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Open-loop control of cavity oscillations with
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This article deals with open-loop control of open-cavity flows with harmonic forcings.
Two-dimensional laminar open-cavity flows usually undergo a supercritical Hopf
bifurcation at some critical Reynolds number: a global mode becomes unstable and its
amplitude converges towards a limit cycle. Such behaviour may be accurately captured
by a Stuart–Landau equation, which governs the amplitude of the global mode. In
the present article, we study the effect on such a flow of a forcing characterized
by its frequency ωf , its amplitude E′ and its spatial structure f E. The system reacts
like a forced Van der Pol oscillator. In the general case, such a forcing modifies the
linear dynamics of the global mode. It is then possible to predict preferred forcing
frequencies ωf , at which the global mode may be stabilized with the smallest possible
forcing amplitude E′. In the case of a forcing frequency close to the frequency of the
global mode, a locking phenomenon may be observed if the forcing amplitude E′ is
sufficiently high: the frequency of the flow on the limit cycle may be modified with a
very small forcing amplitude E′. In each case, we compute all harmonics of the flow
field and all coefficients that enter the amplitude equations. In particular, it is possible
to find preferred forcing structures f E that achieve strongest impact on the flow field.
In the general case, these are the optimal forcings, which are defined as the forcings
that trigger the strongest energy response. In the case of a forcing frequency close
to the frequency of the global mode, a forcing structure equal to the adjoint global
mode ensures the lowest forcing amplitude E′. All predictions given by the amplitude
equations are checked against direct numerical simulations conducted at a supercritical
Reynolds number. We show that a global mode may effectively be stabilized by
a high-frequency harmonic forcing, which achieves suppression of the perturbation
frequencies that are lower than the forcing frequency, and that a near-resonant forcing
achieves locking of the flow onto the forcing frequency, as predicted by the amplitude
equations.

Key words: instability control, low-dimensional models, separated flows

1. Introduction
Open-loop control of flows behaving like oscillators is an important issue in fluid

mechanics. Oscillators are flows displaying unsteadiness characterized by a well-
defined frequency, which is rather insensitive to low-level external noise (Huerre
& Rossi 1998). Bluff bodies such as cylinders or open cavities are examples of
oscillators. The unsteady behaviour associated with the vortex shedding phenomenon
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behind a cylinder is responsible for serious structural vibrations and significant
increased drag. Choi, Jeon & Kim (2008) have made an extensive review of flow-
control over bluff bodies. Here we focus on open-loop control strategies that directly
modify the properties of the wake (and not the boundary layer). The control objective
consists in either suppressing the natural frequency of the flow, or, if this is not
possible, shifting this frequency. The second objective is less ambitious but may be
justified in a fluid-induced vibration problem: the only dangerous flow instabilities
are those where the fluid’s frequencies match those of the structural modes. Hence,
shifting the flow’s dangerous frequencies a little may be sufficient to solve the
problem.

Choi et al. (2008) mention both steady (blowing and suction, modification of the
geometry) and time-periodic control means (blowing and suction, synthetic jets) of
attenuating vortex shedding. Also, for cylinder flow, Strykowski & Sreenivasan (1990)
managed to suppress the vortex shedding phenomenon by introducing a small control
cylinder in the flow: by the action and reaction principle, the control cylinder exerts
a steady forcing on the flow field. Amitay et al. (1998) and Glezer & Amitay
(2002) showed how high-frequency forcing with synthetic jets allowed a significant
modification in the mean properties of the flow field. The strong periodic fluctuations
over an open cavity (Rossiter 1962) may be suppressed by introducing a rod near the
leading edge of the cavity (Illy, Geffroy & Jacquin 2008). Stanek et al. (2007) argued
that this phenomenon was due to the high-frequency forcing triggered by the vortex
shedding behind the small rod which generated perturbations that rendered the mean
flow stable. Keirsbulck et al. (2008), on the other hand, argues that it is the steady part
of the forcing related to the mean drag of the control cylinder which is responsible for
the stabilization.

The behaviour of oscillator flows may be described by a local stability approach
when the flow field is weakly non-parallel. Oscillator flows correspond to absolutely
unstable flows (Huerre & Rossi 1998). In the case of steady forcing, Hwang & Choi
(2006) analysed how the extent of the absolutely unstable region may be reduced by
base flow modifications. In the case of harmonic forcing, Pier (2003) showed how
an upstream-located harmonic forcing allows the tuning of the entire system to any
frequency in a wide range.

In a global approach, solving for the streamwise direction, oscillators are
characterized by a Jacobian which displays an unstable eigenvalue (Sipp et al. 2010).
For example, in the case of the cylinder flow, Jackson (1987) was the first to show
that an eigenvalue characterized by a non-zero frequency became unstable for Re> 47.
The associated structure – the so-called global mode – will then grow exponentially
and, since the bifurcation is supercritical (Provansal, Mathis & Boyer 1987), the
amplitude of the global mode will saturate and the flow will converge on a limit
cycle. For slightly supercritical Reynolds numbers, Sipp & Lebedev (2007) showed
that the amplitude of the global mode was governed by a Stuart–Landau equation,
whose coefficients may be computed from the interaction of various components of the
flow field (including the base flow, the global mode, the zeroth harmonic, the second
harmonic, etc.) Since then, other oscillator flows have been described in the global
approach by amplitude equations: the open-cavity flow (Sipp & Lebedev 2007), the
flow behind an axisymmetric disc (Meliga, Chomaz & Sipp 2009), or the flow around
a spring-mounted cylinder (Meliga & Chomaz 2011). A first theoretical approach to
open-loop control of oscillator flows was introduced by Hill (1992), Chomaz (2005),
Giannetti & Luchini (2007), Marquet et al. (2008a) and Meliga, Sipp & Chomaz
(2010). These authors considered a steady forcing acting on the base flow (or also
a steady suction or blowing at a wall), which aims at stabilizing the unstable global
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mode. Giannetti, Camarri & Luchini (2010) have extended these approaches to the
case of time-periodic base flows to study of the sensitivity of limit cycles. All these
works are based on adjoint methods to define sensitivity maps showing regions in
the flow where the eigenvalue of the global mode is particularly sensitive to the
introduction of forcing. Results compare favourably with the experimental results of
Strykowski & Sreenivasan (1990), who introduced a small control cylinder in the wake
of a cylinder to suppress the von Kármán vortex shedding. In these papers, the size of
the control cylinder was chosen sufficiently small to ensure that there was no vortex
shedding behind the small control cylinder. Hence, the force that the flow exerts on
the small control cylinder is steady, and by the action and reaction principle, the
force exerted by the small control cylinder on the flow field is also steady. This is
compatible with the sensitivity theory, which only accounts for a steady forcing acting
on the flow field.

Now, if the size of the small control cylinder is sufficiently high, then vortex
shedding will occur behind the small control cylinder, and the force exerted by the
small control cylinder on the flow field will be unsteady and periodic with a frequency
characterized by a Strouhal number of about ∼0.2 (the Strouhal number being based
on the diameter of the control cylinder and on the local velocity field of the flow near
the control cylinder). What is the effect of this harmonic forcing on the dynamics of
the unstable global mode? Can we stabilize the flow using this unsteady forcing? If
not, can we change the frequency of the flow? In the present article, we will try to
answer these questions by extending the nonlinear Stuart–Landau equation governing
the amplitude of the global mode to take into account the effect of a harmonic forcing
characterized by an arbitrary frequency and arbitrary spatial shape.

The present study will be guided by the results on the forced Van der Pol
oscillator (Bender & Orszag 1978; Fauve 1998). Indeed, such a model problem mimics
qualitatively well a flow field undergoing a supercritical Hopf bifurcation and subject
to a harmonic forcing. Hence, we will retrieve interesting features such as the locking
phenomenon that arises when the forcing frequency is close to the natural frequency of
the flow field.

The issue of mean flow stability will also be particularly discussed. The mean
flow is not an equilibrium point of the Navier–Stokes equations. It corresponds to
the time-average of the unsteady flow. Therefore, the relevance of a stability analysis
applied to a mean flow is questionable. Sipp & Lebedev (2007) showed that in certain
circumstances the mean flow exhibits a global mode with zero amplification rate and
a frequency which matches the frequency of the true flow on the limit cycle. These
conditions hold almost perfectly for the cylinder flow near the first bifurcation at
Re= 47, while they nearly hold for the open-cavity flow. Barkley (2006) even showed
that such a behaviour may be observed far beyond the bifurcation threshold, for
Reynolds numbers up to Re = 180 in the case of the cylinder flow. The question that
we will try to answer in this paper is the following. In the case of open-loop control,
if we manage to stabilize the global mode, is the resulting mean flow still marginally
stable? If we only manage to shift the frequency of the flow on the limit cycle, does
the mean flow reflect the frequency of the true flow on the limit cycle?

As for the configuration, rather than the cylinder flow, we will choose the laminar
two-dimensional open-cavity flow, which undergoes a supercritical Hopf bifurcation at
a given Reynolds number. This flow was chosen since the linear frequency response of
the flow is much richer (see below) than that obtained with a cylinder. We will see in
particular that there exist preferred frequencies and locations of the harmonic forcing
to efficiently manipulate the flow.
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The article is organized as follows. First, in § 2, we will present the configuration
and recall that the dynamics is governed by a Stuart–Landau amplitude equation. Then
in § 3 we will study the non-resonant forcing case, where the forcing frequency does
not match the natural frequency of the flow. In particular, we will add a term in the
amplitude equation to take into account the forcing (§ 3.1). We will analyse the various
control strategies (§ 3.2), show that for each frequency there exist preferred forcing
structures (§ 3.3) and compare the theoretical results to those of direct numerical
simulation conducted at a supercritical Reynolds number (§ 3.4). The limitations of the
present asymptotic approach will be discussed in § 3.5 and the stability of the resulting
mean flows will be discussed in § 3.6. Then in (§ 4 we will analyse the case of steady
(zero-frequency) forcing and the case of resonant forcing, where the forcing frequency
is close to the natural frequency of the flow. In the latter case, results will briefly
be compared to direct numerical simulations. Finally, in § 5, we will conclude and
mention some prospects for the future.

