wavelengths
that are O(δ+), and these variations are primarily about the wall-normal location of
y+ = y+m .
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FIGURE 4. (Colour online) Decomposition of (a) 〈vωz〉+ into ((c) δ+≈ 500, (e) δ+≈ 1000
and (g) δ+≈ 2000), the co-spectra of v and ωz, Φvωz . Decomposition of (b) 〈−wωy〉+ into
((d) δ+ ≈ 500, ( f ) δ+ ≈ 1000 and (h) δ+ ≈ 2000), the co-spectra of −w and ωy, Φ−wωy .
Line styles in (a) and (b) are as in figure 3. Colour map goes from −0.003 (blue) to 0.003
(red). The black dashed line is at y+= y+m . The insets in (a) and (b) are zoomed-in views
of the portion of the distribution showing their variation close to the zero line. Contour
level begins at −0.009 with increments of 0.002.
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FIGURE 5. (Colour online) (a) Comparison of the ratios of 〈vωz〉+ and 〈wωy〉+ for
different Reynolds numbers δ+≈ 500 (blue squares), 1000 (black triangles) and 2000 (red
circles). (b) Zoomed-in region within the enclosed grey lines.

This observation is consistent with previous findings that the large-scale motions
(residing beyond y+m) modulate the near-wall flow (Marusic et al. 2010), and in doing
so influence the near-wall vorticity redistribution processes (Morrill-Winter & Klewicki
2013), as well as possibly increasing the streamwise length of the vortices near the
wall with increasing Reynolds number (Wei & Willmarth 1989).

The 〈−wωy〉+ term provides the dominant positive contribution to the TI term
over the domain close to the wall. On the other hand, 〈vωz〉+ changes sign close to
the wall, going from positive very close to the wall to negative a little farther from
the wall, as observed in the left column of figure 4. To investigate this further, we
consider the joint probability density function (p.d.f.) of v and ωz at y+ ≈ 5, where
〈vωz〉+ is strongly positive. This joint p.d.f., at δ+= 1000, is presented in figure 6(a).
The thinner upper panel shows the p.d.f. of ωz and the thinner right panel displays
the p.d.f. of v. From the distribution of the joint p.d.f. of v and ωz, it is unclear
which quadrant is dominant. To clarify this, figure 7(a) shows the weighted joint
p.d.f. of vωz, which is obtained by multiplying the joint p.d.f. contribution (figure 6a)
by the vωz value at each v and ωz. The weighted joint p.d.f. is shown as a percentage
contribution of the total 〈vωz〉+. The contour lines begin at 0.015 with increments
of 0.015. The results in figure 7(a) show that the first quadrant dominates, with a
47 % contribution. This is consistent with the vertical advection of sublayer streaks,
which comprise positive ωz (because the mean spanwise vorticity has a magnitude
that is large compared to the fluctuations at these y+ locations very close to the
wall) and are carried upwards by the vertical velocity (Klewicki, Murray & Falco
1995). A similar analysis is performed at y+≈ 18. This wall-normal location is where
〈vωz〉+ attains its largest negative value (see figure 4a). Here the second quadrant is
seen to be predominant, contributing 38 % to the overall 〈vωz〉+, whereas the fourth
quadrant contributes 28 %. Second-quadrant motions are interpreted as comprising
clockwise-rotating vortical motions that are translating away from the wall (Klewicki
et al. 1995; Klewicki & Hirschi 2004). This can be viewed as the heads of the
hairpin vortices that detach from the sheet-like sublayer vorticity field and advect
outwards, as incorporated in a variety of physical models (e.g. Perry & Chong 1982;
Wallace 1982; Zhou et al. 1999; Adrian et al. 2000).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

48
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.486


Re-dependent turbulent inertia and onset of log region in pipe flows 757

2

1

0

–1

–2 –1 0 1 2 0 5

2

1

0

–1

–2 –1 0 1 2 0 1

3

0

3

0

(a) (b)

FIGURE 6. (Colour online) Joint p.d.f. of (vωz) at wall-normal location (a) y+ = 5 and
(b) y+= 18 for δ+≈ 1000. The thinner upper panel shows the p.d.f. of ωz and the thinner
right panel shows the p.d.f. of v.
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FIGURE 7. (Colour online) Weighted joint p.d.f. of vωz at wall-normal location (a) y+= 5
and (b) y+ = 18 for δ+ ≈ 1000. Contours begin at 0.015, with increments of 0.015.

