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We experimentally study how the turbulent energy dissipation rate scales in the
cross-stream direction of turbulent wake flows generated by two side-by-side square
prisms. We consider three different such turbulent flows with gap ratios G/H = 1.25, 2.4
and 3.5, where G is the distance between the prisms and H is the prism width. These
three flows have a very different dynamics, inhomogeneities and large-scale features.
The measurements were taken with a multi-camera particle image velocimetry system
at several streamwise locations between 2.5H and 20H downstream of the prisms. After
removing the large-scale most energetic coherent structures, the normalised turbulence
dissipation coefficient C′

ε of the remaining incoherent turbulence is found to scale as C′
ε ∼

(
√

ReL/Re′
λ)

3/2 along the highly inhomogeneous cross-stream direction for all streamwise
locations tested in all three flows and for all three inlet Reynolds numbers considered; Re′

λ
and ReL are, respectively, a Taylor length-based and an integral length-based Reynolds
number of the remaining incoherent turbulence.

Key words: turbulence theory, wakes

1. Introduction

In the framework of Kolmogorov’s (K41) equilibrium cascade theory for homogeneous
turbulence (Kolmogorov 1941a,b,c; Batchelor 1953), the energy dissipation rate ε̄ in the
turbulent flow can be scaled as

ε̄ = CεU3/L, (1.1)

where U is the characteristic velocity scale of the energy-containing eddies, and their size
is captured by the integral length scale L; Cε is a non-dimensional constant (independent
of time, position and Reynolds number) of order unity at sufficiently large Reynolds
number. Equation (1.1) is sometimes referred to as the Taylor–Kolmogorov relation
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because it first appeared (without much justification) in Taylor (1935). As mentioned
by Rubinstein & Clark (2017), ‘if the idea of “equilibrium” in turbulence and the
Taylor–Kolmogorov relation were restricted to static spectra alone, they would have
only limited importance. We arrive at something more general by recalling that the
importance of the K41 equilibrium is the hypothesis that it occurs in any turbulent
flow.’ This made (1.1) ‘one of the cornerstone assumptions of turbulence theory’,
quoting Tennekes & Lumley (1972). It provides a concise and straightforward way
to estimate the energy dissipation rate in the flow and to model eddy viscosities in
Reynolds-averaged Navier–Stokes models of turbulence (see Pope 2000). It also indicates
an essential feature of the equilibrium energy cascade: the energy dissipation level in
the flow is dictated by the large-scale eddies, irrespective of fluid kinematic viscosity ν,
instantaneously.

In the past decade, it has been observed in protracted initial decay regions of various
turbulent flows where energy spectra have clear power law ranges with exponents close to
Kolmogorov’s −5/3, that the turbulence dissipation rate does not obey (1.1) with constant
Cε but that Cε depends on local and global Reynolds numbers (see the review of Vassilicos
2015) as follows:

Cε ∼ Rem/2
G /Ren

λ( /=Const), (1.2)

where m ≈ 1 and n ≈ 1; ReG ≡ U∞Lg/ν is the global Reynolds number based on the
incoming velocity U∞ and a characteristic size of the turbulence generator Lg, ν being
the kinematic viscosity and Reλ ≡ ukλ/ν the local (in the streamwise direction) Reynolds
number based on a local velocity scale uk representing the local turbulent kinetic energy
and the local Taylor length scale λ. The observation of relation (1.2), which is referred to
as the non-equilibrium turbulence dissipation scaling (Vassilicos 2015), was first reported
by Seoud & Vassilicos (2007) in an approximately locally homogenous and isotropic
turbulent flow generated by a fractal grid. Later on, it was also confirmed in various
types of fractal grids and observed in a variety of other turbulent flows, including
fractal/multiscale and regular grid turbulence (Valente & Vassilicos 2012; Hearst &
Lavoie 2014; Isaza, Salazar & Warhaft 2014; Nagata et al. 2013, 2017), axisymmetric and
planar bluff-body wakes (Obligado, Dairay & Vassilicos 2016; Alves Portela, Papadakis
& Vassilicos 2018; Chongsiripinyo & Sarkar 2020), planar jets (Cafiero & Vassilicos
2019), turbulent boundary layers (Nedić, Tavoularis & Marusic 2017) and both forced and
decaying periodic turbulence (Goto & Vassilicos 2015) in which case Reλ is local in time.
Most recently, Ortiz-Tarin, Nidhan & Sarkar (2021) found a non-equilibrium dissipation
scaling with an exponent n = m different from 1 in the high Reynolds number wake of a
slender (rather than bluff) body.

The turbulence dissipation scaling has a profound influence on basic turbulent flow
properties such as mean flow profile streamwise evolution and the turbulent/non-turbulent
interface propagation velocity in self-preserving boundary-free turbulent shear flows.
The rate of growth of self-similar turbulent jets and wakes is very different in the
presence of the non-equilibrium dissipation scaling (1.2) than in the presence of
the Taylor–Kolmogorov scaling Cε = Const (Nedić, Vassilicos & Ganapathisubramani
2013; Dairay, Obligado & Vassilicos 2015; Cafiero & Vassilicos 2019). Similarly, the
turbulent/non-turbulent interface propagation velocity is very different in these flows
in the presence of one or the other dissipation scaling too (Zhou & Vassilicos 2017;
Cafiero & Vassilicos 2020). These differences have been observed in direct numerical
simulations (DNS) and laboratory experiments (Nedić et al. 2013; Dairay et al. 2015; Zhou
& Vassilicos 2017; Cafiero & Vassilicos 2019, 2020).
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As demonstrated by Goto & Vassilicos (2015, 2016a,b) the turbulence cascade
responsible for the dissipation scaling (1.2) is an out of equilibrium non-Kolmogorov
cascade with a significant time lag between the rate of energy loss by the energy-containing
eddies and the turbulence dissipation by the smallest ones which, therefore, do not balance
instantaneously. The presence of this non-equilibrium cascade is felt in non-stationary
conditions, either in time, as in time-evolving periodic turbulence, or in the streamwise
directions for flows such as jets, wakes and grid turbulence. In such flows, the streamwise
direction represents time in the frame moving with the streamwise mean flow velocity (e.g.
Taylor 1938).

Unlike the Kolmogorov equilibrium cascade and the resulting Taylor–Kolmogorov
dissipation scaling, which are well established as time-average properties of statistically
stationary turbulence that is either homogeneous (even if only locally) or periodic
(Kolmogorov 1941a,b,c; Frisch 1995; Goto & Vassilicos 2015; Vassilicos 2015; Goto
& Vassilicos 2016a; Yasuda & Vassilicos 2018), the dissipation scaling (1.2) is also
present in non-homogeneous turbulence, for example turbulent jets and wakes. Turbulence
inhomogeneity typically implies production and spatial fluxes of turbulent kinetic
energy which must be dissipated by a turbulence cascade mechanism. Given that the
non-equilibrium cascade gives rise to a universal relation between the time/streamwise
variations of Cε and Reλ (relation (1.2)) in a universality class of flows currently known
to include self-similar jets and wakes, decaying grid and periodic turbulence and forced
periodic turbulence, could it also give rise to a universal relation between space variations
of Cε and Reλ? If such a relation exists and is the same for different inhomogeneity
structures, then one should seriously consider the possibility that it is a reflection of a
turbulence cascade which somehow universally relates turbulent kinetic energy, turbulence
dissipation and the size of energy-containing eddies, the three turbulence quantities
involved in Cε and Reλ. Indeed, the turbulence cascade is one mechanism involved in
the turbulent kinetic energy balance which may be essentially the same for a range of
types of inhomogeneity. Of course, if such a relation exists for some universality class of
turbulence inhomogeneities and if it does indeed reflect a turbulence cascade mechanism,
then this turbulence cascade will have to be a non-Kolmogorov cascade simply because it
will fundamentally concern non-homogeneous turbulence.

