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Gas–surface interactions play important roles in internal rarefied gas flows, especially
in micro-electro-mechanical systems with large surface area to volume ratios.
Although great progress has been made to solve the Boltzmann equation, the
gas kinetic boundary condition (BC) has not been well studied. Here we assess
the accuracy of the Maxwell, Epstein and Cercignani–Lampis BCs, by comparing
numerical results of the Boltzmann equation for the Lennard–Jones potential to
experimental data on Poiseuille and thermal transpiration flows. The four experiments
considered are: Ewart et al. (J. Fluid Mech., vol. 584, 2007, pp. 337–356), Rojas-
Cárdenas et al. (Phys. Fluids, vol. 25, 2013, 072002) and Yamaguchi et al. (J. Fluid
Mech., vol. 744, 2014, pp. 169–182; vol. 795, 2016, pp. 690–707), where the mass
flow rates in Poiseuille and thermal transpiration flows are measured. This requires
that the BC has the ability to tune the effective viscous and thermal slip coefficients
to match the experimental data. Among the three BCs, the Epstein BC has more
flexibility to adjust the two slip coefficients, and hence for most of the time it gives
good agreement with the experimental measurements. However, like the Maxwell
BC, the viscous slip coefficient in the Epstein BC cannot be smaller than unity but
the Cercignani–Lampis BC can. Therefore, we propose to combine the Epstein and
Cercignani–Lampis BCs to describe gas–surface interaction. Although the new BC
contains six free parameters, our approximate analytical expressions for the viscous
and thermal slip coefficients provide useful guidance to choose these parameters.

Key words: kinetic theory, micro-/nano-fluid dynamics, rarefied gas flow

1. Introduction

The Boltzmann equation is the fundamental equation for the dynamics of dilute
gases, which uses the velocity distribution function (VDF) to describe the system state
at the mesoscopic level and incorporates the intermolecular potential into its bilinear
collision operator (Chapman & Cowling 1970). It is computationally far more efficient
to solve the Boltzmann equation than to run a molecular dynamics (MD) simulation
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at the microscopic level; especially, noise-free deterministic solvers of the Boltzmann
equation are much more efficient than MD solvers in gas microflow simulations where
the flow speed is small (Hadjiconstantinou et al. 2003). The Boltzmann equation has
found applications in space shuttle re-entry problems, gas micro-electro-mechanical
systems and even shale gas extractions, where the computational fluid dynamics based
on the Navier–Stokes equations fails (Bird 1994; Gad-el-Hak 1999).

In order to reliably predict the behaviour of rarefied gas flows, the Boltzmann
equation with the realistic intermolecular potential should be solved accurately.
Moreover, the kinetic boundary condition (BC) for the gas–surface interaction, which
determines the VDF of the reflected gas molecules at the surface in terms of that of
the incident molecules, must be properly described.

Recently, the former problem has been tackled by the discrete velocity method
(Sharipov & Bertoldo 2009b), the direct simulation Monte Carlo method (Sharipov
& Strapasson 2012, 2014; Strapasson & Sharipov 2014; Weaver, Venkattraman &
Alexeenko 2014), the conservative projection method (Dodulad & Tcheremissine
2013; Dodulad et al. 2014) and the fast spectral method (Wu, Reese & Zhang 2014;
Wu et al. 2015a,c), where the Boltzmann equation with the Lennard–Jones and ab
initio potentials has been solved. It has been found that in canonical flows such as
Poiseuille, thermal transpiration, Couette and Fourier flows, the relative difference in
macroscopic quantities between the Lennard–Jones and hard-sphere (HS) potentials
could reach approximately 20 %. For instances, in the free-molecular flow regime,
even when the density, temperature and shear viscosity of the two molecular models
are exactly the same, the HS model has a mass flow rate (MFR) 16 % higher than that
of the Lennard–Jones potential for xenon in the Poiseuille flow between two parallel
plates, while in thermal transpiration the HS model has a MFR 24 % higher (Sharipov
& Bertoldo 2009b; Wu et al. 2015a). Moreover, in the coherent Rayleigh–Brillouin
scattering of light by rarefied gases, it has been shown that the extraction of gas bulk
viscosity could have an relative error of approximately 100 % when inappropriate
intermolecular potentials are used (Wu et al. 2015b).