3.2. Force spectrum decomposition
Spectrograms of the co-spectra Φ+−uv for DNS channel flow at δ+ ≈ 550 and 950
have previously been presented by del Álamo & Jiménez (2003) and del Álamo
et al. (2004), as well as in pipe flow DNS by Wu, Baltzer & Adrian (2012) at
δ+≈ 685. Wu et al. (2012) employed a perspective that focused on describing the net
turbulent force. Here we focus on developing a physical understanding of the kinds
of vortical motions that contribute to the TI term. Reynolds-number effects on Φ+−uv
have previously been studied experimentally by Guala et al. (2006) and Balakumar &
Adrian (2007). The experimental measurements by Balakumar & Adrian (2007) are,
however, taken at limited wall-normal locations between 0.05 < y/δ < 1, with their
nearest wall measurement being y+ ≈ 64 at δ+ ≈ 531.

The pre-multiplied co-spectrum of the Reynolds stress, Φ+−uv, is shown in the
left column of figure 8, and its derivative, ∂Φ+−uv/∂y+, is displayed on the right of
figure 8 for δ+ ≈ 500, 1000 and 2000 in panels (b), (d) and ( f ), respectively. The
right column of figure 8 can also be obtained by adding the co-spectra of 〈vωz〉+

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

48
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.486


758 C. Chin, J. Philip, J. Klewicki, A. Ooi and I. Marusic

100

100

10–1

100

101

10–1

100

101

10–1

101 102

102

103

103

104

102

103

104

102

103

104

100 101 102 103

A

B
C

D

E

A

B
C

D

E

A

B
C

D

E

F

F

F

0.05 0.30 –0.001 0.0010

(a)

(c)

(e)

(b)

(d)

( f )

FIGURE 8. (Colour online) Co-spectra for increasing Reynolds number for δ+≈ 500, 1000
and 2000 from top to bottom. Left column for the co-spectra of Reynolds stress Φ+−uv .
The white ‘×’ denotes the inner peak location at y+ ≈ 30, λ+x ≈ 700. Right column for
the co-spectra of ∂Φ+−uv/∂y+. In the left column, the black dashed line is at λ+x =3000 and
the black solid line corresponds to λ+x = 3δ+. Note that, for δ+ ≈ 1000, λ+x = 3δ+ = 3000.
In the right column, the black dashed line is at y+ = y+m and the black dot-dashed line is
at y+ = 5. The white dashed line is at λ+x = 300 and white solid line is at λx/δ = 3.

(figure 4, left column) and 〈−wωy〉+ (figure 4, right column). The positive (red)
regions contribute to acceleration and the negative (blue) regions to deceleration.
The left column of figure 8 clearly shows the effect of Reynolds number on the
co-spectra of uv. These results provide evidence that a secondary peak emerges with
increasing δ+. This conclusion, however, is somewhat tempered by the length of
the computational domain at the highest δ+ being a little smaller than desired. It is
interesting to note that the location of the inner peak (denoted by the white ‘×’ on
the figure) appears essentially invariant (at y+ ≈ 30 and λ+x ≈ 700) for varying δ+.
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The wall-normal derivative of Φ+−uv is shown in the right column of figure 8
with increasing Reynolds number. The colour map ranges from −0.001 (blue) to
0.001 (red). From the spectrogram, one can easily identify the contributions from
different length scales to the overall flow. Blue corresponds to momentum sink-like
contributions, and red to momentum source-like contributions. In the viscous sublayer
(denoted by a vertical black dot-dashed line), the results for all three Reynolds
numbers are similar, consisting of a strong momentum source over the entire
wavelength domain.

Note that in their force spectrum analysis of pipe flow at a fixed δ+ = 685, Wu
et al. (2012) identified three spectral ranges in wavelength space to understand the
acceleration or deceleration caused by different scales of motion. The first range
includes wavelengths up to 0.5δ, which they called the ‘main turbulent motions’.
The next range is associated with the LSM and extends from 0.5δ to 3δ. The third
range extends beyond 3δ, which they identify as the VLSM. The white horizontal
dashed and solid lines in figure 8 (right column) correspond to λ+x = 300 and λx= 3δ,
respectively. The figures also show several regions marked with letters A to E
corresponding to regions of approximately constant spectral intensity (acceleration
and deceleration in shades of red and blue, respectively). The relative movement
of the solid horizontal (white) lines and these constant force regions suggests that
Reynolds-number variations cause non-trivial changes in normalised size of the
underlying coherent motions. The regions below the λ+x ≈ 300 (A, B and C) line,
however, seem fixed with δ+, even though other regions depend on δ+. In what
follows, we analyse each region separately.