The first question we therefore ask in this paper is whether a relation of general validity
exists between Cε and Reλ in the transverse direction of a class of inhomogeneous
turbulent flows. The second question we ask in this paper is whether such a
non-homogeneous dissipation scaling, if it exists, has anything in common with the
non-equilibrium/non-stationarity dissipation scaling (1.2). The non-equilibrium cascade
which gives rise to (1.2) is such that Cε grows or decays when Reλ decays or grows
in the streamwise direction: for example, Cε grows as Reλ decays in axisymmetric
turbulent wakes, decaying grid turbulence and decaying periodic turbulence (Dairay et al.
2015; Vassilicos 2015; Goto & Vassilicos 2015, 2016a,b); and Cε decays as Reλ grows
in planar turbulent jets (Cafiero & Vassilicos 2019). Does something similar happen
in transverse/cross-stream directions? Whether it is worth investigating a new concept
of inhomogeneous turbulence cascades and its potential relations with non-equilibrium
cascades will be determined by the results of the present study and is a question that must
be left for future research.

To address the two questions raised above, we examine cross-stream profiles of turbulent
kinetic energy, integral length scale and turbulence dissipation in the wakes of side-by-side
pairs of square prisms. It has been established in previous investigations that there are
mainly three flow regimes in such flows (e.g. Sumner et al. 1999; Alam, Zhou & Wang
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Figure 1. (a) Particle image velocimetry (PIV) set-up for the energy dissipation rate measurements. (b) PIV
set-up for the integral length scale measurements. (c) The coordinate system normal to the prisms’ spanwise
direction and definitions of G, H and xc. All fields of view in (a–c) and laser sheets in (a,b) are in the horizontal
(x, y) plane. SFV: small field of view; LFV: large field of view.

2011; Yen & Liu 2011): (a) when G/H � 1.2 ∼ 1.3, where G is the centre-to-centre
distance between the prisms and H is the side length/width of the square prism (see
figure 1), the flow is similar to that of a single bluff body, so this case is referred to as
the ‘single-bluff-body regime’; (b) for G/H between 1.2 ∼ 1.3 and 2.2 ∼ 2.5, the flow
switches intermittently from one prism to the other, resulting in one wide and one narrow
vortex street in the wake in a flow case known as the ‘bi-stable regime’ or ‘asymmetric
wake regime’ (e.g. Kim & Durbin 1988); and (c) when G/H > 2.2 ∼ 2.5, the flow loses
the bi-stability of the previous regime and two coupled vortex streets form in the wake,
either in the in-phase or in the anti-phase mode (e.g. Alam & Zhou 2013). This case is
referred to as the ‘couple-street regime’. Note that the critical G/H values that demarcate
different flow regimes are affected by the inlet Reynolds number (Xu, Zhou & So 2003).

In the present study, we follow Avelar (2019) and choose three gap ratios, G/H = 1.25,
2.4 and 3.5, one G/H value for each one of the three different flow regimes just mentioned.
This provides significant variability in flow type and turbulence inhomogeneity for a
systematic investigation of the relation between Cε and Reλ in qualitatively different flows
obtained by simple adjustments of inlet conditions without changing the global Reynolds
number. To also assess the effect of global Reynolds number, each G/H case is studied
under at least two incoming velocities (see § 2).

The paper is organised as follows. Section 2 describes the experiments. In § 3, we
compare the different flow fields obtained for different gap ratios to evidence the different
large-scale features of the turbulence and the different turbulent flow inhomogeneities in
the three flows. The scaling of the energy dissipation rate is studied in § 4, including results
both with and without the energy of the coherent motions. Conclusions are given in § 5
and Appendix A gives some information on the proper orthogonal decomposition method
used in the study.
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Re 1.0 × 104 1.2 × 104 1.5 × 104

G/H 1.25 2.4 3.5 1.25 2.4 3.5 3.5

Cases SFV7 SFV2.5 SFV7 SFV14 SFV14 SFV14 SFV20
SFV14 SFV5 SFV14 SFV20 SFV20 SFV20 —
SFV20 SFV10 SFV20 — — — —

— SFV20 — — — — —
Area (�x × �y) 1H × 0.9H 1H × 0.9H 1H × 0.9H

Table 1. Details of the small fields of view (SFVs).

2. Experimental details

The experiment was carried out in the boundary layer wind tunnel of the Lille Fluid
Mechanics Laboratory (LMFL). The test section of the wind tunnel is 2 m wide by 1 m
high and 20 m long. The wind tunnel operates in a closed loop and the test section is
transparent on all four sides to allow extensive use of optical techniques. The temperature is
regulated to ±0.15 K using a heat exchanger located in the plenum chamber. The external
speed is controlled by adjusting the fan speed with a stability of better than 0.5 %. Both
parameters are fully computer controlled. More details about the wind tunnel are available
in Carlier & Stanislas (2005). For the present study, two aluminium square prisms with
same H = 0.03 m were used and vertically positioned in the test section at approximately
5 m downstream of the test section’s entrance (figure 1a). Experimental measurements
were taken with three different centre-to-centre gap distances G between the two prisms
(figure 1c), i.e. G = 1.25H, 2.4H and 3.5H, and three incoming velocities U∞ = 5, 6 and
7.35 m s−1 (measured with a Pitot tube 0.45 m upstream of the prisms) corresponding
to global Reynolds numbers of Re = U∞H/ν = 1.0, 1.2 and 1.5 × 104, respectively. The
Pitot tube was removed after measuring the incoming velocity. Experiments with different
G/H cases were run for each Re, as listed in table 1.

To obtain Cε and Reλ we need to measure estimates of the turbulent dissipation rate,
turbulent kinetic energy and integral length scale and we had to use different PIV set-ups
for the measurements of turbulent dissipation on the one hand (figure 1a) and integral
length scale on the other (figure 1b). The energy dissipation rate ε̄ was measured with a
system of two cameras (figure 1a). The system comprises an Innolas 2 × 150 mJ YAG
laser at 10 Hz with which a laser sheet is obtained in the horizontal (x, y) plane normal
to the vertical span of the prisms. This sheet enters from the side of the test section and
is 0.3 mm thick. Two sCMOS cameras are positioned on either side of the sheet, one over
the top and one under the bottom of the test section, and observe the same region of the
flow so as to have two independent measurements of the velocity fields. The calibration
was conducted on a transparent grid with cross-patterns which allows the same points to
be located to within 0.1 pixel on both cameras and therefore generates a common mesh
to allow denoising. The idea, following Foucaut et al. (2020), is that two independent
measurements of the same quantity can be used to estimate and/or remove the noise in
statistical calculations (cf. Foucaut et al. 2016). We explain how we apply this denoising
procedure to the calculation of ε̄ in the following paragraphs. The cameras are equipped
with 200 mm Micro-Nikor lenses, the f -stop is adjusted to 8 to obtain particle images of
the order of 2 pixels. The magnification is 0.5, and the field of view, which is referred to as
the small field of view (SFV), is approximately 1H in the streamwise direction by 0.9H in
the lateral direction (figure 1a,c). For each gap ratio G/H, the measurement was taken at
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several downstream positions along the geometric centreline which crosses mid-distance
between the two prisms (y = 0), as sketched in figure 1(c), where xc is the streamwise
position of the centre of the SFVs. The measurement cases for each G/H are summarised
in table 1. Note that in the table, the cases are referred to as SFVN where N gives an idea
in terms of multiples of H of the approximate streamwise distance xc of the centre of the
corresponding SFV from the mid-point between the prisms.