However, there has been little progress in developing accurate gas kinetic BCs.
Physically, when the alignment of the wall molecules and the intermolecular potential
between the gas and wall molecules are known, the gas–surface interaction can be
captured by MD simulation (Barisik & Beskok 2014, 2016). However, the time
step in this microscopic simulation is several femtoseconds, which is far smaller
than that in the mesoscopic simulation based on the Boltzmann equation (the mean
collision time of gas molecules is approximately a fraction of one nanosecond). This
greatly limits the application of the MD or even hybrid MD–direct simulation Monte
Carlo methods (Gu, Watkins & Koplik 2001; Liang, Li & Ye 2013; Liang & Ye
2014; Watvisave, Puranik & Bhandarkar 2015). Some attempts have been made to
model the gas–surface interaction also at the mesoscopic level. For instance, Frezzotti
& Gibelli (2008) and Barbante, Frezzotti & Gibelli (2015) proposed to use the
Enskog collision operator to model the fluid–wall interaction, while Brull, Charrier &
Mieussens (2016) adopted the Boltzmann-type gas atom–phonon collision operator to
describe the gas–surface interaction. Whether these approaches are accurate/useful or
not remains an open question and needs further extensive investigation.

For the practical calculation of internal rarefied gas flows, the determination and
evaluation of the gas kinetic BC, which specifies the relation between the VDF f (v) of
the reflected and incident gas molecules at the boundary via a non-negative scattering
kernel R(v′→ v), is of great interest (Cercignani 1988):

vnf (v)=
∫
v′n<0
|v′n|R(v

′
→ v)f (v′) dv′, vn > 0. (1.1)
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Assessment and development of the gas kinetic boundary condition 513

Here, v′ and v are velocities of the incident and reflected molecules, respectively, and
vn is the normal component of the molecular velocity v directed into the gas.

Only a few gas kinetic BCs have been developed empirically since the gas kinetic
theory was established more than one century ago. The first BC was proposed
by Maxwell (1879) and is still being used widely. The Maxwell model employs
only one parameter, the tangential momentum accommodation coefficient (TMAC),
which describes the proportion of diffusely reflected molecules at the wall, while
the remaining gas molecules are assumed to be specularly reflected. This model
has been improved by Epstein (1967) by introducing a molecular velocity-dependent
TMAC. Unfortunately, the Epstein model is rarely used by (or even known to) the
community of rarefied gas dynamics, although it has successfully described the
temperature dependence of the thermal accommodation coefficient for various gases
interacting with tungsten. Four years later, Cercignani & Lampis (1971) developed a
BC having two disposable parameters, which has also been widely used. Later, Klinc
& Kuěčer (1972) introduced an isotropic scattering to account for the influence of
the roughness of the wall surface. Recently, Struchtrup (2013) combined the models
of Epstein (1967) and Klinc & Kuěčer (1972), which has more flexibility to fit the
experimental data.

The gas–surface interaction plays an important role in internal rarefied gas flows,
especially in gas micro-electro-mechanical systems with large surface area to volume
ratios; sometimes it is more important to get the BC correct than solving the
Boltzmann equation with the realistic intermolecular potential accurately. For example,
in Poiseuille flow through a circular capillary, the MFR in the free molecular flow
regime increases by nearly a factor of two when the TMAC decreases from 1
to 0.8 (Porodnov, Kulev & Tuchvetov 1978). Therefore, extensive experimental
and theoretical works have been conducted (see Knudsen (1909), Edmonds &
Hobson (1965), Porodnov et al. (1974, 1978), Ewart et al. (2007), Sharipov (2011),
Rojas-Cárdenas et al. (2013), Yamaguchi et al. (2014, 2016) and references therein)
to quantify the influence of the gas–surface interaction and test the applicability of
the BC: most of the time, the Maxwell model is tested (Porodnov et al. 1978; Ewart
et al. 2007; Yamaguchi et al. 2016), and the Cercignani–Lampis model is checked for
a few cases (Cercignani & Lampis 1971; Sharipov 2003b). The use of the Maxwell
model is not satisfactory, since in Poiseuille flow it has been seen that the TMAC
has to be adjusted for different ranges of the rarefaction parameter (Ewart et al.
2007), while in thermal transpiration flow (Yamaguchi et al. 2014, 2016) neither
the Maxwell model nor the Cercignani–Lampis model can recover the MFR and
thermomolecular pressure difference (TPD, a parameter indicating the performance of
the Knudsen pump) exponent simultaneously, see § 5.1 below.