An immediately noticeable feature is the small island (region A) of negative
contribution. This region is approximately located between 5< y+< 20 and λ+x < 120
and is present for all Reynolds numbers shown here. The mechanism behind the
occurrence of momentum sink A can be identified from the decomposition of TI
into 〈−wωy〉 and 〈vωz〉+ terms shown in figure 4. This is clarified in figure 4(c,e,g)
and (d, f,h) by focusing on the region 5 < y+ < 20 and λ+x < 120. Here it is seen
that region A mainly derives from the negative co-spectrum of vωz. This negative
co-spectrum has to be due to either v or ωz being negative, but not both. The analysis
in § 3.1 (cf. figure 7b), however, suggests that region A is primarily due to positive
v and negative ωz, i.e. clockwise spanwise vortical motions being advected upwards
by the wall-normal velocity (consistent with the lifting head of a hairpin-like vortex).

Region B shows a small momentum source zone, also seen previously by Balakumar
& Adrian (2007) and Wu et al. (2012). The present results suggest that region B
remains essentially invariant with Reynolds number. The origin of this isolated
acceleration can be discerned from figure 4. In figure 4(c,e,g), the (y+, λ+) region B
is a weak momentum source. More significantly, the 〈−wωy〉+ term (figure 4d, f,h),
exhibits a clear momentum source zone in the same (y+,λ+) domain of B. When both
of the velocity–vorticity contributions are combined, one observes the manifestation
of flow acceleration as shown in region B in figure 8.

Regions C and D are also momentum sink zones, their nature, however, being
different from that of region A. Region A solely derives from the vωz contribution,
since the wωy co-spectrum is essentially zero over the relevant λ+ range. On the other
hand, region C is positioned at a y+ position beyond which the co-spectrum of wωy is
non-zero, while D seems to have the most complexity, as it results from a non-trivial
difference between vωz and wωy co-spectra. Here we note that C seems invariant,
whereas D seems to focus around a narrowing wavelength range with increasing
δ+. The wavelengths that bound D range from λ+x ≈ 300 (constant for all δ+) to
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λ+x ≈ 8δ+ (δ+ ≈ 500), 4δ+ (δ+ ≈ 1000) and 1.5δ+ (δ+ ≈ 2000). This bounding limit
differs from that reported by Wu et al. (2012) of 0.5δ–3δ. This could be reasoned
by the difference in Reynolds number and the effects of LSM and VLSM at higher
Reynolds numbers.

From figure 8, there is evidence that the reduction of the bounding wavelength
limit of D is due to the presence of a momentum source region E, which spans a
greater (y+, λ+) domain with increasing Reynolds number. Guala et al. (2006) and
Balakumar & Adrian (2007) have shown that, within the logarithmic region, the
VLSM is associated with a positive peak in ∂Φ−uv/∂y. From the spectra, is it clear
that LSM and VLSM exist and are associated with accelerations. This momentum
source zone increases in intensity with increasing δ+ while extending both radially
towards the centre of the pipe and also into the lower wavelengths as seen in the
δ+ ≈ 1000 and 2000 cases. Our limited δ+ range suggests that the lower end of
region E is limited to about λx ≈ 3000, which seems to be the upper bound of the
‘inner hump’ in the −uv co-spectra.

The intensity of region F in the outer region (y+ > 0.5δ+) seems to diminish in
strength as a momentum sink with increasing δ+, and at δ+≈ 2000 one can notice the
onset of a momentum source. The contribution of 〈−wωy〉+ (figure 4, right column)
increases in the very outer region of the flow with Reynolds number (albeit weakly),
therefore leading to this observation. The main effects underlying these observations
are likely to be associated with the weakening negative Reynolds stress gradient (under
inner normalisation) with increasing Reynolds number. Another hypothesis could be
the effects of the VLSM in E, whereby there is momentum transfer from E to F. Now
with a better understanding of regions A, B, C and D, it would appear that A, C
and D are part of a larger momentum sink region (figure 4c,e,g); the discontinuity
of this large momentum sink as seen in B is due to a strong momentum source
(figure 4d, f,h).