The energy dissipation rate ε̄ is estimated based on the assumption of local axisymmetry
along the streamwise direction (see George & Hussein 1991) as follows:

ε̄ = ν

[
−

(
∂u
∂x

)2

+ 2
(

∂u
∂y

)2

+ 2
(

∂v

∂x

)2

+ 8
(

∂v

∂y

)2
]

, (2.1)

where the overbar is an average over time, u and v are the fluctuating velocity components
in the streamwise and cross-stream directions, respectively, and where x and y are the
streamwise and cross-stream spatial coordinates shown in figure 1. Lefeuvre et al. (2014)
demonstrated that the energy dissipation rate estimated based on the streamwise local
axisymmetry assumption is a good representation of the full energy dissipation rate across
the stream in the wake of a square prism, and in fact more accurate than the energy
dissipation rate estimated based on the local isotropy assumption, especially in the near
wake region.

The velocity fluctuation derivatives in (2.1) are obtained from the SFV measurements
with a central differencing scheme. The denoising is that of Foucaut et al. (2020) and takes
advantage of the fact that every term in (2.1) is the product of a derivative with itself. One
of the two derivatives in this product is obtained from one camera and the other derivative
from the other camera. As the noise in the measurements made with one camera is
uncorrelated with the noise in the measurements made with the other camera, the average
over time (i.e. over different PIV images) of the product of these two derivatives has a
very significantly reduced noise contribution. For example, the term (∂u/∂x)2 is obtained
by time-averaging the product of (∂u/∂x) from one of the two cameras with (∂u/∂x) from
the other camera. The same process has been applied to the other mean-square velocity
derivative terms in (2.1), so that the noise in ε is significantly reduced.

A different PIV set-up is used for the integral length scale measurements (figure 1b),
in which case the field of view is referred to as a large field of view (LFV). For these
measurements, a 2 × 220 mJ YAG BMI laser at 12 Hz was used; the beam quality of this
laser makes it possible to produce a sheet with a substantially constant thickness of around
0.8 mm over a length of 1 m. A system of four sCMOS cameras was positioned to obtain
a field of view of 24H (streamwise) by approximately 5.5H (cross-stream) for the smallest
Reynolds number Re = 1.0 × 104, and two sCMOS were used to get a field of view of 14H
(streamwise) by 6H (cross-stream) for the two larger Reynolds numbers Re = 1.2 × 104

and Re = 1.5 × 104. Each camera was equipped with a 105 mm Micro Nikkor lens with a
magnification of 0.085 in the four camera case and of 0.078 in the two camera case. The
laser sheet was also horizontal ((x, y) plane) and entered the wind tunnel through a mirror
positioned downstream in the wind tunnel test section (figure 1b). The f -stop was adjusted
to 8 to get particle images of 1.7 pixels. The fields of view of consecutive cameras were
adjusted to have a common region of 2 cm to allow estimation of the level of uncertainty.
Details of the LFV measurements are listed in table 2.

For both SFV and LFV measurements, the PIV delays were adjusted to have a maximum
displacement of 12 pixels, and the acquisition frequency was 5 Hz for SFV and 4 Hz
for LFV to ensure uncorrelated sample. A total of 20 000 velocity fields were captured
for each measurement. The seeding was carried out using poly-ethylene glycol particles.
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Re 1.0 × 104 1.2 × 104 1.5 × 104

G/H 1.25 2.4 3.5 1.25 2.4 3.5 3.5

x range (H) 0.53–24.3 11.1–24.9 11.1–24.9
y range (H) −2.4–2.9 −2.8–3.0 −2.8–3.0

Table 2. Details of the large fields of view (LFVs).

6.0

G/H = 1.25, Re = 10 000 G/H = 3.5, Re = 10 000 

G/H = 3.5, Re = 15 000 
G/H = 3.5, Re = 12 000 

G/H = 2.4, Re = 12 000 
G/H = 2.4, Re = 10 000 
G/H = 1.25, Re = 12 000 5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0
0 5 10

x/H

�
d/

η

15 20 25

Figure 2. Ratios of the interrogation window size in the SFVs to the local Kolmogorov length scale η at
different streamwise positions along the geometric centreline.

The diameter of the particles was approximately 1 µm and the concentration was adjusted
to have a number of particles per pixel of 0.04. The PIV analysis was carried out using an
in-house software developed on a MatPIV basis. It is multi-pass and multi-grid (Willert
& Gharib 1991; Soria 1996) and completes its analysis by image deformation (Scarano
2001; Lecordier & Trinite 2004) and a final 24 × 24 pixel interrogation window, with
approximately 58 % overlap, which corresponds to a 312 µm interrogation window for the
SFV and approximately 1.6 mm for the LFV.

The spatial resolution of the SFV measurements is important for a reliable estimation
of ε̄. The ratio of the interrogation window size (�d) to the Kolmogorov length scale η ≡
(ν3/ε̄)1/4 for all the measured positions along the wake centreline is displayed in figure 2.
It should be noted that, for each gap ratio at a particular position, only the case with the
highest Re is shown. The ratio �d/η varies from 4.5 in the nearest position (SFV2.5) to
2.5 in the farthest position (SFV20). For most positions, �d/η is generally below 4, except
for the very nearest one. It has been shown that a PIV resolution of �d/η � 5 can provide
an estimation of the energy dissipation rate with an uncertainty of less than 30 % (e.g.
Lavoie et al. 2007; Tokgoz et al. 2012). Therefore, the spatial resolution in the present
study should provide a reliable estimation of the energy dissipation rate, especially for
x/H � 4.

We close this section with two comparisons: a comparison of the streamwise mean
flow velocity obtained from one of our LFVs and the streamwise mean flow velocity
obtained for the same type of flow by the DNS of Zhou et al. (2019) (figure 3a);
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LFV2.4

SFV10
SFV20

SFV5
SFV2.5

G/H = 2.4
G/H = 3.5
G/H = 4 (Zhou et al. 2019)

x/H

Ū/
U

∞

k– /U
∞2

k– /U
∞2

k– /U
∞2

x/H

(b)(a)

(c) (d )

Figure 3. (a) Streamwise profiles of the normalised mean streamwise velocity Ū/U∞ along the wake
centreline (y/H = 0) for different gap ratios. The solid lines are from the LFV measurements and the dashed
line is from the DNS of Zhou et al. (2019). (b–d) Streamwise profiles of turbulent kinetic energy along the
centreline taken from LFV and SFV measurements at Re = 1.0 × 104. Each plot corresponds to one value of
G/H: (b) G/H = 1.25, (c) G/H = 2.4, (d) G/H = 3.5. The vertical dashed lines stand for the upstream and
downstream boundaries of each SFV.

and a comparison of the turbulent kinetic energies obtained from our SFV and LFV
measurements (figure 3b–d). The streamwise profile of the normalised time-averaged
streamwise velocity Ū/U∞ along the geometric centreline for gap ratio G/H = 4 obtained
by Zhou et al. (2019) at Re = 2500 agrees well with the present measurements for
G/H = 3.5 at Re = 1.0 × 104.

Figure 3(a) also illustrates the very significant differences in mean flow profiles between
the three gap ratios that we consider here. Equally significant inhomogeneity differences
are also manifest in the streamwise turbulence kinetic energy profiles in figure 3(b–d).
These are clearly flows with very different inhomogeneity structures.

Following Kolář, Lyn & Rodi (1997), the turbulent kinetic energy k̄ is estimated from
(u2 + v2)/2 as our PIV does not provide access to the spanwise velocity fluctuation
component w. In figure 4 we plot a comparison between (u2 + v2)/2 and (u2 + v2 +
w2)/2 using the DNS data that Zhou et al. (2019) obtained for a turbulent flow generated
by two side-by-side square prisms with G/H = 4 and a global Reynolds number of
Re = 2500. This comparison suggests that (u2 + v2)/2 captures approximately 75 % to
80 % of (u2 + v2 + w2)/2 for x/H � 5. More importantly for our scaling study of § 4,
the ratio of (u2 + v2)/2 to (u2 + v2 + w2)/2 remains approximately constant in this x/H
range. (We could have made an assumption of axisymmetry to estimate (u2 + v2 + w2)/2
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Figure 4. Ratio of (u2 + v2)/2 to (u2 + v2 + w2)/2 from the DNS data (courtesy of Dr Y. Zhou of Nanjing
University of Science and Technology) of Zhou et al. (2019). Here, Re = 2500, G/H = 4 and y/H = 0.

from u2/2 + v2, but we do not expect such an estimation to either invalidate our choice of
turbulent kinetic energy surrogate or significantly change this paper’s conclusions because
u2/v2 is close to 1 in our SFVs for x/H � 7 when G/H = 2.4 and 3.5.)