It is the purpose of this paper to assess the accuracy of various gas–surface BCs,
in particular the overlooked Epstein model, and develop a new BC if necessary, by
comparing the numerical solution of the Boltzmann equation to recent sound and
reliable experiments of Poiseuille and thermal transpiration flows (Ewart et al. 2007;
Rojas-Cárdenas et al. 2013; Yamaguchi et al. 2014, 2016). Especially in thermal
transpiration flows, the MFR and TPD exponent have been measured using the
same gas and solid surface, which provides an ideal and strict case to test the BCs.
We will use the Boltzmann equation with Lennard–Jones potentials, which is the
perfect model to study the rarefied gas flows; for example, it gives good agreement
for the shock wave profiles with those obtained both from experiment and MD
simulation, see comparisons in figure 17 (and the corresponding experimental result
by Kowalczyk et al. (2008)) and figure 18 in Wu et al. (2013). We will solve the
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514 L. Wu and H. Struchtrup

Boltzmann equation with the Lennard–Jones potential in the whole rarefaction regime
by the fast spectral method and fast iteration method both accurately and efficiently
(Wu et al. 2014, 2015a, 2017). With the perfect theoretical model, accurate and
efficient numerical simulation and reliable experimental data, the BC can be assessed
with good accuracy.

The remainder of the paper is organized as follows. In § 2, the Boltzmann equation
and various BCs are introduced. Approximate analytical expressions for the viscous
and thermal slip coefficients are obtained in § 3, which help us to choose the free
parameters in the BC to compare with the experimental data. In § 4, the Boltzmann
equation and BCs are linearized, and dimensionless MFRs in the Poiseuille flow
between two parallel plates and through a circular capillary are tabulated, for the HS
gas with the Cercignani–Lampis BC. The influence of the intermolecular potential
is analysed for typical noble gases. In § 5, the linearized Boltzmann equation (LBE)
with the Lennard–Jones potential is solved, and the performance of the Maxwell,
Cercignani–Lampis and Epstein BCs are assessed with the experimental data. The
results lead us to propose a linear superposition of Cercignani–Lampis and Epstein
BCs, which can be fitted better to the experimental results than individual BCs. The
paper closes with some final comments in § 6.

2. The Boltzmann equation and its boundary condition
In this section, we introduce the Boltzmann equation for rarefied gas dynamics, as

well as various kinetic BCs for the gas–surface interaction: the Maxwell, Cercignani–
Lampis and Epstein models.

2.1. The Boltzmann equation
The state of a dilute monatomic gas can be described by the VDF f (t, x, v), where t is
the time, x= (x1, x2, x3) is the space coordinate and v = (v1, v2, v3) is the molecular
velocity. The number of gas molecules in the six-dimensional phase space dv dx is
given by f (t, x, v) dv dx, and macroscopic quantities can be calculated via the velocity
moments of the VDF: the molecular number density is n=

∫
f dv, the flow velocity

is V =
∫

vf dv/n, the temperature is T =m
∫
|v − V|2f dv/3kn, the pressure tensor is

P ij=m
∫
(vi−Vi)(vj−Vj)f dv and the heat flux is q=m

∫
|v−V|2(v−V)f dv/2, where

m is the mass of the gas molecules, k is the Boltzmann constant and the subscripts
i, j denote the spatial directions. The ideal gas law p= (P11 + P22 + P33)/3= nkT is
satisfied.

The dynamics of a dilute monatomic gas in the whole flow regime is governed by
the Boltzmann equation,

∂f
∂t
+ v ·

∂f
∂x
=

∫∫
B(θ, |u|)[ f (v′

∗
)f (v′)− f (v∗)f (v)] dΩ dv∗, (2.1)

where v and v∗ are the pre-collision velocities of the two colliding gas molecules,
while v′ and v′

∗
are their corresponding post-collision velocities. Pre- and post-collision

velocities are related through the conservation of momentum and energy,

v′ = v +
|u|Ω − u

2
, v′

∗
= v∗ −

|u|Ω − u
2

, (2.2a,b)

where u= v− v∗ is the relative pre-collision velocity and Ω is a unit vector along the
relative post-collision velocity v′ − v′

∗
. The deflection angle θ between the pre- and
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Assessment and development of the gas kinetic boundary condition 515

post-collision relative velocities satisfies cos θ =Ω · u/|u|, 06 θ 6π. Finally, B(θ, |u|)
is the non-negative collision kernel, which is determined by the intermolecular
potential. For a general spherically symmetrical intermolecular potential φ(r), the
deflection angle is given as (Chapman & Cowling 1970)

θ(b, |u|)=π− 2
∫ W1

0

[
1−W2

−
4φ(r)
m|u|2

]−1/2

dW, (2.3)

and the collision kernel is

B(θ, |u|)=
b|db|

sin θ |dθ |
|u|. (2.4)

Here, W = b/r, with b and r being the aiming and centre-of-mass distances between
two colliding molecules, respectively, and W1 is the positive root of the term in the
brackets in (2.3). For HS molecules of diameter d, the deflection angle is determined
through b = d cos(θ/2), hence the collision kernel is B = d2

|u|/4. For the (6–12)
Lennard–Jones potential,

φ(r)= 4ε

[(
d
r

)12

−

(
d
r

)6
]
, (2.5)

where ε is a potential depth, and d is the distance at which the potential is zero,
detailed calculations/forms of B(θ, |u|) can be found in Sharipov & Bertoldo (2009a)
and Venkattraman & Alexeenko (2012).