Note that in figure 8 (right column) we have also included a black dashed vertical
line at y+ = y+m , or where the integral of ∂Φ+−uv/∂y+ over all the wavelengths is zero
(i.e. the accelerating and the decelerating motions cancel each other). The location
of the line suggests that at lower δ+ the small-scale acceleration (region B) cancels
the larger-scale deceleration (region D), whereas at higher δ+ it is the largest-scale
acceleration (region E) that counteracts the relatively smaller-scale deceleration (in
regions D and C). It is the growth of the large-scale accelerating motions (region
E) that underlies the properties associated with the peak in the Reynolds shear stress.
From the previous section, it is evident that the LSM is associated with the change
in scale of the eddies.

3.3. Effect of small and large scales on the mean momentum balance
Analysis of the co-spectra underlying the TI term allows one to investigate the effects
and contributions of the motions at small and large scales (SS and LS) on (1.3) using
(2.4). To do this, a suitable cut-off wavelength (λ+c ) is chosen to segregate the scales
of motion characteristic of the contributions to the near-wall peak in the co-spectra of
uv from those of much larger scale.

From figure 8 (left column), a cut-off wavelength of λ+c = 3000 (shown as a black
dashed line) is seen to nominally segregate the large scales from the small scales over
the present Reynolds-number range. Note that the location of this ‘inner hump’ in
the Reynolds shear stress co-spectra is observed to be invariant (for our δ+ range)
under inner normalisation. Thus, for the present purpose, we adopt this threshold to
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FIGURE 9. (Colour online) Effects and contribution of SS and LS to the (a) 〈−uv〉+ and
(b) TI for Reynolds number δ+≈ 500 (blue), 1000 (black) and 2000 (red) using a cut-off
wavelength of λ+c = 3000. Dashed lines correspond to SS (λ+x < λ

+
c ) and solid lines are

for LS (λ+x > λ
+
c ).

demarcate LS and SS. (We suspect that a more refined cut-off wavelength is probably
required when considering a wider range of Reynolds number.)

The current DNS datasets allow the influences of the SS and LS motion to be
quantified as a function of Reynolds number, via the decomposition of (2.4). Figure 9
shows the effects and contributions to the Reynolds stress and the TI. Note that, at
any given y+, the value of the TI term is essentially the integration of figure 8 (right
column) across the entire wavelength, λ+x , range. Figure 9 shows the decomposition
for the chosen cut-off wavelength of λ+c = 3000, which, while large, is fixed in viscous
units. The coloured lines correspond to δ+≈ 500 (blue), 1000 (black) and 2000 (red).
The dashed lines correspond to the SS contributions and the solid lines are for the
LS contributions. Figure 9(a) shows that profiles of the SS contribution to 〈−uv〉+
remain similar for all δ+, with only a slight increase in the near-wall peak value.
It is apparent that the LS contribution begins to increase with Reynolds number at
wall-normal distances beyond y+= 20. It is interesting to note that for the δ+≈ 2000
data the LS contribution becomes greater than the SS contribution above y+ ≈ 300
(y = 0.15δ), achieving a peak relative contribution of 65 % at y+ ≈ 1000 (y = 0.5δ).
This is qualitatively distinct from the lower δ+ cases, where the SS contribution
everywhere exceeds the LS contribution. The LS contribution remains greater up to
a wall-normal location of y+ ≈ 1800 (y = 0.9δ), which agrees with the findings of
Guala et al. (2006) at similar Reynolds numbers. Above this wall-normal location,
the LS contribution begins to decrease gradually to approximately 35 % at the pipe
centre. The effect of λ+c was explored (not presented here) by comparing with an
analysis that employed λ+c = 3δ+. (Note that, for δ+ ≈ 1000, λ+c = 3000 is identical
to λ+c = 3δ+.) For λ+c = 3δ+, the LS contribution is consistently less than the SS
contribution for all wall-normal locations.

The overall contributions to 〈uv〉+ (found by integrating from the wall to the centre)
from the SS and LS components for both λ+c are summarised in table 2. Results for
λ+c = 3δ+ show that the ratio of SS to LS contribution remains very similar for all
Reynolds numbers considered in this study. These results agree with the pipe flow
DNS findings of Wu et al. (2012) at δ+≈ 685. They reported that the SS contribution
is 65 %, and the LS contribution is 35 %.
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δ+ SS (λ+x < 3δ+) LS (λ+x > 3δ+) SS (λ+x < 3000) LS (λ+x > 3000)

500 0.61 0.39 0.78 0.22
1002 0.64 0.36 0.64 0.36
2003 0.65 0.35 0.47 0.53

TABLE 2. Average contribution of SS and LS to the Reynolds stress 〈−uv〉+ using cut-off
wavelengths scaled with viscous length scale and δ at λ+c = 3000 and 3δ+ at different δ+.