2. Configuration, eigenvalues, limit-cycle
We consider an incompressible homogeneous flow over an open cavity, similar to

the one studied in Sipp & Lebedev (2007). The cavity is square, the origin of the
Cartesian coordinate system being located at the leading-edge corner of the cavity.
In the following, we use the free-stream velocity and the cavity length to make all
quantities non-dimensional. We use the streamwise u, cross-stream v components of
the velocity and the pressure p to describe the flow. The flow is uniform (u= 1, v = 0)
at the inlet (x = −2.4, 0 6 y 6 0.5) and a slip-boundary condition (∂yu = 0, v = 0)
is imposed on the upper boundary (−2.4 6 x 6 2.5, y = 0.5) and on the upstream
part of the lower boundary (−2.4 6 x 6 −1.6, y = 0). On the remaining part of the
lower boundary x > −1.6, we use a no-slip boundary condition (u = 0, v = 0). This
partitioning of the lower boundary enables us to vary the boundary layer thickness
at the leading edge of the cavity. At the outlet (x = 2.5, 0 6 y 6 0.5), a standard
free-stream boundary condition is applied: −pn+∇u ·n= 0.

The Reynolds number will be chosen close to Rec = 5396, this specific value
corresponding to the threshold of instability (see below). In the following, we will use
parameter δ′ to specify the actual Reynolds number: Re−1 = Re−1

c − δ′. The governing
equations then read

∂tu+∇u ·u=−∇p+ (Re−1
c − δ′)∆u, ∇ ·u= 0. (2.1)

We focus on the case where the Reynolds number is close to criticality: δ′ = εδ with
ε� 1. We may look for a solution of the flow field q= (u, v, p)T in the form

q= q0 + ε1/2[AeiωctqA + c.c.] + ε[δqδ + |A|2 qAĀ + (A2e2iωctqAA + c.c.)]. (2.2)

If this development is introduced in the governing equations (2.1), a series of
equations is obtained at various orders in ε:

∇u0 ·u0 =−∇p0 + Re−1
c ∆u0, ∇ ·u0 = 0, (2.3)

(iωcPPT +M )qA = 0, (2.4)
M qδ =−P(∆u0), (2.5)

M qAĀ =−P(∇uA ·uA +∇uA ·uA), (2.6)
(2iωcPPT +M )qAA =−P(∇uA ·uA). (2.7)

Equations (2.3), (2.4) and (2.5)–(2.7) are respectively obtained at order ε0, ε1/2 and ε.
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FIGURE 1. Re = 5396. Streamwise component of various flows involved in expansion (2.2):
(a) base flow u0; (b) base flow modification due to increase of Reynolds number uδ; (c)
marginal global mode or first harmonic Re(uA); (d) marginal adjoint global mode Re(ũA); (e)
zeroth harmonic uAĀ; (f ) second harmonic Re(uAA).

Equation (2.3) together with the boundary conditions mentioned above defines a
base flow, which is an equilibrium point of the Navier–Stokes equations (2.1). This
nonlinear equation may be solved thanks to a Newton method. We use the same
techniques and spatial discretizations as those presented in Sipp & Lebedev (2007):
the unknowns (u, v, p) are spatially discretized on an unstructured mesh using finite
elements (here P2–P1 Taylor–Hood elements), the resulting matrices being generated
by the FreeFem++ software (http://www.freefem.org) and inverted thanks to a direct-
LU solver Amestoy et al. (2001). The mesh comprises 259 050 triangles, which yields
1171 098 degrees of freedom in a (u, v, p) quantity. The size of the triangles h is
equal to h = 1/350 in the boundary layers and in the shear layer. The mesh becomes
progressively coarser in the free stream where h = 1/100 and inside the cavity where
h = 1/50. The base flow at Re = 5396 is shown in figure 1(a) with iso-values of the
streamwise velocity. We clearly observe a boundary layer which starts developing at
x = −1.6, a thin shear layer on top of the cavity and a recirculation region inside the
cavity.

Equations (2.4)–(2.7) together with the homogeneous versions of the boundary
conditions respectively define the marginal global mode, the base flow modification
due to the increase of the Reynolds number δ′, the zeroth and second harmonics.
These equations involve the following linear operators:

M =
(
∇u0 · ()+∇() ·u0 − Re−1

c 1 ∇
∇ · () 0

)
, P =

(
I

0

)
. (2.8)

Here M is the linearized (around the base flow u0) Navier–Stokes operator, P a
prolongation operator which transforms a (u, v)T quantity into (u, v, 0)T. Note also
that, T being the transpose, PT designates the restriction operator that transforms
(u, v, p)T into (u, v)T.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

32
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
http://www.freefem.org
https://doi.org/10.1017/jfm.2012.329


444 D. Sipp

105

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

0

–3.5

0.5

150

FIGURE 2. (Colour online) Least stable eigenvalues of Jacobian matrix for Re = 5396
(squares) and for Re = 6250 (open symbols). At the critical Reynolds number Re = 5396,
there is one marginal global mode characterized by ωc = 7.0. For the supercritical Reynolds
number Re= 6250, this global mode becomes unstable.

Equation (2.4) is an eigenproblem with eigenvalue λ = iωc and eigenvector qA.
Following Sipp & Lebedev (2007), such a problem may be solved thanks to a Krylov
subspace method associated with a shift-and-invert technique ( http://www.caam.rice.
edu/software/ARPACK/, Lehoucq & Sorensen (1996)). The least stable eigenvalues
for Re = 5396 and Re = 6250 are represented in figure 2 in the (ω, σ ) plane, where
ω and σ respectively refer to the frequency and the amplification rate. We observe
that at Re = 5396 there exists one marginal global mode satisfying (σc = 0, ωc = 7.0).
For a slightly larger Reynolds number Re = 6250, this global mode becomes unstable
while all other global modes remain stable. In the following, qA will refer to the
marginal global obtained at criticality Re = Rec = 5396. The streamwise component
of the velocity field of this global mode is represented in figure 1(c). This mode
is seen to take advantage of the Kelvin–Helmholtz instability that develops on the
shear layer. Note that the global mode verifies the following arbitrary condition:
vA(x = 0.75, y = 0) = −0.52052 − 1.57966i. This sets the amplitude and phase of
the global mode.

Equations (2.5)–(2.7) are non-degenerate linear systems (from figure 2, it is seen
that at Re = 5396 there are no eigenvalues at (σ = 0, ω = 0) and (σ = 0, ω = 2ωc)),
that may be straightforwardly inverted. The base flow modifications related to the
increase of Reynolds number qδ, the zeroth harmonic qAĀ and the real part of the
second harmonic qAA are shown in figure 1(b,e,f ) with iso-values of the streamwise
velocity. The zero harmonic results from the nonlinear interaction between the global
mode qA with its conjugate qA, while the second harmonic stems from the interaction
between the global mode qA with himself. The spatial structures of the various
flows reflect their frequency: large-scale structures for the base flow modification
and the zeroth harmonic, small-scale features for the second harmonic, which beats at
frequency 2ωc = 14.0.
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At order ε3/2, we obtain forced degenerate linear systems. If we let the amplitude A
evolve on a slow time scale T = εt, by enforcing compatibility conditions, we obtain
the following equation governing the complex amplitude A of the global mode:

dA

dT
= ηδA− νA |A|2 . (2.9)

Introducing the full amplitude A′ = ε1/2A of the global mode and coming back to the
unscaled variables δ′ = εδ and t = ε−1T , one straightforwardly obtains

dA′

dt
= ηδ′A′ − νA′ |A′|2 . (2.10)

The complex constants η and ν are given by

η =−〈ũA,∇uA ·uδ +∇uδ ·uA +∆uA〉, (2.11)
ν = 〈ũA,∇uA ·uAĀ +∇uAĀ ·uA〉︸ ︷︷ ︸

νAĀ

+〈ũA,∇uA ·uAA +∇uAA ·uA〉︸ ︷︷ ︸
νAA

, (2.12)

where 〈·, ·〉 designates an energy-based Hermitian scalar product and ũA is the
adjoint global mode associated with uA. The adjoint global mode q̃A = (ũA, ṽA, p̃A)

T

corresponds to the eigenvector related to the following eigenproblem:

(−iωcPPT + M̃ )q̃A = 0, (2.13)

M̃ =
(
(∇u0)

T · ()−∇() ·u0 − Re−1
c 1 −∇

−∇ · () 0

)
, (2.14)

with the normalization condition 〈ũA,uA〉 = 1. The streamwise velocity component of
the adjoint global mode is represented in figure 1(d). We observe that it is located
upstream, near the leading edge of the cavity.

It is also seen that the constant ν is made of two distinct contributions: νAĀ
relates to the contribution of the zeroth harmonic uAĀ while νAA relates to that
of the second harmonic uAA. Numerically, we obtain η = 4688.43 + 4701.23i and
ν = 390.27 − 142.91i. We verify that ηr > 0, which shows that the flow becomes
unstable for Re > Rec, and that νr > 0, indicating that the bifurcation is supercritical.
On the limit cycle, the oscillation amplitude and frequency of the flow field is given by
(Sipp & Lebedev 2007)

|A′ |LC =
√
ηr

νr
δ′, (2.15)

ωLC = ωc + ηiδ
′ − ηr

νr
νiδ
′. (2.16)

The first, second and third terms on the right-hand side of (2.16), respectively,
correspond to the frequency of the marginal global mode, the shift in frequency
of the global mode associated to the increase in Reynolds number δ′ and the shift
in frequency associated to nonlinear interactions linked to the zeroth and second
harmonics.