Finally, figure 3(b–d) compares the kinetic energies k̄ = (u2 + v2)/2 obtained from the
LFV measurements with the kinetic energies k̄ = (u2 + v2)/2 obtained from the denoised
SFV measurements and shows that the two independent k̄ measurements overlap for all
G/H cases and in all SFV positions.

3. The velocity, turbulent kinetic energy and integral length scale

Figure 3 gives some initial appreciation of the qualitative and quantitative differences in
inhomogeneity structure of our three flows. In this section we document the qualitatively
different dynamics and flow types as well as the different types of statistical inhomogeneity
between the three flows in the horizontal (x, y) plane. We look at planar fields of
instantaneous streamwise and cross-stream velocities (U, V), time-averaged streamwise
and cross-stream velocities (Ū, V̄) and turbulent kinetic energy k̄ in § 3.1. In § 3.2 we
report on the variation of the integral length scale in the (x, y) plane. The results in this
section are from our LFV measurements.

3.1. Velocity and turbulent kinetic energy
We start with instantaneous velocity fields. Figure 5 shows distinctly different
instantaneous streamwise velocity fields for the three gap ratios (i.e. G/H = 1.25, 2.4
and 3.5) and confirms the three different typical flow patterns mentioned in this paper’s
introduction: ‘single-bluff-body regime’ for G/H = 1.25, ‘asymmetric wake regime’ for
G/H = 2.4 and ‘couple-street regime’ for G/H = 3.5. The solid black squares in the plots
of figure 5 (and some subsequent figures) represent the square prisms which generate the
wake. The empty dashed squares are the positions of the SFVs.

In the case G/H = 1.25 (figure 5a,b), the two prisms are so close that the shear layers
on the outer side of each prism develop into a single-body-like wake, even though a small
gap flow persists between the two prisms. This small gap flow breaks the symmetry and
randomly flips from being biased towards one prism (figure 5a) to the other (figure 5b)
with time intervals that can be as long as approximately 10 min, i.e. an order of 105H/U∞.
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Figure 5. Examples of flow patterns of normalised instantaneous streamwise velocity U/U∞ in the wake of
the two prisms (filled squares) at Re = 1.0 × 104. (a,b) G/H = 1.25, (c,d) 2.4, (e) 3.5. The positions of SFVs
for each gap ratio are also displayed with dashed squares.

Such bi-stability with such long flip times results in an asymmetric time-average mean
flow (Ū, V̄) even though the time average is taken over 20 000 images taken at 4 Hz, i.e.
approximately 83 min (§ 2). The mean gap flow for our statistics turns out to be biased
‘upwards’ (figure 6a) instead of being straight, as would be expected from a symmetric
inlet condition. The momentum of the narrow gap flow is small and very sensitive to
perturbations in the flow (e.g. Ishigai & Nishikawa 1975; Alam & Zhou 2013), and it is
impossible to ensure perfect symmetry of perturbations during measurements.

The gap glow between the prisms remains biased in the case G/H = 2.4 (figure 5c,d),
but it is stronger and therefore interacts with the shear layers from the outer sides of the
prisms, causing the wake of that particular prism towards which the gap flow is biased to
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Figure 6. Planar mean flows for the three different gap ratios at Re = 1.0 × 104. The solid lines represent mean
flow streamlines of mean velocities (Ū, V̄) and the colour-filled iso-contours stand for Ū/U∞. (a) G/H = 1.25,
(b) 2.4, (c) 3.5.

be displaced in the same direction. As the gap flow has now a larger momentum than in
the G/H = 1.25 case, it more often randomly flips from one side to the other (figure 5c,d).
Time intervals can now be as long as approximately 2 min, i.e. an order of 104H/U∞. As
a result, the time-average flow is also asymmetric for G/H = 2.4 (figure 6b) but less so
than for G/H = 1.25.

As G/H increases to 3.5 (figure 5e), the gap flow between the prisms is no longer
biased and each prism forms its own vortex street so that the whole wake results from the
interaction between the two symmetrical vortex streets. The mean flow is now symmetric
(figure 6c) and the flow between the prisms has a larger mean velocity than the flow directly
downstream of the prisms.

For G/H = 1.25 (figure 6a), the mean flow streamlines reveal a large-scale recirculation
region downstream of the prisms, resulting in a mean streamwise velocity deficit in
the central region of this wake. The mean flow in the G/H = 2.4 case (figure 6b) is
a combination of the characteristics of G/H = 1.25 and G/H = 3.5. Clearly the three
different flow cases have significantly different mean flow characteristics, as well as a
different dynamics.

Consistent with the different instantaneous and mean planar velocities of the three G/H
flow cases, their turbulent kinetic energy k̄ also exhibits distinct features, as shown in
figure 7. The shear layers from the prisms have high kinetic energy in all three cases. It
is worth noting, however, that for G/H = 1.25 (figure 7a) and G/H = 2.4 (figure 7b),
the energies of the inner side shear layers are much higher than the energies on the outer
side. On the contrary, for G/H = 3.5 (figure 7c), the wake behind each individual prism is
more symmetric and the shear layers from either side have similar levels of kinetic energy.
It is interesting to see that there is a large-scale low energy region in the G/H = 1.25
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Figure 7. Spatial distribution of normalised turbulent kinetic energy k̄/U2∞ for different gap ratios at

Re = 1.0 × 104: (a) G/H = 1.25, (b) 2.4, (c) 3.5.

flow (figure 7a), upstream of where the kinetic energy peaks, corresponding to the large
recirculation region in the mean flow (figure 6a). A break of symmetry due to bi-stability is
manifest in the turbulent energy map of the G/H = 1.25 flow (figure 7a), but for the other
two cases (figure 7b,c) the turbulent energy is symmetrically distributed with respect to
the centreline (y = 0) and decays monotonically downstream after reaching a maximum at
a much shorter streamwise distance than for the G/H = 1.25 flow (see also figure 3b–d).

3.2. Integral length scale
Integral length scales are obtained from the LFV measurements with the four-camera PIV
system. The integral scales we calculate are obtained from

Li(x, y) ≡
∫ r0

0
Ri(x, y, rx) drx with Ri = ui(x, y)ui(x + rx, y)√

ui(x, y)2
√

ui(x + rx, y)2
, (3.1)

where rx is the streamwise separation between two points in the horizontal plane, r0 is the
value of r where the two-point auto-correlation coefficient Ri first crosses zero (figure 8),
where i = 1, 2 with u1 ≡ u and u2 ≡ v (there is of course no summation over the index i,
and the overbar is the average over time).

Figure 8 compares the two-point auto-correlation coefficient R1 for u at two lateral
positions (y/H = 0 and 0.4) with R2 for v in the case of G/H = 2.4 and Re = 1.0 × 104.
(The other cases produce similar auto-correlations.) It can be seen from this figure that
R2 for v decreases quickly and varies periodically with rx, which reflects the periodic
large-scale vortices in the flow. It can also be seen in figure 8 that R1 for u reaches its
first zero crossing at a separation rx close to 10H, which is a very long distance, well
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Figure 8. Streamwise two-point auto-correlation coefficients Ri for i = 1, 2 with u1 ≡ u and u2 ≡ v at two
different cross-stream positions, (x/H = 5, y/H = 0) and (x/H = 5, y/H = 0.4), in the case of G/H = 2.4
and Re = 1.0 × 104.

above the length scale of the energy-containing vortices which is commensurate with H
and the local width of the wake(s) (Hayakawa & Hussain 1989; Zhou, Zhang & Yiu 2002).
A similar observation of long-range streamwise auto-correlations of u was made by Chen
et al. (2020) in the wake of a single prism reflecting long streaky structures formed between
the energy-containing vortices. On the basis of these considerations, we adopt the integral
length scale L ≡ L2 of the cross-stream fluctuations v in the definition of Cε in our study
of how Cε and Reλ may relate to each other.