At first glance it might appear that, above the near-wall region, the SS and LS
contributions to the TI term merge onto a single profile. Close examination in the
region 20 < y+ < 200 (see insert of figure 9b), however, clearly reveals variations
with δ+. For all δ+, the SS profiles cross the abscissa at y+ ≈ 45. For the LS
profiles, the crossing of the abscissa moves to increasing y+ with increasing δ+.
Recall, in figure 3(b), that the zero crossing of the TI increases with Reynolds
number as mentioned in figure 4(b). Since the SS profiles remain approximately
invariant with δ+, the LS contribution is identified as having a primary association
with this zero crossing at increasing y+. A further investigation of the LS and SS
contributions under the decomposition of (2.2) was also performed with a similar
cut-off wavelength as in figure 9 (not shown here). It essentially reveals a similar
conclusion (to that obtained with reference to figure 4) that, close to y+m , the 〈−wωy〉+
term is dominated by larger-scale motions with increasing δ+, while the LS and SS
contributions to the 〈vωz〉+ term are nearly invariant over the present δ+ range. Also
note that, under the fixed viscous cut-off employed, the SS profiles (in figure 9a)
show a Reynolds-number dependence near the wall in accordance with the near-wall
variation in 〈−wωy〉+ (cf. figure 4b).

3.4. Implications regarding the logarithmic region
The region where U+(y+) is logarithmic is often reasoned to constitute an inertial
sublayer in physical space (e.g. Tennekes & Lumley 1972). Dynamically, this implies
that the VF is negligible compared to the PG and TI, i.e. the leading-order balance
is between the first and the third terms of (1.3). Analysis of (1.3) reveals that the
inertial domain is bounded from below by y+ ≈ 2.6

√
δ+ (e.g. Wei et al. 2005). It

is now well established (both empirically and via analysis of the mean momentum
equation) that the zero crossing of the TI term (or the peak location of the Reynolds
shear stress, y+m) moves outwards in y+ like

√
δ+ (cf. figure 2). The

√
δ+ variation of

the lower bound of an inertial logarithmic region is directly coupled to the position,
y+m . The present results further clarify the physics that underlie this behaviour, and
through (2.1) connect these physics to the structure of (1.3).

The zero crossing of the TI term coincides with an exact balance between the 〈vωz〉
and 〈wωy〉 contributions to (2.1), with |〈wωy〉| exceeding |〈vωz〉| for y< ym, and |〈vωz〉|
exceeding |〈wωy〉| for y > ym. Physically, this indicates that logarithmic dependence
is predominantly characterised by the advective dispersion of vorticity, coincident
with a diminishing influence of vorticity stretching with increasing y. Conversely, for
decreasing y interior to ym, the vorticity stretching contributions increasingly exceed
those of advective transport. This coincides with the leading order balance between
the VF and TI terms in layer II. The physical picture here is that (on average)
instantaneous viscous forces are amplified because of the intensification of vorticity
in the vicinity of stretched vortex cores.
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Since the movement of y+m (or the zero crossing of TI) is due to the balance between
the terms 〈vωz〉 (vorticity dispersion) and 〈−wωy〉 (vorticity stretching), and 〈vωz〉
exhibits approximate invariance with δ+ (at least for the present flows, cf. figure 4a),
it is surmised that 〈−wωy〉 predominantly dictates the movement of y+m . The spectral
analysis of wωy (cf. figure 4d, f,h) shows that 〈−wωy〉 increases with δ+ due to
contributions from motions with primarily streamwise length scales of O(δ), situated
at the wall-normal location near y+m . Concretely, wωy motions of scale λx≈O(δ) gain
a spectrum of larger length scales with increasing Reynolds number. These results
suggest that the beginning of the log region moves out in y+ owing to vorticity
stretching imposed upon the region interior to y+m at O(δ) wavelengths. Since the
near-wall velocity is amplified and modulated by the log region large-scale structures
of O(δ) (e.g. Marusic et al. 2010), it is rational to conjecture that the movement of
the beginning of the log region (or y+m) is associated with the large-scale log region
motions changing the length scale of the smaller motions below the log region.