In the following, we aim at suppressing the fluctuations at the frequency ωLC. As
mentioned in § 1, two strategies can be followed. The most ambitious one consists in
stabilizing the unstable global mode, which suppresses all fluctuations linked to the
global mode. The second one only aims at shifting the frequency of the global mode
on the limit cycle ωLC. Having done this, the global mode is still unstable and the flow
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FIGURE 3. Re = 5396. Various flows related to fixed harmonic forcing at ωf = 13 and
involved in expansion (3.3). (a) Cross-stream component of forcing gE; (b) streamwise
component of forcing response Re(uE); (c) streamwise component of zeroth harmonic uEĒ;
(d) streamwise component of (ωc + ωf )-harmonic Re(uAE); (e) streamwise component of
(ωc − ωf )-harmonic Re(uAĒ).

field still oscillates on a limit cycle but at a different frequency, which is hopefully less
dangerous for the system.

3. Control by harmonic forcing in the non-resonant case
We will now consider a given harmonic forcing (E′eiωf tf E + c.c), characterized by

the frequency ωf , the amplitude E′ and the complex spatial structure f E = (fE, gE). E′

may be chosen as a positive real without loss of generality. For the sake of clarity, we
will first consider a forcing f E of Gaussian shape, located near the leading edge of the
cavity and which triggers the vertical momentum component

f E =
(

0
α exp(−(x2 + y2)/0.12)

)
, (3.1)

with α such that 〈f E, f E〉 = 1. The vertical component of this forcing is represented in
figure 3(a). Note that it would be possible to consider a more realistic forcing such as
blowing/suction (see appendix A for details).

The equations governing the resulting flow field are the same as those given in (2.1)
with the additional harmonic forcing f E:

∂tu+ u ·∇u=−∇p+ (Re−1
c − δ′)∆u+ (E′eiωf tf E + c.c), ∇ ·u= 0. (3.2)

The case of steady forcing and the resonant cases, where the forcing ωf is close to
ωc/2, ωc or 2ωc, will be analysed and treated in § 4 and in appendices B and C.
In this section, we will consider the non-resonant case. First (§ 3.1), we will show
how the harmonic forcing term enters the amplitude equation (2.10). Then (§ 3.2), we
will present two control strategies consisting in stabilizing the global mode or shifting
the frequency of the flow on the limit cycle. In § 3.3, for a given frequency ωf , we
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will look for the forcing structures f E that minimize the forcing amplitude E′: these
forcings, also called the optimal forcings, take advantage of the most sensitive regions
of the flow field to trigger the strongest possible responses, the so-called optimal
responses. In § 3.4, we will compare the control results to those of a direct numerical
simulation conducted at Re= 6250 with a harmonic forcing at ωf = 13. Finally (§ 3.6),
we will analyse the meaning of a stability analysis achieved on the resulting mean
flows (and not the base flow): in particular, we will see whether the controlled mean
flow is stable and whether it reflects the frequency of the controlled flow field.

3.1. Amplitude equation with harmonic forcing in non-resonant case
We follow the scalings presented by Fauve (1998) in the case of a forced Van der
Pol oscillator. Let us consider a slightly supercritical flow such that δ′ = εδ, with
ε� 1 and δ being order one. In the non-resonant case, the forcing amplitude satisfies
E′ = ε1/2E and we consider a flow field of the form

q= q0 + ε1/2[AeiωctqA + c.c.] + ε[δqδ + |A |2 qAĀ + (A2e2iωctqAA + c.c.)]
+ ε1/2[Eeiωf tqE + c.c.] + ε[|E |2 qEĒ + (AEei(ωc+ωf )tqAE

+AĒei(ωc−ωf )tqAĒ + E2e2iωf tqEE + c.c.)]. (3.3)

Introducing this expansion into (3.2), a series of equations is obtained at orders ε0, ε1/2

and ε. We find that q0, qA, qδ, qAĀ and qAA are the same as those given in § 2. The flow
fields qE, qEĒ, qAE, qAĒ and qEE are defined by

(iωf PPT +M )qE =P(f E), (3.4)

M qEĒ =−P(∇uE ·uE +∇uE ·uE), (3.5)
(i(ωc + ωf )PPT +M )qAE =−P(∇uA ·uE +∇uE ·uA), (3.6)

(i(ωc − ωf )PPT +M )qAĒ =−P(∇uA ·uE +∇uE ·uA), (3.7)

(2iωf PPT +M )qEE =−P(∇uE ·uE), (3.8)

which consist of non-degenerate linear systems that may readily be inverted (in the
non-resonant case, the complex values iωf , 0, i(ωc + ωf ), i(ωc − ωf ) and 2iωf do not
belong to the spectrum obtained for Re= 5396 and shown in figure 2).

Equation (3.4) defines qE as the linear response of the flow to the forcing f E. For
illustration, we represent in figure 3(b) the streamwise component of the flow response
uE to a forcing f E of frequency ωf = 13 and spatial structure (3.1). We observe that the
response is located along the shear layer of the cavity and that it takes advantage of
the Kelvin–Helmholtz instability mechanism to trigger energy.

Equation (3.5) yields the zeroth harmonic qEĒ associated to a nonlinear interaction
between the forced response eiωf tqE and its complex conjugate. It corresponds to a
mean flow distortion analogous to qAĀ, but which results from the forcing and not from
the global mode. Equations (3.6) and (3.7) involve the structures qAE and qAĒ beating
at ωc + ωf and ωc − ωf , which stem from the nonlinear interaction between the global
mode AeiωctqA and the forced response Eeiωf tqE or its complex conjugate. In the case
of the forcing f E defined in (3.1) with frequency ωf = 13, we show in figure 3(c–e)
the streamwise components of these three harmonics (the real parts for qAE and qAĒ).
The size of the structures in each plot reflects its frequency: the zeroth harmonic qEĒ
displays large-scale structures, while the (ωc + ωf )- and (ωc − ωf )-harmonics display
small-scale features in accordance with their characteristic frequencies ω = 7+13= 20
and ω = 7 − 13 = −6. The second harmonic qEE defined in (3.8), which results from
the nonlinear interaction of the forced response Eeiωf tqE with itself, is not shown here,
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and will not be addressed further since this structure does not yield resonance at
order ε3/2.

At order ε3/2, compatibility conditions yield the following equation governing the
amplitude A′ = ε1/2A of the global mode:

dA′

dt
= [ηδ′ − µ(ωf )E

′2]A′ − νA′|A′ |2 . (3.9)

This equation is the same as the amplitude equation (2.10), but with an additional term
taking into account the effect of the forcing E′eiωf tf E on the amplitude of the global
mode A′. This term does not modify the nonlinear saturation term −A′|A′ |2 but only
the linear dynamics of the global mode: its eigenvalue λ= iωc + ηδ′ turns into

λ= iωc + ηδ′ − µ(ωf )E
′2 (3.10)

when the forcing is switched on. The complex constant µ(ωf ) depends on the forcing
frequency ωf and the forcing structure f E, and may be evaluated according to

µ(ωf )=
µEĒ(ωf )︷ ︸︸ ︷

〈ũA,∇uA ·uEĒ +∇uEĒ ·uA〉
+ 〈ũA,∇uE ·uAE +∇uAE ·uE〉︸ ︷︷ ︸

µAE(ωf )

+〈ũA,∇uE ·uAĒ +∇uAĒ ·uE〉︸ ︷︷ ︸
µAĒ(ωf )

. (3.11)

This constant involves three contributions µEĒ(ωf ), µAE(ωf ) and µAĒ(ωf ), stemming
respectively from the zeroth harmonic uEĒ, the (ωc + ωf )-harmonic uAE and the
(ωc − ωf )-harmonic uAĒ. We will see (§ 3.6) that the respective magnitudes of these
three terms have some direct influence on the stability of the resulting mean flows.