The integral length scale L ≡ L2 for all three gap ratios at Re = 1.0 × 104 is shown
in figure 9. For G/H = 1.25 (figure 9a), L(x, y) increases gradually as the flow develops
downstream, and is larger near the wake centreline than in the ambient region, which is
similar to the streamwise evolution of the integral length scale in the wake of a single
cylinder (e.g. Beaulac & Mydlarski 2004). The value of L(x, y) at G/H = 2.4 (figure 9b)
displays a distribution resembling that of G/H = 1.25, except that L(x, y) is much larger in
the gap flow region for G/H = 2.4 than for G/H = 1.25. The value of L(x, y) for G/H =
3.5 (figure 9c) differs from the streamwise increasing L(x, y) for G/H = 2.4 and G/H =
1.25: it grows downstream of the prisms, reaches maxima and decays downstream of these
maxima. The value of L(x, y) in the G/H = 3.5 case is generally smaller than L(x, y) in
the G/H = 2.4 and G/H = 1.25 cases. The qualitatively different integral scale maps for
our three gap ratios are consistent with the observation that the vortex formation lengths
for G/H = 1.25 and G/H = 2.4 are much larger than for G/H = 3.5 (e.g. Alam et al.
2011), since the integral length scale physically reflects the size of the energy-containing
vortices in the flow field.

This section has demonstrated the significant qualitative differences in the dynamics,
large-scale features and inhomogeneity structures of the three different gap flows
considered in this study. Instantaneous velocities, mean flow velocities, turbulent kinetic
energy and integral length scale values and maps are indeed very different in the three
flows. We can therefore use these three flows to study potential cross-stream relations
between Cε and Reλ in qualitatively different flow contexts, both with and without
changing inlet Reynolds number. It is even possible to see whether any spatial relation
that we may find between Cε and Reλ is sensitive to the asymmetry which can be imposed
by bi-stability.
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Figure 9. Map of normalised integral length scales L/H in the (x, y) plane for each gap ratio at

Re = 1.0 × 104: (a) G/H = 1.25, (b) 2.4, (c) 3.5.

4. Turbulent energy dissipation rate scaling

In this section, we examine the scalings of the energy dissipation rate by looking at
different positions in different wake flows generated by side-by-side prisms with different
gap ratios and different inlet/global Reynolds numbers.

4.1. Scaling of Cε with all scales of motions
Figure 10 shows examples of iso-contours of turbulent kinetic energy k̄/U2∞, integral
length scale L/H and energy dissipation rate ε̄ at different streamwise positions of the
same flow. The main point we make with these examples taken from the G/H = 2.4 flow
is that inhomogeneity is also present in the SFVs for all the three quantities plotted. The
same point can be made with similar plots for our two other G/H flows but we omit them
for economy of space.

The small field of view inhomogeneities are consistent with the LFV inhomogeneities:
the kinetic energy varies mostly in the cross-stream direction inside SFV2.5 (figure 10a)
and SFV5 (figure 10b) and decays in the streamwise direction within SFV10 (figure 10c)
and SFV20 (figure 10d), which is consistent with the spatial evolution of the kinetic energy
in the LFV of the same flow case (figure 7b). The integral length scale (figure 10e–h)
at each (x, y) location within the SFVs is obtained by interpolation of the result of the
LFV measurement (figure 9b) and is therefore consistent with it by construction. The
turbulence dissipation rate ε̄ is also very inhomogeneous within the SFVs (figure 10i–l)
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Figure 10. Iso-contours of (a–d) turbulent kinetic energy k̄/U2∞, (e–h) integral scale L/H and (i–l) energy
dissipation rate ε̄ in the SFVs of the G/H = 2.4 flow at Re = 1.0 × 104: (a,e,i) SFV2.5; (b, f,j) SFV5; (c,g,k)
SFV10; (d,h,l) SFV20.

and is even slightly asymmetrically distributed in SFV10 and SFV20, a remnant signature
of bi-stability even though the time average was taken over 20 000 images taken at 5 Hz for
67 min (§ 2). As expected, this asymmetry is even stronger in the G/H = 1.25 case but is
absent in the G/H = 3.5 case (not shown here for economy of space). All three quantities
show a tendency towards homogeneity with increasing distance downstream, particularly
in the cross-stream direction, and most notably within SFV20.

Using our measured values of k̄, L and ε̄ we compute the normalised dissipation rate
Cε ≡ ε̄L/U3 and the local Taylor length-based Reynolds number Reλ ≡ λU/ν, where
λ ≡ (15νU2/ε̄)1/2 and U = (2/3k̄)1/2. As we are interested in cross-stream profiles, we
calculate streamwise-averaged values of Cε and Reλ within each SFV, denoted respectively
〈Cε〉( y) and 〈Reλ〉( y), which we plot as functions of y/H in figure 11 in the nearest and
furthest SFVs for all three gap ratios G/H. The global Reynolds number is the same in
figures 10 and 11, namely Re = 1.0 × 104, but our conclusions from these figures do not
change for the different values of Re that we tried.

It is evident from figure 11 that 〈Cε〉 increases when 〈Reλ〉 decreases and vice versa. This
inverse relation between 〈Cε〉 and 〈Reλ〉 holds for all gap ratios, all SFVs and all values of
Re that we tried even though the y-dependencies of 〈Cε〉 and of 〈Reλ〉, and even the very
ranges of 〈Cε〉 and 〈Reλ〉 values, vary from case to case. We therefore have the beginnings
of an answer to the two questions we posed in the introduction: it appears that there is
indeed a relation between 〈Cε〉 and 〈Reλ〉 in the transverse/cross-stream direction and
that this relation resembles qualitatively the non-equilibrium/non-stationarity dissipation
scaling (1.2) in that it is an inverse relation between 〈Cε〉 and 〈Reλ〉 irrespective of
gap ratio, position of SFV and global Reynolds number. It is worth noting that the
dissipation asymmetry observed in figure 10(k,l) for G/H = 2.4 is also present in SFV20
for G/H = 1.25 but not for G/H = 3.5 where bi-stability is absent, and it is also worth

924 A4-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

59
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.599


J.G. Chen and others

(e)

(b)(a)

(c) (d )

( f )

0.70 170

165

160

155

150

145

140

0.65

0.60

0.55

0.50

0.45

0.40
–0.4 –0.2 0 0.2 0.4

0.5 600

500

400

300

200

100

0.4

0.3

0.2

0.1

0
–0.4 –0.2 0 0.2 0.4

0.46 220

212

204

196

188

180

0.42

0.38

0.34

0.30

0.26
–0.4 –0.2 0 0.2 0.4

0.17 460

450

440

430

420

0.16

0.15

0.14

0.13
–0.4 –0.2 0 0.2 0.4

0.46 158

156

154

152

150

148

146

0.45

0.44

0.43

0.42

0.41

0.40
–0.4 –0.2 0 0.2 0.4

0.46 126

124

204

120

118

116

0.44

0.42

0.40

0.38

0.36
–0.4 –0.2 0 0.2 0.4

〈Cε〉(y) 〈Reλ〉(y)

y/H y/H

Figure 11. The lateral distributions of streamwise-averaged non-dimensional dissipation rate 〈Cε〉( y) and
turbulent Reynolds number 〈Reλ〉( y) for different SFVs corresponding to the three gap ratios at Re =
1.0 × 104: (a) G/H = 1.25, SFV7, (b) 1.25, SFV20; (c) 2.4, SFV2.5, (d) 2.4, SFV20, (e) 3.5, SFV7 and ( f )
3.5, SFV20.

stressing that an inverse relation between 〈Cε〉 and 〈Reλ〉 is observed both with and without
asymmetry.