Note that, even though the vorticity stretching underlies the outward migration
of the beginning of the log region (in viscous units), it is the vorticity dispersion
mechanism that characterises the log region (cf. figure 5). The analysis of Fife
et al. (2009) reveals that the length scale distribution that describes the mean size
of the inertial motions in the logarithmic region asymptotically approaches a linear
function. This, along with other attributes of the underlying analysis, reveals a strong
correspondence between the similarity structure admitted by (1.3) and Townsend’s
attached eddy phenomenology where the length scale of the eddies scales linearly
with distance from the wall (e.g. Townsend 1976; Perry & Chong 1982; Perry &
Marusic 1995). The increasing dominance of the 〈vωz〉 contribution to TI in the
log layer further reinforces this connection, as the Biot–Savart basis from which
the attached eddy model reconstructs the statistical structure of the flow requires
sufficiently weak nonlinear mechanisms associated with vorticity stretching.

One may also consider the lower bound of the log region using a variant of the
above discussion, in terms of eddies and the scaling arguments in a manner similar
to those given by Tennekes & Lumley (1972) and Long & Chen (1981). We recall
that the outward movement of the beginning of the log region like

√
δ+ is derived

by Wei et al. (2005) from (1.3) by considering that inertially dominated mean flow
(log region) is situated beyond where the three terms in (1.3) are of equal order of
magnitude (see figure 1b). Let us call this wall-normal location δm, which is O(ym). To
see the Reynolds-number effect on this location, note that the time scale over which
the viscous influence is observed is ∼δ2

m/ν, whereas the time scale of an eddy of
length scale l (and velocity scale uτ ) is ∼ l/uτ . Larger eddies produce longer time
scales, and the longest time scale is due to eddies of size l≈ δ. Therefore, the longest
time over which viscosity can affect the eddies is δ2

m/ν ∼ δ/uτ , which implies that
viscous effects can have influence up to the location δ+m ∼

√
δ+. (This is similar to the

set of arguments used to describe the Taylor microscale or viscous diffusion in general
(e.g. Tennekes & Lumley 1972).) Note that, with increasing δ+, the viscous time
scale does not change (under inner normalisation), while the time scale of the largest
eddies increases. It is this longer time at higher δ+ that allows the viscous effect to
penetrate further (in viscous units) from the wall. This is consistent with viscosity
only affecting the vorticity stretching part of d〈−uv〉+/dy+ (which is dominant in the
near-wall region), and as shown herein it is the large-scale vorticity stretching part
that correlates with y+m ∼

√
δ+. Note that the eddy argument (within the attached eddy

hypothesis) also suggests that both the mean flow and the variances will be affected
by viscosity as described. This is consistent with recent data (e.g. Marusic et al. 2013;
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Sillero, Jiménez & Moser 2013; Vincenti et al. 2013), indicating that the beginning
of the logarithmic distribution of u2

rms also moves outwards in viscous units like
√
δ+.

In this context, the energetic superstructures exist between the regions of concen-
trated vorticity (Meinhart & Adrian 1995). Consistent with the advective transport
mechanism, the spectral analyses of Morrill-Winter & Klewicki (2013) reveal that
in the logarithmic region there is an increasing scale separation between v and ωz,
and that the correlation length between v and ωz becomes approximately invariant
for y+ 6 40 when it is normalised by

√
δ+ and plotted against y+/

√
δ+. These

results suggest that the onset of the advective transport domain (i.e. the logarithmic
layer) is likely to depend on a sufficiently three-dimensionalised vorticity field whose
characteristic motions have also attained a sufficient level of scale separation from the
motions characteristic of the velocity field. The present results substantively augment
these findings by revealing that the

√
δ+ dependence of the beginning of the advective

domain results from scale changes of the eddy structure. Collectively, the emerging
picture is one in which the O(δ) log layer superstructures energetically perturb the
near-wall vorticity field, and this vorticity field responds at a scale that is O(

√
νδ/uτ ).

4. Summary and conclusions

The TI term, which is the wall-normal gradient of Reynolds shear stress in the
axial mean momentum equation for a turbulent pipe flow, has been analysed using
two different decompositions in spectral form: (i) the velocity–vorticity decomposition
of (2.1) and (ii) the force spectrum decomposition of (2.4), across three different
Reynolds numbers, δ+ ≈ 500, 1000 and 2000.

Our main purposes are (i) to better understand how the turbulent motions at
different length scales influence the balance of terms in (1.3) via changes in TI, and
draw further connections between the conceptual picture of turbulent wall flows in
terms of coherent motions (occurring over a range of scales) and the governing mean
equation, and (ii) to construct a cogent physical description for why the zero crossing
of TI scales like y+m ∼

√
δ+ (cf. figure 2), and how this physically connects to the

onset of the log region, for which existing evidence also supports an inner-normalised
lower bound scaling with

√
δ+.