3.2. Control strategies

As mentioned in the previous section, the harmonic forcing E′eiωf tf E modifies the
amplification rate and frequency of the global mode. The amplification rate reads

σ = ηrδ
′ − µr(ωf )E

′2. (3.12)

Let us consider a supercritical Reynolds number Re> Rec, so that δ′ > 0. Since ηr > 0,
the global mode is unstable in the case of no control (E′ = 0). A forcing at a given
frequency ωf may stabilize the global mode if µr(ωf ) > 0 and the forcing amplitude E′s
that achieves exact stabilization (σ = 0) of the global mode reads

E′s =
√

ηr

µr(ωf )
δ′. (3.13)

The stabilization amplitude is proportional to the square root of the distance to
criticality δ′. E′s only exists if µr(ωf ) > 0 and depends on the frequency ωf : the
higher µr(ωf ), the lower E′s. In the case of the fixed forcing f E given in (3.1), we
may compute µr(ωf ) for forcing frequencies within 0 6 ωf 6 15 (it has been checked
that for higher frequencies |µr(ωf )| becomes very small, leading to inefficient control
strategies). The sign of µr(ωf ) and its absolute value, respectively, are shown with
dashed and solid lines in figure 4(a), the thick black vertical lines representing the
resonant frequencies ωc/2, ωc and 2ωc that are not allowed here. We see that for
nearly all frequencies the control has a stabilizing effect µr(ωf ) > 0. Also, there are
preferred frequencies for the control: leaving aside the dominant peak that is observed
at the resonant frequency (which is not allowed here), it is seen that the curve |µr(ωf )|
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FIGURE 4. Behaviour as a function of ωf of coefficient µr(ωf ) involved in the amplification
rate of controlled flow (see (3.12)). Solid line, |µr(ωf )|; dashed line, sign(µr(ωf )). (a) With
fixed forcing defined in (3.1); (b) with optimal forcings. The two figures share the same axes:
the solid lines go with the y-axis of (a), and the dashed lines go with the y-axis of (b).
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FIGURE 5. (a) Amplitude of response uE triggered by unit energy forcing f E as a function
of forcing frequency ωf . (b) Ratio r between r.m.s. of fluctuating kinetic energy at
(x = 0.75, y = 0) with global mode stabilization strategy and the same quantity without
control. This quantity is only defined when the forcing is stabilizing (µr(ωf ) > 0). If not
(µr(ωf ) < 0), then the value of r is set to an arbitrarily large value. Thick black line, with
fixed forcing defined in (3.1); grey line with symbols, with optimal forcings.

displays local maxima near ωf = 4.5 and ωf = 9.2. This may be explained by
analysing the energy of the forced response 〈uE,uE〉 as a function of frequency ωf .
The square root of this quantity is represented in figure 5(a) by a thick solid line. We
see that the same forcing structure may yield different energy responses depending on
the forcing frequency ωf : for example, frequencies around ωf = 4.5 and ωf = 9.2 are
particularly sensitive. This probably stems from the existence of two weakly damped
global modes in the vicinity of these frequencies. These two global modes (together
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with the marginal global mode) belong to a group of modes that become unstable
as the Reynolds number is increased. In the spectrum, the eigenvalues of the global
modes belonging to this group are aligned on a parabolic curve (see Barbagallo,
Sipp & Schmid 2009 for more details). As the Reynolds number increases, these
global modes become unstable due to a Rossiter-like feedback mechanism (Rossiter
1962), which involves the convective Kelvin–Helmholtz instability mechanism and
an instantaneous pressure feedback (due to the incompressibility of the flow). If
the forcing frequency ωf matches one of those of these global modes, than the
flow response uE may take advantage of these instability mechanisms and display
a strong energy. From the definition of µ(ωf ) given in (3.11), it is clear that a
stronger uE generally yields a larger |µr(ωf )|. Note finally that the global mode
stabilization strategy does not mean suppression of unsteadiness over all frequencies.
Indeed, when stabilization occurs, the harmonic forcing term ε1/2[Eeiωf tqE + c.c.] and
its harmonics remain non-zero in expansion (3.3): this shows that the resulting flow
exhibits harmonic flow oscillations at frequencies close to ωf , 2ωf , and so on. If the
forcing frequency ωf is superior to ωc, the stabilization strategy ensures suppression
of unsteadiness on the frequency range 0 6 ω < ωf . To nonetheless assess the control
efficiency over all frequencies, we may compare the oscillation amplitudes of the flow
with and without control. If control is applied, the dominant harmonic term in the flow
solution is E′eiωf tqE + c.c with E′ = E′s given in (3.13). Without control, the dominant
term is A′eiωctqA + c.c with |A′| = |A′|LC given in (2.15). To be more specific, let us
consider the r.m.s. (root mean square) of the mean fluctuating kinetic energy in the
shear layer at the spatial location (x = 0.75, y = 0). Comparison of this quantity with
and without control may be achieved by considering the ratio

r = ‖uE(0.75, 0)‖
‖uA(0.75, 0)‖

E′s
|A′ |LC , (3.14)

where ‖u‖ = (|u |2+|v |2)1/2 is the norm of the velocity (at some given spatial
location). If r < 1 (respectively r > 1), then the control reduces (respectively
strengthens) the r.m.s. of the mean fluctuating kinetic energy at (x = 0.75, y = 0).
The quantity r is dependent on the forcing frequency through the terms ‖uE(0.75, 0)‖
and E′s. It is represented in figure 5(b) by a thick solid line as a function of the
forcing frequency. We observe that the velocity oscillation amplitudes may be reduced
by approximately 20 % if the forcing frequency lies within the frequency range
5< ωf < 11 and nearly 50 % in a narrow band around ωf ≈ 0.2. These relatively weak
reductions of the flow oscillation amplitudes show that the global mode stabilizing
strategy is not fully relevant when one aims at suppressing fluctuations over all
frequencies.

The second control strategy only aims at shifting the frequency of the flow field on
the limit cycle. In this case, the amplification rate of the global mode is still unstable
σ = ηrδ

′ − µr(ωf )E′2 > 0 and the flow is still located on a limit cycle. However, the
amplitude of the oscillations has changed,

|A′| =
√
ηrδ′ − µr(ωf )E′2

νr
, (3.15)
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FIGURE 6. Behaviour as a function of ωf of coefficient γ (ωf ) involved in limit cycle
frequency of controlled flow (see (3.16)). Solid line, |γ |; dashed line, sign(γ ). (a) With
fixed forcing defined in (3.1); (b) with optimal forcings. The two figures share the same axes:
the solid lines go with the y-axis of (a), and the dashed lines go with the y-axis of (b).

and the frequency of the flow field now reads

ωLC = ωc + ηiδ
′ − ηr

νr
νiδ
′ + µr(ωf )

(
−µi(ωf )

µr(ωf )
+ νi

νr

)
︸ ︷︷ ︸

γ (ωf )

E′2. (3.16)

The three first terms on the right-hand side correspond to the frequency of the flow
field without control (see (2.16)). The last term corresponds to the frequency shift due
to the forcing. It is proportional to the square of the forcing amplitude E′ and to the
quantity γ (ωf ) defined in the braces of (3.16). The sign of γ (ωf ) determines whether
the control will increase or decrease the frequency of the flow on the limit cycle. In
figure 6(a), we represent, for the fixed forcing structure f E defined in (3.1), the sign
(dashed line) and amplitude (solid line) of γ as a function of the forcing frequency
ωf . It is seen that the forcing decreases the frequency of the flow for high frequencies
6.2 6 ωf 6 14 and increases it for lower frequencies 0.5 6 ωf 6 6.2. Also, the curve is
seen to display local extrema that are located at the same places as the local extrema
of |µr(ωf )| (see figure 4a). This again shows the marked sensitivity of the flow to
forcing at these particular frequencies.

3.3. Optimal forcings/optimal responses
In order to manipulate the flow at minimum expense, we need to find forcings f E
of unit energy 〈f E, f E〉 = 1 that generate strong coefficients |µr(ωf )| and |γ (ωf )|. As
a first step in this direction, we consider the optimal forcing f E of unit energy that
yields the strongest possible energy 〈uE,uE〉1/2. The corresponding response qE is
referred to as the optimal response. Its energy 〈uE,uE〉 corresponds to the optimal
energy gain at a prescribed frequency ωf . Such an optimization problem may be
solved thanks to Lanczos methods (see Lehoucq & Sorensen 1996, Alizard & Robinet
2007, Monokrousos et al. 2010, Brandt et al. 2011 and Sipp et al. 2010). We
use the ARPACK library in regular mode and repeatedly evaluate R̃R on some
arbitrary vector. Here, R̃ and R are respectively the adjoint and direct resolvent
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FIGURE 7. (a) Streamwise component Re(fE) of unit energy optimal forcing for ωf = 13;
(b) streamwise component Re(uE) of associated optimal response. These figures may be
compared to those of the fixed forcing case shown in figure 3(a,b).

operators (−iωPPT + M̃ )
−1

and (iωPPT +M )
−1. For details of implementation,

the reader is referred to Sipp & Marquet (2012). The square root of the optimal
energy gain is represented as a function of frequency by a grey line with symbols
in figure 5(a). We obtain results that are similar to those of the fixed forcing case
(black line): the peaks are located at the same frequencies but the optimal responses
display amplitudes which are at least one order of magnitude higher than the responses
triggered by the fixed forcing given in (3.1). The optimal forcings are all located near
the leading edge of the cavity and display structures that lay against the stream to
take advantage of the Orr mechanism to extract energy of the flow. The higher the
frequency, the finer the spatial scales of the forcing. Hence, the spatial location and
overall shape of the optimal forcings are only weakly dependent on the frequency.
This may explain qualitatively why the curves in figure 5(a) for the fixed forcing
and for the optimal forcings are just shifted by an order of magnitude, which looks
surprising at first glance. Also, it may be shown that, near the frequencies of the
global modes belonging to the parabolic curve mentioned in § 3.2, the optimal forcings
display a structure close to the corresponding adjoint global modes. This holds in
particular at the frequencies ωf = 4.5, ωf = 9.2 and near ωf = 7.0. In the case ωf = 13,
we show in figure 7(a,b) the real parts of the streamwise component of the optimal
forcing and response structures. The optimal forcing is normalized to unit energy
while the optimal response verifies 〈uE,uE〉 = 516, which may be compared to the
energy of the response in the case of the fixed forcing 〈uE,uE〉 = 1.73.