The Reynolds number Reλ is not small in all G/H and SFV cases (see figure 11), and
is generally between 100 and 500 after being averaged in the streamwise direction within
each SFV (which actually reduces it). The relatively high Reynolds number nature of our
turbulent flows and flow regions is also manifested by the presence of Kolmogorov-like
close to 2/3 power law exponents for the streamwise second-order structure functions of
both u and v, observed in all SFVs for all G/H values; see figure 12 where exponents
more or less close to 2/3 appear more or less well defined over a decade of range of scales
bounded from below by λ.

For more insight into the inverse relation between Cε and Reλ and a better comparison
with the non-equilibrium/non-stationarity dissipation scaling (1.2), we look at scatter
plots of Cε and Reλ, see figure 13. Different scatter plots are for different G/H values
and different SFVs, although we chose to plot those for the closest and furthest SFVs.
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Figure 12. Compensated streamwise second-order structure functions (�u)2 = (u(x0, y = 0)

− u(x0 + l, y = 0))2 and (�v)2 = (v(x0, y = 0) − v(x0 + l, y = 0))2 in different SFVs for all three
gap ratios at Re = 1.0 × 104 (x0 is at a distance of approximately 0.1H from the upstream boundary of the
SFV): (a) G/H = 1.25, (b) 2.4, (c) 3.5.

The values of Cε and Reλ in these scatter plots are from 20 evenly spaced x for each y
within the corresponding SFV.

These scatter plots confirm the inverse relation between Cε and Reλ in the whole field of
view rather just between 〈Cε〉( y) and 〈Reλ〉( y). A best power law fit Cε ∼ Re−n

λ of the data
is also given for each scatter plot. Power laws do appear to fit the data reasonably well in
some cases but less so in other cases, such as SFV7 for G/H = 1.25 (figure 13a), SFV20
for G/H = 2.4 (figure13e) and SFV20 of G/H = 3.5 (figure13f ). In those cases, where
the power law is an acceptable fit, the exponent n is not uniformly the same: for example
n ≈ 2.14 for SVF20 G/H = 1.25 but n ≈ 1.5 for SVF2.5 G/H = 2.4. Even though the
spatial inhomogeneities of the turbulent kinetic energy, of the turbulence dissipation and
of the integral length scale are such that Cε and Reλ are anticorrelated in space, which
is qualitatively similar to the non-equilibrium/non-stationarity dissipation scaling (1.2),
there does not seem to be a well-defined universal power law relation between the spatial
variabilities of Cε and Reλ, which is unlike (1.2).

Alves Portela et al. (2018) reported that, in the near wake of a single square prism,
specifically x/H smaller than at least 10, the non-equilibrium dissipation scaling (1.2) is
observed provided that the energy of the large-scale coherent structures is excluded. In the
following sub-section we explore the hypothesis that the variability in the quality of the
fit Cε ∼ Re−n

λ and of its exponent n may be due to the variability in large-scale structures
present at different streamwise positions for different gap ratios G/H. We therefore explore
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Figure 13. Scatter plots for Cε and Reλ in different SFVs for the three gap ratios at Re = 1.0 × 104. The red
dashed line in each plot is fitted based on the least squares method for all the data points.

the scalings of the spatial inhomogeneity of the turbulence dissipation when the coherent
motions are removed.

4.2. Scaling of Cε without the coherent motions
A snapshot proper orthogonal decomposition (POD) method is used to decompose the flow
velocity field into different orthogonal modes and then remove the most energetic coherent
motions from the velocity field. A practical description of the POD method applied here
is given in Appendix A. This method gives rise to a distribution of energies in different
POD modes which we plot in figure 14 for all gap ratios and all SFVs at Re = 1.0 ×
104. It is interesting to see that the streamwise evolution (from one SFV to the next in
the streamwise direction) of the energy of the first, most energetic, mode is consistent,
for each G/H, with the streamwise evolution of the corresponding integral length scale
(figure 9): the energy of the first mode in the G/H = 1.25 case increases from SFV7 to
SFV20 (figure 14a), while for G/H = 3.5 the energy of the first mode energy decreases
from SFV7 to SFV20 (figure 14c). For G/H = 2.4 (figure 14b), the energy of the first
mode decreases first from SFV2.5 to SFV5 and then increases further downstream. The
corresponding integral length scale for each G/H varies in a similar way in the streamwise
direction.

It can be seen from figure 14 that the first two modes stand out in terms of turbulent
kinetic energy content. We therefore take the first two modes as representative of the
coherent motions. We checked that the results of this subsection do not change appreciably
if we were to define the coherent motions in terms of the first three modes.

In the following analysis, we divide the flow field into coherent motions, reconstructed
using the first two modes in (A6), and the remaining small-scale velocity field which
is reconstructed using the rest of the modes in (A6). We define the coherent turbulent
energy k̃(x, y, t) = (ũ2 + ṽ2)/2 in terms of the streamwise and cross-stream coherent
velocity fluctuations (ũ, ṽ) and the remaining turbulent kinetic energy k′(x, y, t) = (u′2 +
v′2)/2 in terms of the streamwise and cross-stream velocity fluctuations (u′, v′) in the
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Figure 14. The distribution of turbulent energy among different POD modes, Ei given by (A4), in different
SFVs for different gap ratios at Re = 1.0 × 104: (a) G/H = 1.25, (b) 2.5, (c) 3.5.
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Figure 15. Iso-contours of (a–d) coherent turbulent kinetic energy k̃/U2∞, (e–h) remaining small-scale
turbulent kinetic energy k′/U2∞ and (i–l) energy dissipation rate ε′ in the SFVs corresponding to G/H = 2.4 at
Re = 1.0 × 104: (a,e,i) SFV2.5, (b, f,j) SFV5, (c,g,k) SFV10 and (d,h,l) SFV20.

remaining modes. Figure 15 shows, for G/H = 2.4 and Re = 1.0 × 104, maps of the
time-averaged coherent turbulent energy, k̃ (figure 15a–d), of the time-averaged turbulent
energy in the remaining motions, k′ (figure 15c–h) and of the time-averaged energy
dissipation rate ε′ in these remaining motions (figure 15i–l). It is worth noting, by
comparing figures 15(i–l) and 10(i–l), that the spatial distribution of ε′ is effectively
identical to that of ε̄. This correspondence is reasonable and validates our flow
decomposition because the turbulent energy dissipation mainly occurs at the small scales.

Figure 15 demonstrates that the inhomogeneity remains present in the SFVs with the
decomposed fields but is now much more organised because of the extraction of the
coherent motions. The coherent kinetic energy k̃ is typically large where the small-scale
kinetic energy k′ is small and vice versa. The sum of these two energies adds up to k plotted
in figure 10(a–d).
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Figure 16. Instantaneous spatial distribution of (a) k̃, (b) k′, (c) ε′, (d) ω̃ and (e) ω′ with respect to the coherent
vortex structure represented by solid line two-dimensional streamlines in the case of SFV2.5 for G/H = 2.4
and Re = 1.0 × 104.

A better understanding of the opposite spatial distributions of ¯̃k and k′ can be provided
by representative instantaneous snapshots of k̃, k′ and ε′, shown in figure 16 for SFV2.5 and
figure 17 for SFV5. The coherent motions are closer to the geometric centreline y = 0 in
the SFV2.5 and SFV5 measurements than in SFVs further downstream, and are therefore
easier to identify in SFV2.5 and SFV5. The coherent motion streamlines obtained from
(ũ, ṽ) and plotted as solid lines in figures 16 and 17 give a clear indication of where the
centre of the large-scale coherent vortex is, particularly for SFV2.5, whereas this is not
the case for SFVs further downstream. We checked that the instantaneous snapshots in
figures 16 and 17 are quite typical, although the centre of the large-scale motion can be
equally found on the positive or negative y sides.