In the velocity–vorticity decomposition, TI is written as the sum of 〈vωz〉 and
〈−wωy〉. These two contributions are respectively associated with the physical
mechanisms of advective transport (vorticity dispersion) and changes in scale (vorticity
stretching). For all Reynolds numbers, close to the wall (below y+m) 〈−wωy〉 provides
a more significant contribution to TI than 〈vωz〉, whereas above y+m the roles are
reversed. (At y+m the two terms are identically equal.) With increasing δ+ the location
of balance, y+m , increases. Very close to the wall (below y+ ≈ 10) 〈vωz〉 is positive
and then becomes negative above y+ ≈ 10. A weighted joint p.d.f. of v and ωz

below and above y+ ≈ 10 shows that the near-wall positive behaviour of 〈vωz〉 arises
primarily because of [+] v and [+]ωz, whereas the further negative behaviour largely
stems from [+] v and [−]ωz. These behaviours suggest connections to coherent
motions as discussed further below in § 4.1. The 〈−wωy〉 term, however, remains
positively signed approximately below the lower bound of the log region and for
greater wall-normal distances becomes negative. With increasing δ+, the distribution
of 〈vωz〉+ is approximately invariant. This is somewhat surprising, since this term is
not dominant near the wall, whereas 〈−wωy〉 shows variations with δ+ in viscous
scaling, even though it has a greater contribution to TI close to the wall.
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Streamwise spectral decompositions of vωz and wωy (for various y locations) show
that for vωz the peak in the pre-multiplied co-spectra (of v and ωz, Φvωz) occurs at a
length scale of λ+x ≈ 500–700 and when scaled in inner units Φvωz is approximately
invariant with δ+. The pre-multiplied co-spectrogram (of −w and ωy, Φ−wωy),
however, shows noticeable variations with δ+. Importantly, these variations are at
O(δ+) wavelengths in the region close to y+m . In this regard, the location of y+m (and
the associated beginning of the log region, the outer edge of layer III) faithfully tracks
the large-scale variation in Φ−wωy with changing Reynolds number (cf. figure 4d, f,h).

In the second decomposition, the TI term is represented in the form of the force
spectrum, ∂Φ−uv/∂y (the wall-normal gradient of the co-spectrum of u and v), which
has been used by Adrian and co-workers to understand the influence of acceleration
([+] ∂Φ−uv/∂y) and deceleration ([−] ∂Φ−uv/∂y) caused by turbulence related to
different length scales of coherent motions (commonly observed in turbulent boundary
layers). Note that, evidently, ∂Φ−uv/∂y = Φvωz + Φ−wωy . Therefore, this allows the
acceleration and deceleration effects of turbulence to be connected to mechanisms
associated with the velocity vorticity products (in terms of effects due to vorticity
dispersion and vorticity stretching).

When plotted as contours on a y+ versus λ+x graph, the inner-normalised force
spectrum for small y+ (.5) and independent of λ+x , and at smaller λ+x (.300) and
independent of y+, is invariant with Reynolds number. The y+ . 5 region is always
associated with accelerations owing to the same signed contributions from Φvωz and
Φ−wωy . For the λ+x . 300 region, however, there are alternating accelerating and
decelerating regions with changing y+ because Φvωz switches sign. This is primarily
related to ωz changing sign. The main variation with Reynolds number is observed to
come from large λ+x motions, and above ≈y+m . Here the motions are associated with
strong accelerations. With increasing δ+ this large-scale accelerative effect influences
the smaller scales, and thus connects to the emergence of a secondary peak in the
co-spectrogram of u and v, Φ−uv, that is located in the log region at large wavelengths
(cf. figure 8, left column).

At lower Reynolds numbers, the location of y+m (where the integral of ∂Φ−uv/∂y
over all λ+x is equal to zero) is realised through the balance of accelerating motions at
smaller wavelengths (λ+x . 300) and decelerating motions at larger wavelengths (λ+x ≈
δ+). With increasing Reynolds number, y+m increases owing to a shift in the balance
to that between decelerating motions at larger wavelengths λ+x ≈ δ+ and accelerating
motions at very large wavelengths (λ+x ≈ 10δ+). The velocity–vorticity decomposition
reveals that these very-large-wavelength accelerating motions are associated with scale
changes in the relevant eddy structure. Furthermore, by splitting TI into small- and
large-scale contributions, it was evidenced that these large-scale features underlie the
outward movement of y+m with increasing Reynolds number.