We may then compute for all frequencies the harmonics shown in figure 3 and the
coefficients |µr(ωf )| and |γ (ωf )| characterizing the control efficiency of the chosen
forcings f E. Figures 4(b) and 6(b) show that the coefficients |µr(ωf )| and |γ (ωf )|
stemming from the optimal forcings display values that are at least one order of
magnitude higher than those related to the fixed forcing case (3.1). The optimal
forcings therefore yield for all frequencies forcing amplitudes E′ that are an order of
magnitude lower than those required by the fixed forcing structure given in (3.1). For
example, at ωf = 13, µr = 5.8 × 106 for the optimal forcing, and µr = 3.8 × 103 for
the fixed forcing. In figure 5(b), we use a grey line with symbols for the parameter
r (see (3.14)), indicating whether the stabilizing control strategy achieves (r < 1) or
does not achieve (r > 1) a net reduction of the mean fluctuating kinetic energy at the
spatial location (x = 0.75, y = 0). It is seen that the optimal forcings yield slightly
larger values of r than in the case of the fixed forcing, especially at high frequencies
ωf > 7. Hence, the fixed forcing defined in (3.1) should be slightly favoured to achieve
a net reduction of the oscillation amplitudes. There is no contradiction here since the
optimal forcings have been designed to lower the stabilizing forcing amplitude E′s and
not to reduce r. Also, there seem to exist very narrow frequency bands where the
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net reduction of mean fluctuating kinetic energy may reach values of r = 0.2 near
ωf ≈ 0.07, 0.31 and 1.45.

3.4. Comparison with DNS at Re= 6250

In this section, we compare the results of the asymptotic analysis presented in §§ 3.1
and 3.2 to direct numerical simulation (DNS). The DNS code marches in time the
governing equations (3.2) using the primitive variables (u, v, p). We use the same
mesh and spatial discretizations as in the previous sections. The pressure field is
obtained thanks to the Uzawa algorithm preconditioned by the Cahouet–Chabart
method (Glowinski 2003). The time discretization is semi-implicit and based on
a second-order backward differentiation formula scheme. The time step in the
simulations is 1t = 0.002.

At each time, we extract the following quantity from the DNS: Ã′(t) = 〈ũA,u(t) −
u0〉, where ũA is the adjoint marginal global mode shown in figure 1(d) and u0 the
base flow at Re= 5396. Inspection of asymptotic expansion (3.3) shows that at leading
order, Ã′(t) should behave as

Ã′(t)= A′eiωct + 〈ũA,uE〉E′eiωf t + 〈ũA,uE〉E′e−iωf t. (3.17)

This stems from the fact that 〈ũA,uA〉 = 1 and 〈ũA,uA〉 = 0. Also, it is possible to
evaluate numerically the complex constants 〈ũA,uE〉 = −4.49 + 1.51i and 〈ũA,uE〉 =
0.16− 0.0096i.

The test case is as follows. We choose a supercritical Reynolds number Re = 6250
where the base flow displays a single unstable global mode (see the symbols in
figure 2). In the case of no control, the flow field should exhibit an oscillatory
movement characterized by an amplitude |A′| given by (2.15). We obtain |A′| = 0.0174.
The quantity Ã′(t) reduces to the first term on the right-hand side of (3.17) and
therefore corresponds to the amplitude of the global mode. The DNS simulation
recovers this uncontrolled situation quite accurately, as shown in figure 8(a). Here, the
amplitude of the global mode Re(Ã′(t)) as obtained in the DNS is represented as a
function of time. Up to t = 92.2, the control is switched off: the global mode is seen
to oscillate with an amplitude which is in agreement with the value |A′| = 0.0174
given by the theory (see the horizontal lines on the left of the figure). In figure 8(b),
we have represented as a function of time the local frequency of the oscillations shown
in figure 8(a): the global mode is seen to oscillate at frequency ω = 7.23, which is
close to the value ωLC = 7.162 predicted by theory in (2.16).

We would now like to stabilize the global mode by a high-frequency forcing, which
should stabilize the flow over all frequencies below the forcing frequency ωf . We
choose a harmonic forcing of frequency ωf = 13 with the optimal forcing structure
shown in figure 7(a). This control should stabilize the flow (µr is strictly positive) at a
still reasonable cost (E′s is small since µr = 5.8 × 105 is an order of magnitude larger
than ηr = 4688.43) over frequencies up to nearly twice the natural frequency of the
flow (ωf /ωc ≈ 1.86). Also, the choice ωf = 13 ensures that the harmonics produced by
the applied forcing (ω = 0,±ωf ,±2ωf ,±(ωc+ωf ),±(ωc−ωf )) are not too close to the
resonant frequencies ±ωc = ±7.0. In particular, ωc − ωf = −6.0, which is reasonably
far away from −ωc = −7.0. The amplitude E′ is chosen as the threshold stabilizing
amplitude E′s given in (3.13): E′ = 0.000453. In figure 8(a,b), the control is switched
on at t = 92.2. We observe that the amplitude of the oscillations decreases from 0.017
to approximately 0.002 and that the frequency of the oscillations rises to the forcing
frequency ωf = 13. This is in accordance with the behaviour predicted by theory. In
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FIGURE 8. DNS at Re = 6250. Control is switched on at t = 92.2 and is characterized by
a forcing frequency ωf = 13, an amplitude E′ = E′s = 0.000453 (see (3.13)) and f E as the
optimal forcing. (a) Amplitude Re(Ã′(t)) as a function of time. The horizontal lines refer to
the values predicted by the amplitude equation (3.9): the two lines on the left refer to the
uncontrolled situation and the two on the right refer to the controlled situation. (b) The local
frequency associated to signal Re(Ã′(t)) is shown as a function of time. For this, an algorithm
tracks the occurrence in time of three consecutive extrema t0, t1 and t2: t0 is reported on the
x-axis and ω = 2π/(t2 − t0) on the y-axis. The two arrows respectively represent the natural
frequency of the flow ω = 7.23 and the forcing frequency ωf = 13. The movie available
at http://dx.doi.org/10.1017.jfm.2012.329 represents the vorticity of the flow field and the
cross-stream velocity at the point (x= 0.75, y= 0) during the same time range.

(3.17), the quantity Ã′(t) is governed by the two last terms of the right-hand side, since
|A′| → 0 as t→∞ (the global mode is stabilized). With the numerical values given
earlier, the resulting oscillations of Re(Ã′(t)) should display an amplitude of 0.002 and
a frequency of ωf = 13. This is exactly what is observed in the DNS.

In figure 9, we show a spectrum of the cross-stream velocity component extracted in
the shear layer at position (x = 0.75, y = 0). The solid and dashed lines, respectively,
refer to the uncontrolled and controlled DNS simulations. In the uncontrolled case,
we observe several peaks: the dominant peak at frequency ω = 7.23 is related to the
saturated global mode AeiωctuA+c.c., the second at frequency ω = 14.4 is related to the
second harmonic A2e2iωctuAA+c.c., and the others are related to higher-order harmonics.
In the controlled case, we can see that the unsteadiness near the frequency ω = 7.23
has completely disappeared: the global mode has effectively been damped. Only the
forcing frequency ωf = 13 and its harmonics remain in the spectrum. This validates the
analysis of §§ 3.1 and 3.2.

3.5. Relevance of asymptotic analysis as ε increases
The theoretical study performed in this paper is strictly valid only in the close vicinity
of the bifurcation ε � 1. In the previous section we checked that the asymptotic
approach is still close to the true nonlinear solution for the non-infinitesimal value
ε = 1/5396 − 1/6250 = 2.5 × 10−5. This success can be explained qualitatively by
the following observation: in figure 2, it is seen that the spectrum at Re = 6250
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Control OFF
Control ON
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10–2

10–1

2010 300

FIGURE 9. Spectrum of v(x = 0.75, y = 0, t) in DNS at Re = 6250. Solid line, without
control; dashed line, with control, characterized by ωf = 13, E′ = E′s = 0.000453 and f E
as optimal forcing. The spectra were computed on the time series 120 6 t 6 215 after the
transient has died away (the control was switched on at t = 92.2).

still displays only one unstable global mode (the global mode that was marginal at
Re = 5396) while all other modes are strictly damped. This spectrum is therefore
qualitatively close to the one obtained for 0 < ε � 1, which explains why the
asymptotic approach is capable of handling the small and smooth variations between
the dynamics at Re = 6250 and Re = 5396. However, if one selects an even higher
Reynolds number, a second global mode will eventually become marginal: such an
event, which has not been accounted for explicitly in the theoretical analysis, will
certainly compromise the quality of the present asymptotic solution. A qualitative
change in the dynamics at some Reynolds number therefore stands as a limit for the
validity of the present asymptotic approach. The presence of weakly damped global
modes in the dynamics can therefore be viewed as a strength of control efficiency (the
preferred frequencies for control at ω = 4.5 and ω = 9.2 are due to the presence of
such modes) and also as a weakness, since they may limit the validity domain of the
analysis in Reynolds number.

In the case when two global modes display close bifurcation thresholds (which
means that at the bifurcation threshold of the least damped global mode the other
global mode is just weakly damped), we are in fact faced with a bifurcation of
higher codimension. As shown by Meliga et al. (2009), a shift operator may then be
introduced to tackle the problem in a nearly rigorous way. In so doing, one would
obtain two coupled amplitude equations describing the dynamics of the two nearly
marginal global modes. For example, it would be interesting to determine, for a
slightly supercritical Reynolds number, whether a stabilizing control designed for the
weakly unstable global mode could destabilize the weakly damped global mode.

Finally, note that the purpose of the present asymptotic analysis is only to exhibit
a particular solution of the Navier–Stokes equations. The analysis does not show that
the true nonlinear dynamics in the presence of a richer perturbation environment
(three-dimensional perturbations for example) obligatorily follows the dynamics
prescribed by the asymptotic analysis. For example, transient effects associated to
the amplification of upstream noise by convective instabilities could drive the flow
towards other solutions.
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3.6. Mean flow and stability

The mean flow uMF corresponds to the time-average of the unsteady flow field given
in (3.3):

uMF = u0 + δ′uδ + E′2uEĒ + |A′ |2 uAĀ. (3.18)

To study the stability of the mean flow, we follow the developments presented in Sipp
& Lebedev (2007). It may be shown that the complex value

λMF = iωc + ηδ′ − µEĒ(ωf )E
′2 − νAĀ|A′ |2 (3.19)

belongs to the spectrum of the Jacobian derived around the mean flow uMF . More
precisely, the result states that the quantity eλ

MF tuA (where uA is the global mode
defined in (2.4)) is a solution of the Navier–Stokes equations (2.1) linearized around
uMF . The complex constant µEĒ(ωf ) is defined in (3.11) and is related to the zeroth
harmonic qEĒ generated by the forcing response qE. The complex constant νAĀ defined
in (2.12) is analogous but linked to the zeroth harmonic qAĀ generated by the global
mode qA.