A first striking observation in both figures 16 and 17 is that k̃ (figures 16a, 17a) is high
far from the coherent motion’s central region. The coherent vorticity ω̃ = ∂ṽ/∂x − ∂ ũ/∂y
and the small-scale vorticity ω′ = ∂v′/∂x − ∂u′/∂y are also plotted in these figures. The
maximum values of k̃ are located near the boundary between the positive and negative
coherent vorticities ω̃ (figures 16d and 17d). This observation is consistent with Zhou &
Antonia (1993) and Chen et al. (2019), who reported that the coherent tangent velocity
increases rapidly with increasing distance from the vortex centre, reaching a maximum
before decreasing slowly further away. The maximum coherent turbulent kinetic energy
is indeed expected to be found at approximately the same distance away from the vortex
centre where the tangent velocity reaches its peak value. It is worth mentioning at this
point that in SFVs further downstream, negative and positive coherent motions have their
centres further away from the y = 0 centreline so that their flow influence meets at the
centre of such downstream SFVs, thereby causing approximately circular k̃ patterns. The
time average of these patterns is also circular as can be seen in figures 15(c,d).

The second striking observation in figures 16 and 17 is that the higher values of k′
(figures 16b, 17b) are concentrated relatively close to the coherent motion’s central region.
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Figure 17. Instantaneous spatial distribution of (a) k̃, (b) k′, (c) ε′, (d) ω̃ and (e) ω′ with respect to the coherent
vortex structure represented by solid line two-dimensional streamlines in the case of SFV5 for G/H = 2.4 and
Re = 1.0 × 104.

The same is true for ω′ (figures 16e, 17e) and the turbulent energy dissipation rate ε′
(figures 16c, 17c) which, like k′, are therefore dislocated from k̃. Chen et al. (2018) also
found that the turbulent energy dissipation occurs mainly within the von Kármán vortices
in the wake of a single cylinder. The spatial proximity between high k′ and high ε′ values
(as well as high ω′ values) is not unexpected since they are all closely associated with
the small-scale fluctuations (u′, v′). Note that, quite naturally, both k′ and ε′ show a much
more intermittent spatial distribution than k̃.

A closer look at figures 16 and 17 might suggest that there is no perfect collocation
between k′ and ε′ either and that high values of ε′ might more often occur around the
centreline than high values of k′. In fact, this point about the centreline is not always true
and the finer dislocation between k′ and ε′, which does indeed exist, is much subtler and is
also non-universal. In figure 18 we plot time-averaged and streamwise-averaged turbulent
energies and dissipations: to be precise, we plot 〈ε′〉 and 〈k′〉 for all three G/H values
and all SFVs except one (we omit the plots for SFV10 G/H = 2.4 because they look very
similar to those for SFV7 in the G/H = 3.5 case). The dislocation between k′ and ε′ is
evident in all SFVs except SFV2.5 for G/H = 2.4, where both 〈ε′〉 and 〈k′〉 peak at y = 0.
It is clear that the statistical inhomogeneity of the turbulence is highly marked in all SFVs
for all values of G/H. It is now the time to return to the main question posed in this paper:
can the variety of cross-stream inhomogeneities in figure 18 be represented by a universal
relation between C′

ε ≡ ε′/(k′3/2
/L) and Re′

λ ≡ k′1/2
λ′/ν where λ′ ≡ (15νk′/ε′)1/2?

The first part of the answer to this question is provided in figure 19, where one can see
that 〈C′

ε〉( y) increases when 〈Re′
λ〉( y) decreases and vice versa, very much like 〈Cε〉( y)

and 〈Reλ〉( y) in figure 11 but with some different y-dependencies. Concerning the different
y-dependencies, the y-asymmetry in some of the plots of figure 11 is absent in the plots of
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Figure 18. Streamwise-averaged energy dissipation rate 〈ε′〉 and turbulent kinetic energy 〈k′〉 based on
small-scale motions, integral scale 〈L〉 and 〈k′3/2/L〉 for Re = 1.0 × 104 and different SFVs corresponding
to (a–c) G/H = 1.25, (d–f ) 2.4 and (g–i) 3.5.

figure 19 presumably because of the strong symmetrising influence of the very symmetric
distribution of k′ seen in figure 15( f –h).

Once again, this inverse relation, which now is between 〈C′
ε〉( y) and 〈Re′

λ〉( y), holds
for all gap ratios, all SFVs and all values of Re that we tried. Furthermore this qualitative
inverse relation is universal as it holds for all the different y-dependencies in figure 18
where we plot 〈ε′〉( y), 〈k′〉( y), 〈L/H〉( y) and 〈k′3/2/L〉( y) for all three G/H values and
nearly all SFVs. These y-dependencies are in fact so widely different that it is impossible
to make a simple argument for this inverse relation between 〈C′

ε〉( y) and 〈Re′
λ〉( y) on

the basis that C′
ε ≡ ε′/(k′3/2

/L) and Re′
λ ∼ k′/

√
νε′. Indeed, if it was always the case that

〈ε′〉( y) increases or decreases when 〈k′〉( y) decreases or increases and if the y-dependence
of 〈L/H〉( y) was always weak, then the inverse relation between 〈C′

ε〉( y) and 〈Re′
λ〉( y)

could indeed be no more than a reflection of an inverse relation between 〈ε′〉( y) and
〈k′〉( y). However, it is clear from figure 18 that this is not the case. The universal inverse
relation between 〈C′

ε〉( y) and 〈Re′
λ〉( y) holds for many different types of cross-stream

inhomogeneity.
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Figure 19. Streamwise-averaged non-dimensional energy dissipation rate 〈C′
ε〉( y) and turbulent Reynolds

number 〈Re′
λ〉( y) based on small-scale motions for Re = 1.0 × 104 and (a) G/H = 1.25, SFV7; (b) 1.25,

SFV20; (c) 2.4, SFV2.5; (d) 2.4, SFV20; (e) 3.5, SFV7; ( f ) 3.5, SFV20.

For a better comparison with the non-equilibrium/non-stationarity dissipation scaling
(1.2) and for a more complete answer to the main question posed in this paper, we now
look at scatter plots of C′

ε and Re′
λ, see figure 20. Different scatter plots are for different

G/H values and different SFVs, although we once again chose to plot those for the closest
and furthest SFVs. The values of C′

ε and Re′
λ in these scatter plots are from 20 evenly

spaced values of x for each y within the corresponding SFV. These scatter plots confirm
the inverse relation between C′

ε and Re′
λ in the whole field of view rather just between

〈C′
ε〉( y) and 〈Re′

λ〉( y). A best power law fit C′
ε ∼ Re′−n

λ of the data is also given for each
scatter plot. Power laws now appear to fit the data rather well in all cases and for all the
global Reynolds numbers that we tried. There is in fact very little scatter in these scatter
plots.

In figure 21 we plot the power law exponents n in C′
ε ∼ Re′−n

λ for each case (different
values of G/H and global Reynolds number Re and different SFVs) and compare them
with the power law exponents obtained from best fits of the (Cε, Reλ) scatter plots in
figure 13 for each gap ratio. Quite remarkably, exponents very close to n = 1.5 are returned
universally for all C′

ε ∼ Re′−n
λ fits, whereas the values of n returned for the Cε ∼ Re−n

λ fits
in figure 13 range between n = 1 and n = 2.3.