4.1. Further physical interpretation
Given the quantitative results for TI decompositions into 〈vωz〉 and 〈−wωy〉, and
∂Φ−uv/∂y, it is of value to consider further possible physical interpretations of these
results. Our interpretations begin by dividing the turbulent wall flow into two regions,
below y+m and above it. This dividing line approximately coincides with the onset of
the logarithmic region.

Within the domain below y+m , flow visualisations and particle image velocimetry
studies indicate that very close to the wall (y+ . 5) the sublayer streaks exist,
above which one can observe hairpin or lambda vortices (where heads of hairpin
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vortices correspond to ≈ [−]ωz). These motions are evidenced to often combine to
form packets of hairpin vortices (e.g. Adrian 2007; Adrian & Marusic 2012). This
has long been recognised as a region of intense turbulence. The significance of the
change-of-scale effect (〈−wωy〉) over advective transport (〈vωz〉) is consistent with this
region being characterised by intense vorticity stretching and reorientation, leading to
the rapid three-dimensionalisation of the vorticity field with increasing y+ (Klewicki
2013a). The [+] v and [+]ωz below y+ . 5 are an indication of the low-speed
sublayer streaks lifting up, whereas [+] v and [−]ωz are consistent with the hairpin
vortex paradigm (Zhou et al. 1999; Adrian et al. 2000). The force spectrum analysis
suggests associating the sublayer streaks with regions of large acceleration, whereas
the smaller-scale alternating acceleration and deceleration can be associated with the
complex hairpin packet organisation process that is prevalent below y+m .

Above y+m in the log region and beyond, the vortical motions are known to be of a
size that shows little variation (e.g. Klewicki & Falco 1996; Carlier & Stanislas 2005;
Wu & Christensen 2006). This suggests that, once vortices are formed interior to y+m ,
they are largely advected away, similar to a passive scalar dispersed in turbulence
(e.g. Elsinga et al. 2012), but not wholly (Klewicki 2013a). The present results
support this picture, where we observe the significance of 〈vωz〉 (advective dispersion)
over 〈−wωy〉 (change of scale) above y+m . The seemingly surprising fact that the 〈vωz〉+
profile remains essentially invariant reinforces a picture in which the vortices that
form below y+m are then advected above y+m . Furthermore, the modulation (change of
length scale) of the near-wall motions by the O(δ+) log region VLSM/superstructures
(Hutchins & Marusic 2007; Marusic et al. 2010) provides a self-consistent mechanism
for the variation in 〈−wωy〉+ with δ+. It is thus suggested that this variation in
〈−wωy〉, as induced by contributions from the superstructures, results in the location
of y+m to move outwards with increasing δ+. This description of why y+m ∼

√
δ+ was

shown to be consistent with O(δ+) superstructures (situated near the lower edge of
the logarithmic layer) setting the time scale over which viscous influences can act.
The classical scaling argument (by equating the time scale of viscous influence to
reach y+m with the time allowed by the largest eddy, δ/uτ ) then leads one to conclude
that the y+ domain where the viscous influence remains of leading order will move
outwards like

√
δ+, and thus the onset of the logarithmic layer will do so as well.

We understand that the
√
δ+ scaling of the onset of the log region deviates from the

classical two-layer theory of wall turbulence and challenges the orthodoxy. However,
there is now sufficient evidence from theory and both DNS as well as high-Reynolds-
number experiments that make the deviations from the classical theory compelling.
In the present paper, we have provided a plausible physical mechanism for the

√
δ+

scaling. No doubt, a truly definitive conclusion on the log region scaling will require
further physical probing and invariably higher-Reynolds-number experiments (which
unfortunately are not foreseeable in the near to medium-range time frame).

The present results are derived from the analysis of turbulent pipe flow. However,
the movement of the lower bound of the log region is observed by Marusic et al.
(2013) to be relevant for boundary layers as well, and the four-layer structure
(presented in figure 1) is also shown by Wei et al. (2005), Metzger, Lyons & Fife
(2008) and Klewicki (2013b) to be valid in channel and boundary layers too (with
slight differences due to the PG term being replaced by mean advection). Therefore,
the present physical arguments regarding the movement of y+m and the associated
movement of the lower bound of the log region are also likely to hold generically
for boundary layers and channels as well.
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We lastly note that the present findings have potential implications regarding flow
control. Herein it was observed that, with increasing Reynolds number, the secondary
peak in the uv co-spectra emerges (at larger wavelengths), and this LSM (associated
with flow accelerations) is responsible for increasing the length scale of eddies closer
to the wall. In this respect, controlling the LSM presents a potentially feasible option
for flow control.
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