In the case of no control, we retrieve the results in Sipp & Lebedev (2007). In this
case, E′ = 0, and the saturation amplitude on the limit cycle |A′| is given in (2.15).
Considering the real and imaginary parts of (3.19) yields

σMF =
(

1− νAĀr

νr

)
ηrδ
′, (3.20)

ωMF = ωc + ηiδ
′ − ηr

νr
νAĀiδ

′. (3.21)

Hence, if νAĀr ≈ νr, then the mean flow is marginally stable (σMF � ηrδ
′). Comparison

of ωMF with ωLC (see (2.16)) shows that, if νAĀi ≈ νi, then the mean flow displays
the frequency of the flow on the limit cycle. These conditions state that the zeroth
harmonic uAĀ is much stronger than the second harmonic uAA. In the present case,
we have νAĀr = 270.01, νr = 390.27 and νAĀi = −155.45, νi = −142.91, which shows
that the mean flow is not exactly marginally stable but that its frequency matches the
frequency of the flow on the limit cycle reasonably well.

In the case |A′| � 1, we obtain a physical interpretation of a linear stability analysis
applied to the mean flow (and not to the base flow). Indeed, if |A′| � 1, the dynamics
of the global mode in the presence of forcing is linear, and governed by the eigenvalue
given in (3.10). Comparison with (3.19) (and considering |A′| � 1) shows that λ= λMF

if µ(ωf ) ≈ µEĒ(ωf ). If this condition holds, then the linear dynamics of the global
mode in the presence of forcing is governed by an eigenvalue stemming from a mean
flow analysis and not from a base flow analysis. To the author’s knowledge this is
the first result justifying the use of a mean flow for a linear stability analysis, in the
sense that an eigenvalue of the mean flow (and not of the base flow) will effectively
govern the linear dynamics of an eigenmode. Further, in this perspective it is worth
noting that µEĒ(ωf ) may be linked to the sensitivity maps introduced by Marquet et al.
(2008a). Indeed, after performing some integration by parts, µEĒ(ωf ) = −〈∇u0λ,uEĒ〉,
where ∇u0λ=∇ũA ·uA − (∇uA)

∗ · ũA is the sensitivity of the eigenvalue λ with respect
to a modification of the base flow u0 (Marquet et al. 2008a).

We will now examine the stability properties of the mean flow in the case of the two
control strategies presented in § 3.2.
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FIGURE 10. Assessment of mean flow stability. Black solid line, |µr(ωf )|; black dashed
line, sign(µr(ωf )); red solid line, |µEĒr(ωf )|; red dashed line, sign(µEĒr(ωf )). (a) With fixed
forcing defined in (3.1); (b) with optimal forcings. The two figures share the same axes: the
black and red solid lines go with the y-axis of (a), and the black and red dashed lines go with
the y-axis of (b).

3.6.1. Stabilization strategy
In the stabilization strategy, the forcing amplitude E′ is given in (3.13) and the

amplitude of the marginal global mode is zero (|A′| = 0). Hence, the amplification rate
induced by a mean flow stability analysis (obtained by taking the real part of (3.19))
simplifies to

σMF =
(

1− µEĒr(ωf )

µr(ωf )

)
ηrδ
′. (3.22)

Hence, if µEĒr(ωf )≈ µr(ωf ), then the mean flow is marginally stable σMF � ηrδ
′. This

condition states that the zeroth harmonic uEĒ is much stronger than the (ωc + ωf )-
harmonic uAE and the (ωc − ωf )-harmonic uAĒ. In figure 10, we have checked whether
this condition holds in the case of the fixed forcing (figure 10a) and in the case of
the optimal forcings (figure 10b). In each plot, we use black solid and red solid lines,
respectively, to show the quantities |µr(ωf )| and |µEĒr(ωf )| as a function of the forcing
frequency ωf . The black dashed and red dashed lines refer to the signs of µr(ωf ) and
µEĒr(ωf ). The resulting mean flow is stable if the black lines coincide with the solid
lines. Except in the case of low-frequency optimal forcings (figure 10b for ωf < 2),
we can see that this is not the case, which shows that the mean flows resulting from
a stabilization strategy are not marginally stable. From a physical point of view, this
shows that the stabilization mechanisms involved here are not related to mean flow
distortions but are linked to the dynamics of the (ωc + ωf )- and (ωc − ωf )-harmonics.

3.6.2. Frequency shift strategy
In the frequency shift strategy, the flow is located on a limit cycle whose amplitude
|A′| is given in (3.15). The frequency ωMF induced by a mean flow stability analysis
(imaginary part of (3.19)) simplifies to

ωMF = ωc + ηiδ
′ − ηr

νr
νAĀiδ

′ + µr(ωf )

(
−µEĒi(ωf )

µr(ωf )
+ νAĀi

νr

)
E′2. (3.23)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

32
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.329


458 D. Sipp

(b)(a)

104

10 5

10 6

10 7

10 8

10 9

103

102

5 100 15 5 100 15

2.0

1.5

1.0

–1.0

–2.0

0.5

0

–0.5

–1.5

FIGURE 11. Assessment of mean flow stability. Black solid line, |µi(ωf )|; black dashed line,
sign(µi)(ωf ); red solid line, |µEĒi(ωf )|; red dashed line, sign(µEĒi(ωf )). (a) With fixed forcing
defined in (3.1); (b) with optimal forcings. The two figures share the same axes: the solid lines
go with the y-axis of (a), and the dashed lines go with the y-axis of (b).

This frequency may be compared to the frequency of the flow on the limit cycle, given
in (3.16). It is seen that the two frequencies match if νAĀi ≈ νi and µEĒi(ωf ) ≈ µi(ωf ).
Recalling that νAĀi = −155.45 and νi = −142.91, we conclude that the first condition
is approximately satisfied. For the second one, we have represented in figure 11 the
quantities |µi(ωf )|, |µEĒi(ωf )|, sign(µi(ωf )) and sign(µEĒi(ωf )) as a function of the
forcing frequency ωf . We have used the same style and colour conventions as in
figure 10. Figure 11(a) refers to the fixed forcing case and figure 11(b) the optimal
forcings case. We observe that the black and red curves match for frequencies ωf < 7
and that they are different for higher frequencies. This shows that the resulting mean
flow exhibits a global mode of frequency equal to the frequency of the flow on the
limit cycle only for low-frequency forcings ωf < 7, while this is not the case for high-
frequency forcings ωf > 7. From a physical point of view, this shows that, depending
on the forcing frequencies, sometimes it is the mean flow distortion that is responsible
for the frequency shift, and sometimes it is the (ωc + ωf )- and (ωc − ωf )-harmonics.

4. Forcing near particular frequencies
When the forcing frequency ωf is chosen close to 0, ωc/2, ωc or 2ωc, then the

scaling and development introduced in § 3.1 are no longer valid. Indeed, the linear
systems in (3.4), (3.6) and (3.7) or (3.8) may then be degenerate. As shown in Fauve
(1998), different scalings are required. The cases where the forcing frequency ωf is
close to ωc/2 or 2ωc are treated in appendices B and C. In the next two sections
(§§ 4.1 and 4.2), we will present the case of forcing near the natural frequency of the
flow (ωf ≈ ωc) and the case of steady forcing (ωf = 0).

4.1. Forcing near ωf = ωc

Here we focus on the case where the forcing frequency ωf is close to the frequency ωc

of the marginal global mode: ωf = ωc + Ω ′ with Ω ′ as a real. If δ′ = εδ with ε � 1,
then the scaling is E′ = ε3/2E, Ω ′ = εΩ and the flow field is sought in the following
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FIGURE 12. (Colour online) Phase portrait for supercritical Reynolds number Re= 6250 and
forcing characterized by frequency ωf = ωc = 7.0 (Ω ′ = 0) and amplitude E′ = 1.7 × 10−5.
The thick black line is a trajectory that starts at the origin. All trajectories converge towards a
fixed point A′0. The circle designates the limit cycle in the case of no control.

form:

q= q0 + ε1/2[AeiωctqA + c.c.] + ε[δqδ + |A |2 qAĀ + (A2e2iωctqAA + c.c.)]. (4.1)

We introduce this development in the forced Navier–Stokes equation (3.2). The flow
structures appearing in (4.1) are the same as those introduced in § 2. One may
straightforwardly check that none of the linear systems involved here is degenerate.
The equation governing the amplitude A′ = ε1/2e−iεΩtA reads

dA′

dt
= (ηδ′ − iΩ ′)A′ − νA′|A′ |2+µE′, (4.2)

with µ = 〈ũA, f E〉. The structure of the amplitude equation is different from that
obtained in the non-resonant case: the forcing term no longer changes the eigenvalue
of the linear dynamics of the global mode but appears as an external constant forcing
term. The magnitude of the coefficient µ is largest if we choose the adjoint global
mode ũA as the forcing structure f E. If we normalize the forcing f E to unit energy,
f E = ũA/‖ũA‖, the coefficient µ is a positive real µ= 119.38.