In spite of the wide variety and complexity of the spatial inhomogeneities of the
turbulent flows considered here, the equally varied near-field (x � 20H) inhomogeneities
of the turbulent kinetic energy, of the turbulence dissipation and of the integral length
scale are closely linked together by a simple universal relation, C′

ε ∼ Re′−3/2
λ , once the

large-scale coherent motions have been removed from the flow. The expectation that C′
ε

should be independent of viscosity at the sufficiently high Reynolds numbers of this
paper’s turbulent flows means that C′

ε should also depend on a global Reynolds number,
as is in fact the case of the non-equilibrium/non-stationarity turbulence dissipation
scaling (1.2). One may try C′

ε ∼ (
√

Re/Re′
λ)

3/2 in terms of the global Reynolds number
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Figure 20. Scatter plots of C′
ε and Re′

λ values in different SFVs for each gap ratio and for two inlet Reynolds
numbers: (a–f ) Re = 1.2 × 104 and ( f ) Re = 1.5 × 104.

Re = U∞H/ν but figure 22(a) shows that C′
ε vs

√
Re/Re′

λ does not collapse all G/H
and SFV cases. A careful look at figure 22(a) reveals, however, that, for a given G/H
and a given SFV, C′

ε vs
√

Re/Re′
λ does collapse different Re values. We therefore

define a local global Reynolds number ReL ≡ 〈
√

k′〉xy〈L〉xy/ν where 〈. . .〉xy is an average
over the entire SFV considered for a given G/H. Figure 22(b) shows that C′

ε vs√
ReL/Re′

λ collapses all our data for all gap ratios, SFVs and global Reynolds numbers.
Hence,

C′
ε ∼ (

√
ReL/Re′

λ)
3/2. (4.1)
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Figure 21. Scaling exponent n in (a) C′
ε ∼ Re′

λ
−n for the flow fields reconstructed based on random motions

(POD modes 3 to 2000) and in (b) Cε ∼ Reλ−n for the flow fields with coherent motions. The different values
of x/H correspond to different SFVs.
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Figure 22. Comparison between two different choices of global Reynolds number for all the measured cases
at different gap ratios and inlet Reynolds numbers: (a) C′

ε vs
√

Re/Re′
λ, and (b) C′

ε vs
√

ReL/Re′
λ with ReL ≡

〈
√

k′〉xy〈L〉xy/ν.

We checked that this scaling is robust to moderate changes of the (x, y) range over which
the average 〈. . .〉xy is taken. However, further research is needed in the future to establish
a priori ways of determining the proper spatial extent of this average, which may probably
be of the order of the integral length scale and/or a characteristic size of the large-scale
coherent structures.

5. Conclusion

The scaling (4.1) is the main result of this paper. It describes how the variations along
the cross-stream direction of the turbulent kinetic energy, the turbulent kinetic energy
dissipation and the integral length scale are closely interlinked. This scaling holds for
several streamwise positions in three significantly different turbulent flows and three
different inlet Reynolds numbers. It shares clear qualitative similarities with the scaling
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C′
ε ∼ √

ReG/Re′
λ found along the streamwise direction of a planar turbulent near wake

(Alves Portela et al. 2018), and also with the scaling Cε ∼ √
ReG/Reλ characterising

variations in time of periodic turbulence (Goto & Vassilicos 2015, 2016a,b) and variations
along the streamwise direction in axisymmetric turbulent wakes, planar turbulent jets
and grid-generated decaying turbulence (Seoud & Vassilicos 2007; Valente & Vassilicos
2012; Hearst & Lavoie 2014; Isaza et al. 2014; Nagata et al. 2013, 2017; Vassilicos
2015; Obligado et al. 2016; Cafiero & Vassilicos 2019; Chongsiripinyo & Sarkar 2020).
These streamwise and temporal turbulence dissipation scalings reflect a non-equilibrium
turbulence cascade characterised by a cascade time lag between turbulent kinetic energy
and integral length scale, on the one hand, and turbulence dissipation on the other (Goto
& Vassilicos 2015, 2016a,b). The cross-stream turbulence dissipation scaling (4.1) has
its roots in the qualitatively different cross-stream spatial distribution of the incoherent
turbulence kinetic energy, on the one hand, and the turbulence dissipation and/or integral
length scale on the other (see figure 18 where the quantities plotted are averaged over
x but also recall that there is no such average in (4.1)). These different cross-stream
spatial distributions are dislocations within the incoherent turbulence which are different
from, but may nevertheless be somehow related to, the observed dislocation between
the coherent energy k̃ and the incoherent turbulence. More importantly, however, these
dislocations within the incoherent turbulence may be somehow analogous to the cascade
time lag and may therefore be a reflection of a non-homogeneous turbulence cascade
operating through space as well as time, very much like the cascade time lag is an
essential property of the non-equilibrium turbulence cascade. The scaling (4.1) implies
that a new concept of a non-homogeneous turbulence cascade may be meaningful and
complementary to the concept of non-equilibrium turbulence cascade, and may therefore
be worth investigating in the future.
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Appendix A. Proper orthogonal decomposition

In the present work, a POD method is used to separate the coherent motions in the flow
from the remaining smaller-scale motions. The POD method, which was first introduced
in the study of turbulence by Lumley (1967), is now a well-established technique for
identifying the coherent motions (see Berkooz, Holmes & Lumley 1993). In the present
study we use the snapshot POD method (Sirovich 1987). The mathematical description of
POD in a general Hilbert space is available in Holmes et al. (2012). Here, we give a brief
practical summary for the purpose of explaining what was done for this paper.
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The velocity fluctuations u(x, y, t) and v(x, y, t) from the PIV measurement are arranged
in a snapshot matrix U , each column of which is composed of velocity fluctuations from
the same PIV image

U(2m×n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ux1,y1,t1 ux1,y1,t2 . . . ux1,y1,tn
ux2,y2,t1 ux2y2,t2 . . . ux2,y2,tn

...
...

. . .
...

uxm,ym,t1 uxmym,t2 . . . uxm,ym,tn
vx1,y1,t1 vx1,y1,t2 . . . vx1,y1,tn
vx2,y2,t1 vx2y2,t2 . . . vx2,y2,tn

...
...

. . .
...

vxm,ym,t1 vxmym,t2 . . . vxm,ym,tn,

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A1)

where m is the number of data points in the image, e.g. m = 209 × 249 for SFV2.5, and
n = 2000 is the number of images in one run of the PIV measurement. (Note that, for each
SFV, measurements were taken over 10 runs.) The correlation matrix C is the product of
the transpose of U with itself, i.e.

C(n×n) = UT
(n×2m)U(2m×n). (A2)

Then, we solve the eigenvalue problem

Cφi = λiφi, (A3)

where φi (i = 1, 2, . . . , n) is the eigenvector with n components and λi is the
corresponding eigenvalue. The energy of each mode as a fraction of the total kinetic energy
can be expressed as

Ei = λi∑n

k=1
λk

. (A4)

We can project the snapshot matrix U onto each eigenvector and get the corresponding
spatial coefficients

[a1, a2, . . . , an](2m×n) = U(2m×n)[φ1, φ2, . . . , φn](n×n). (A5)

Because the correlation matrix C is symmetric, the eigenvector matrix [φ1, φ2, . . . , φn] is
orthogonal, i.e. [φ1, φ2, . . . , φn]−1 = [φ1, φ2, . . . , φn]T. Therefore,

U(2m×n) = [a1, a2, . . . , an][φ1, φ2, . . . , φn]T

=
n∑

i=1

aiφ
T
i

= U1 + U2 + U3 + · · · + Un, (A6)

which means that, physically, U can be decomposed into Ui (≡ aiφ
T
i ) contributed by

different velocity modes. The relative kinetic energy contribution from different modes
to the whole flow field is proportional to the value of the corresponding eigenvalue (A4).
Usually, the eigenvalues are sorted in descending order, therefore, the first few modes Ui ,
which make the predominant contribution to the total turbulent kinetic energy, can be
treated as modes of the coherent motions.
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