We now study the dynamics of the flow in the case Re = 6250. This is the
supercritical configuration introduced in § 3.4: a single unstable global mode exists
at this Reynolds number and the flow converges on a limit cycle in the uncontrolled
case. A phase diagram of the dynamics is shown in figure 12. The circle depicts the
limit cycle of amplitude |A′| = 0.0174. In the case of control, the dynamics converges
towards a fixed point for sufficiently high forcing amplitudes E′. In the case of an
exactly resonating forcing Ω ′ = 0, the threshold value for this forcing amplitude to
reach a fixed point is equal to E′s = 1.7 × 10−5. The trajectories in the phase plane
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corresponding to this threshold value are shown with black solid lines in figure 12.
The fixed point A′0 is located inside the limit cycle and close to it: the resulting
flow therefore displays slightly lower-amplitude oscillations than the uncontrolled flow.
Moreover, the frequency of the flow field is changed since the flow is no longer
located on a limit cycle but on a fixed point. The resulting frequency of the flow is
best analysed by rewriting the two dominant terms in expansion (4.1) in the form

q= q0 + (A′ei(ωc+Ω ′)tqA + c.c.). (4.3)

Hence, if the amplitude A′ converges on a fixed point A′0, then the frequency of the
flow is seen to be ωc + Ω ′, which is simply the chosen forcing frequency ωf . This
is the well-known locking phenomenon as presented by Fauve (1998): if the forcing
frequency ωf is chosen close to the resonant frequency ωc, then the flow locks onto
the forcing frequency ωf . Note that the required forcing amplitude E′ = ε3/2E is one
order of magnitude lower than in the non-resonant case of § 3 where E′ = ε1/2E.
Near-resonance forcing is therefore an extremely cheap way to control the flow. If in
an application it is sufficient to shift the frequency of the flow slightly, then this is
certainly the best way to proceed. However, if we aim at suppressing the unsteadiness
of the flow in a larger frequency band (as for example achieved in figure 9) then the
best strategy is to apply a non-resonant forcing characterized by a frequency chosen at
the local maxima displayed in figure 4.

Similarly to § 3.4, we have checked the validity of the weakly nonlinear analysis
against DNS. We chose the same forcing as that analysed in figure 12: the forcing
is characterized by the frequency ωf = 7.0, and the spatial structure by f E = ũA.
In figure 13(a–d), we have respectively represented (black lines) the cross-stream
component of the flow field at point (x = 0.75, y = 0) as a function of time for
four different forcing amplitudes, E′ = 0.5E′s, E′s, 2E′s, 4E′s, where E′s = 1.7 × 10−5 is
the threshold amplitude forcing to reach a fixed point. The control is switched on
at t = 92.2: it is seen that in the uncontrolled case (t < 92.2), the DNS simulation
displays oscillations whose amplitude approximately matches the one predicted by the
amplitude equation (see the two horizontal lines on the left of the figures). Also, the
red lines indicate the local frequency of the oscillations obtained in the DNS. They
were obtained with the same algorithm as the one introduced in figure 8(b). It is seen
that the natural frequency of the flow on the limit cycle is ω = 7.23. In the case of
control (t > 92.2), the behaviour of the flow depends on the forcing amplitude E′. For
small-amplitude forcing E′ = 0.5E′s (figure 13a), a low-frequency modulation of the
signal v(x = 0.75, y = 0, t) is observed: the amplitude of the oscillations increases and
decreases periodically while the frequency oscillates around the natural frequency of
the flow ω = 7.23. At higher forcing amplitude E′ = E′s (figure 13b), this behaviour
is amplified. The amplitude and frequency oscillations strengthen but the locking
phenomenon is not observed: the frequency still oscillates around the natural frequency
of the flow. The asymptotic analysis therefore underestimates the amplitude threshold
that achieves locking of the flow field. For twice the predicted amplitude threshold
E′ = 2E′s (figure 13c), we observe the locking phenomenon: the local frequency of
the oscillations decreases down to the forcing frequency ωf = 7.0 and the amplitude
of the oscillations converges towards a fixed value which is slightly smaller than the
amplitude predicted by the asymptotic approach (see the two horizontal lines on the
right of the figures). For an even higher forcing amplitude E′ = 4E′s (figure 13d),
a similar locking phenomenon is observed. However, we also observe differences:
the amplitude of the oscillations again increases and decreases periodically and the
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FIGURE 13. DNS at Re = 6250 with forcing switched on at t = 92.2 and characterized by
ωf = 7.0 and f E = ũA. The cross-stream velocity in the shear layer v(x = 0.75, y = 0, t)
is represented by a black line as a function of time (black y-axis). The local frequency is
shown by the red line (red y-axis). For this, an algorithm tracks the occurrence in time of
three consecutive extrema t0, t1 and t2: t0 is reported on the x-axis and 2π/(t2 − t0) on the
y-axis. The arrows on the right of the plots show the natural frequency of the flow ω = 7.23
and the forcing frequency ωf = 7.0. The forcing amplitude E′ is different in each plot: (a)
E′ = 0.5E′s; (b) E′ = E′s; (c) E′ = 2E′s; (d) E′ = 4E′s. Here E′s = 1.7 × 10−5 is the threshold
forcing amplitude that achieves locking of the frequency. The black horizontal lines on
the left and on the right of the figures indicate the oscillation amplitudes predicted by the
asymptotic analysis in the uncontrolled and controlled cases.

frequency of the signal now oscillates around the forcing frequency ωf = 7.0, which
still ensures that the flow field is locked onto the forcing frequency.

4.2. Forcing at ωf = 0
For the sake of completeness, we briefly present the case of zero-frequency forcing
(ωf = 0). This steady forcing case has already been treated by Marquet et al. (2008a)
with a Lagrangian approach in the case of a cylinder flow. We show here how a
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FIGURE 14. Case of steady forcing (ωf = 0). (a) Sensitivity of amplification rate to the
introduction of a steady forcing ∇f σ . (b) Sensitivity of frequency to the introduction of a
steady forcing ∇fω.

weakly nonlinear approach recovers the sensitivity maps introduced in Marquet et al.
(2008a).

The scalings to be used in this case are δ′ = εδ, E′ = εE (Marquet et al. 2008b). The
flow field is sought in the form

q= q0 + ε1/2[AeiωctqA + c.c.] + ε[δqδ + |A |2 qAĀ + (A2e2iωctqAA + c.c.)+ EqE]. (4.4)

The flow structures appearing in (4.4) are the same as those introduced in § 2. The new
structure qE appearing at order ε is governed by

M qE = 2P(f E). (4.5)

It corresponds to the modification of the base flow due to the introduction of the
steady forcing f E. The equation governing the amplitude A′ = ε1/2A reads

dA′

dt
= (ηδ′ + µE′)A′ − νA′|A′ |2 . (4.6)

It is seen that the steady forcing modifies the linear dynamics since the eigenvalue
governing the dynamics of the global mode is λ = iωc + ηδ′ + µE′. Hence, this
situation is analogous to the non-resonant forcing case described in § 3.

The complex constant µ, which is obtained as before by imposing a compatibility
condition at order ε3/2, is related to the modification of the base flow due to the steady
forcing: µ = −〈ũA,∇uA · uE + ∇uE · uA〉. It is possible to relate this coefficient µ to
the sensitivity maps introduced in Marquet et al. (2008a). For this, after performing
some integration by parts, µ may be rewritten as µ = 〈∇u0λ,uE〉 = 2〈∇fλ, f E〉, where
∇u0λ = ∇ũA · uA − (∇uA)

∗ · ũA is the sensitivity of the eigenvalue λ with respect
to a modification of the base flow u0, while ∇fλ = PT[M̃ −1P(∇u0λ)] is the
sensitivity of the eigenvalue to the introduction of a steady forcing (Marquet et al.
2008a). The sensitivity of the amplification rate (∇f σ = Re(∇fλ)) and frequency
(∇fω = −Im(∇fλ)) to the introduction of a steady forcing are represented in
figure 14(a,b). The solid lines with arrows indicate the orientation of the sensitivity
fields while the coloured iso-contours refer to the norm of the fields. It is seen that the
amplification rate of the global mode is most sensitive to the introduction of a steady
forcing near the upstream wall of the cavity while the frequency is sensitive in a
broad region inside the cavity. Also, a steady forcing that will accelerate the clockwise
movement of the fluid inside the cavity is seen to increase the frequency and decrease
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the amplification rate. This is in accordance with the fact that the velocity gradient
in the shear layer (and therefore the Kelvin–Helmholtz instability mechanism) will
be weaker and the downstream convection of the perturbations along the shear layer
quicker.

5. Conclusion
This paper is concerned with open-loop control of oscillator flows with harmonic

forcings. We have taken a particular oscillator flow, an open-cavity flow, to present
the approach. This flow undergoes a supercritical Hopf bifurcation at Re = 5396. For
supercritical Reynolds numbers, the flow is unstable and converges towards a limit
cycle. This behaviour is well described by the Stuart–Landau equation (2.10), which
governs the dynamics of the unstable global mode. We then considered the case of
a harmonic forcing, which is characterized by a frequency ωf , an amplitude E′ and a
spatial structure f E. More precisely, we look at how the forcing enters the amplitude
equation (2.10). As in the case of a forced Van der Pol oscillator, the response of the
flow depends on the forcing frequencies.

In the case where ωf is not close to 0, ωc/2, ωc, 2ωc, then the forcing modifies
the linear dynamics of the global mode (see (3.9)). Due to nonlinear interactions, the
zeroth harmonic uEĒ, the (ωc + ωf )-harmonic uAE and the (ωc − ωf )-harmonic uAĒ

yield an additional term −µ(ωf )E′2A′ in the amplitude equation. Two control strategies
were then presented. First, the stabilizing strategy, only possible at frequencies where
µr(ωf ) > 0, consists in stabilizing the global mode. If the forcing frequency is higher
than ωc, this leads to the suppression of all perturbations whose frequencies are
lower than the forcing frequency. Second, shifting the frequency of the flow on
the limit cycle aims at changing the frequency of the flow field. A complete study
over all frequencies has been achieved, showing where the forcing stabilizes the
flow, where the forcing increases or decreases the frequency of the flow. Also, we
have shown that there are particular frequencies where the forcing amplitude is
lowest to achieve a strongest impact on the flow. These frequencies correspond to
local extrema of |µr(ωf )| and |γ (ωf )| (see (3.16)). The spatial structure f E of the
forcing may also be optimized to diminish the forcing amplitude E′. For this, we
considered optimal forcings, which at a given frequency yield the strongest energy
response. These optimal forcings depend on the forcing frequency ωf and may be
obtained by finding the strongest singular values of the resolvent matrix. These
structures are located on the shear layer, close to the leading edge of the cavity.
Comparing the response of a flow triggered by optimal forcings with the case of
a flow manipulated by a fixed localized forcing situated near the leading edge of
the cavity, we showed that the forcing amplitude E′ may be decreased by an order
of magnitude with the optimal forcings. For the stabilization strategy, we confirmed
the validity of the developments by performing direct numerical simulation at the
supercritical Reynolds number Re = 6250. The behaviour predicted by the amplitude
equation is nicely recovered by the DNS: after a short transient period, the spectrum of
the flow only displays peaks near the forcing frequency and its harmonics, while the
peaks associated to the global mode have completely disappeared. Finally, the stability
properties of the resulting mean flows were analysed. In the presence of control, it
was shown that, if the zeroth harmonic uEĒ dominates the (ωc + ωf )-harmonic uAE and
the (ωc − ωf )-harmonic uAĒ, then the linear dynamics of the global mode is governed
by the eigenvalue resulting from a stability analysis based on the mean flow (and
not on the base flow). The same condition ensures that the mean flow resulting from
a stabilization strategy is marginally stable and that the mean flow resulting from a
‘frequency shifting strategy’ displays the frequency of the true manipulated flow field.
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In the case where the forcing frequency is close to the natural frequency of the
flow ωf ≈ ωc, then the forcing enters the amplitude equation as an external constant
forcing term µE′. The coefficient µ is strongest if the forcing structure f E is chosen
to be the adjoint global mode ũA. The study of the amplitude equation shows that
the flow locks onto the forcing frequency for a sufficiently high forcing amplitude
E′. The scalings used here show that the forcing amplitude E′ is an order of
magnitude lower than in the non-resonant case. Therefore, a near-resonant forcing
is certainly the cheapest strategy to slightly change the frequency of an oscillator.
Finally, the predictions of the amplitude equation were checked against a forced
direct numerical simulation conducted at the supercritical Reynolds number Re= 6250,
where the locking phenomenon occurred at approximately twice the forcing amplitude
E′s predicted by theory.

For the sake of completeness, we also treated the case of steady forcing. Similarly
to the non-resonant case, the forcing modifies the linear dynamics of the global mode
by adding a term µE′A′ to the amplitude equation (see (4.6)). In particular, we showed
how the sensitivity fields introduced by Marquet et al. (2008a) may be retrieved from
the coefficient µ.

For future work, we plan to extend the present study in three directions. First, we
would like to treat the case of steady three-dimensional forcing. Indeed, Kim & Choi
(2005) have nicely shown how a steady three-dimensional blowing and suction applied
along the span of a cylinder managed to decrease its drag strongly. According to
Choi et al. (2008), such a forcing directly acts on the wake and not on the mean
boundary layer separation position. In particular, it will be interesting to study the
induced mean flow as a function of the transverse wavelength of the blowing/suction
profile. Second, nearly all studies with synthetic jets (Glezer & Amitay 2002) concern
turbulent flows. Usually, the forcing frequency is an order of magnitude higher than
the natural frequency of the flow, to ensure that the behaviour of the flow field (and
in particular the drag and lift coefficients) do not depend on the forcing frequency.
It would be interesting to question these hypotheses using the present systematic
approach based on a weakly nonlinear approach. For this, we could use unsteady
Reynolds-averaged Navier–Stokes equations with a turbulence model such as the k − ω
turbulence model. In the case of a transonic, high Reynolds number flow over an
open cavity, we know that such a model is quite accurate in capturing the Rossiter
flow oscillations. Third, it would be interesting to extend the present approach to
amplifier flows, such as jets or boundary layer flows. For example, Wiltse & Glezer
(1998) studied the manipulation of a jet using synthetic jets. A systematic theoretical
approach describing the effect of the chosen forcing frequency with respect to the
natural broadband frequencies of the flow would be helpful in understanding the
physical mechanisms at play in such open-loop control studies.
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Supplementary movie
A supplementary movie is available at http://dx.doi.org/10.1017.jfm.2012.329.

Appendix A. Blowing and suction
The case of blowing and suction may be treated in a straightforward way. The

governing equations are given by the original unforced Navier–Stokes equations (2.1)
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and the forced solution is still sought in the form (3.3). At order ε1/2, instead of (3.4),
we use the following equation to determine qE:

(iωf PPT +M )qE = 0, (A 1)

with PTqE = uC on some given forcing boundary ΓC. Here uC is a given
blowing/suction profile defined on ΓC. Once qE is computed, the rest of the analysis
holds.

Appendix B. Forcing near ωf = 2ωc

We choose a forcing frequency ωf close to 2ωc: ωf = 2ωc + Ω ′. The scaling is
E′ = εE and Ω ′ = εΩ and the solution is sought in the form

q= q0 + ε1/2[AeiωctqA + c.c.]
+ ε[δqδ + |A |2 qAĀ + (A2e2iωctqAA + c.c.)+ (Ee2iωctqE + c.c.)]. (B 1)

The forcing response may be obtained via

(2iωcPPT +M )qE =P(f E). (B 2)

The equation governing the amplitude A′ = ε1/2e−iεΩt/2A reads

dA′

dt
= (ηδ′ − iΩ ′/2)A′ − νA′|A′ |2+µE′Ā′, (B 3)

where µ is a complex constant resulting from the nonlinear interaction of the
conjugate of the global mode with the forcing response qE:

µ=−〈ũA,∇uA ·uE +∇uE ·uA〉. (B 4)

For the supercritical Reynolds number Re = 6250, we show in figure 15(a) the
phase plane associated to the amplitude equation (B 3). We use the optimal forcing
at frequency 2ωc as the forcing structure f E. In this case, µ is complex and
equal to µ = −372.7 + 79.55i. The threshold value to obtain a fixed point is
E′ = 4.01 × 10−4. The fixed point is located inside the circle, which shows that
the resulting flow exhibits slightly weaker oscillation amplitudes than the uncontrolled
flow. The frequency of the flow is obtained by rewriting the dominant terms in the
expansion (B 1) as

q= q0 + (A′ei(ωc+Ω ′/2)tqA + c.c.). (B 5)

Hence, the frequency of the unsteadiness in the flow is ωc +Ω ′/2.

Appendix C. Forcing near ωf = ωc/2
We choose a forcing frequency ωf close to ωc/2: ωf = ωc/2 + Ω ′. The scaling is

E′ = ε3/4E and Ω ′ = εΩ while the solution is sought in the form

q= q0 + ε1/2[AeiωctqA + c.c.]
+ ε3/4[(Eei(ωc/2)tqE + c.c.)] + ε[δqδ + |A |2 qAĀ + (A2e2iωctqAA + c.c.)]. (C 1)

The forcing response may be obtained via

(i(ωc/2)PPT +M )qE =P(f E). (C 2)
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FIGURE 15. (Colour online) (a) Phase portrait in resonant case ωf = 2ωc (Ω ′ = 0) for
forcing amplitude E′ = 4.01 × 10−4. (b) Resonant case ωf = ωc/2 (Ω ′ = 0) for forcing
amplitude E′ = 8.4× 10−4. The thick black line in each plot is a trajectory that starts near the
origin. All trajectories converge towards a fixed point. The circle designates the limit cycle in
the case of no control.

The equation governing the amplitude A′ = ε1/2e−2iεΩtA reads

dA′

dt
= (ηδ′ − 2iΩ ′)A− νA′|A′ |2+µE′2, (C 3)

where µ is a complex constant resulting from the nonlinear interaction of the forcing
amplitude with itself: µ=−〈ũA,∇uE ·uE〉. As in the case of a forcing frequency close
to the natural frequency of the flow, the forcing enters the amplitude equation as an
external constant forcing term. For the supercritical Reynolds number Re = 6250, we
show in figure 15(b) the phase plane associated to the amplitude equation (C 3). We
use the optimal forcing at frequency ωc/2 for the forcing structure f E. In this case,
µ is complex and equal to µ = 1314 − 2578i. The threshold value to obtain a fixed
point is E′ = 8.4 × 10−4. The fixed point is this time located outside the circle, which
shows that the resulting flow exhibits slightly stronger oscillation amplitudes than the
uncontrolled flow. The frequency of the flow is obtained by rewriting the dominant
terms in the expansion (C 1) as

q= q0 + (A′ei(ωc+2Ω ′)tqA + c.c.). (C 4)

Hence, the frequency of the unsteadiness in the flow is ωc + 2Ω ′. The frequency
shift is larger than in § 4.1 and appendix B. However, the forcing amplitude here
(E′ = ε3/4E) is also required to be higher than there (E′ = ε3/2E and E′ = εE).
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