2.2. Gas kinetic boundary conditions
The scattering kernel R(v′→ v) in (1.1) gives the probability that a molecule which
hits the wall surface with velocity in [v′, v′+ dv′] will return to the gas with velocity
in [v, v + dv]. Without considering adsorption/desorption or chemical reactions, the
scattering kernel obeys the normalization condition:

∫
vn>0 R(v′→ v) dv = 1, and the

reciprocity relation (which states that if the gas is in equilibrium with the surface,
both the incident and reflected molecules must obey the Maxwellian distribution at
the surface temperature Tw):

|v′n|f0(Tw, v
′)R(v′→ v)= |vn|f0(Tw, v)R(−v→−v′), (2.6)

where

f0(Tw, v)= exp
(
−

m|v|2

2kTw

)
(2.7)

is the Maxwellian VDF with zero velocity in the rest frame of the surface.
The most popular gas–surface BC was proposed in Maxwell (1879), and is known

as the Maxwell or diffuse–specular BC. The scattering kernel reads

RM(v
′
→ v)= αM

m2vn

2π(kTw)2
exp

(
−

mv2

2kTw

)
+ (1− αM)δ(v

′
− v + 2nvn), (2.8)

where the constant αM is the TMAC, with a value in the range of 0 6 αM 6 1, and δ
is the Dirac delta function. This BC assumes that, after collision with the surface, a
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molecule is specularly reflected with the probability 1− αM, otherwise it is reflected
diffusely (i.e. reflected towards every direction with equal probability, in a Maxwellian
velocity distribution). Purely diffuse and specular reflections take place for αM= 1 and
αM = 0, respectively.

In the Maxwell model, the TMAC is independent of the velocities (or energies)
of the impinging molecules, which contradicts both theoretical and experimental
investigations. To remove the deficiency in the Maxwell model, Epstein (1967)
proposed the generalized scattering kernel

RE(v
′
→ v)=

vnf0(Tw, v)Θ(v)Θ(v
′)∫

vn>0
vnf0(Tw, v)Θ(v) dv

+ [1−Θ(v′)]δ(v′ − v + 2nvn), (2.9)

where the probability of a gas molecules being reflected diffusely is given by Θ(v),
which is a function of the molecular velocity. For Θ(v)=αM, the Epstein model (2.9)
reduces to the Maxwell model (2.8).

Various forms of Θ(v) can be chosen. Following the arguments that (i) for incident
molecules with very low energies, most of the molecules are trapped by the attractive
part of the gas–surface interaction and hence are almost completely accommodated,
(ii) at high energies the degree of accommodation decreases because an increasing
fraction of the molecules have sufficient energy to overcome the trapping effect
and (iii) at sufficiently high energies it is found that the accommodation coefficient
increases again toward a high-energy asymptote, Epstein adopted the following form
of Θ(v):

Θ(v)=Θ0 exp
(
−α

mv2

2kTW

)
+Θ1

[
1− exp

(
−β

mv2

2kTW

)]
, (2.10)

where Θ0 = 1 and α, β and Θ1 are three constants. If α > β, the first term in the
right-hand side of (2.10) controls the low-energy behaviour of Θ(v), while the second
term controls the high-energy behaviour. The accommodation coefficient approaches
Θ1 at the high-energy asymptote. This simple expression gives good agreement for
the thermal accommodation coefficient (that relates the temperature jump to the heat
passing through the wall) between the theory and experimental data, for various kinds
of gases interacting with tungsten over a wide range of temperature (Epstein 1967).

In addition to the Maxwell model, the BC developed by Cercignani & Lampis
(1971) has also been widely used. The Cercignani–Lampis scattering kernel reads:

RCL(v
′
→ v) =

m2vn

2παnαt(2− αt)(kTw)2
I0

(√
1− αnmvnv

′

n

αnkTw

)
× exp

{
−

m[v2
n + (1− αn)v

′

n]
2

2kTwαn
−

m|vt − (1− αt)v
′

t|
2

2kTwαt(2− αt)

}
, (2.11)

where vt is the tangential velocity and

I0(x)=
1

2π

∫ 2π

0
exp(x cos φ) dφ. (2.12)

The two parameters αn and αt in the Cercignani–Lampis model are limited to [0, 1]
and [0, 2], respectively. When αn=αt= 1 or αn=αt= 0, the purely diffuse or specular
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BCs are recovered, respectively, while for αn = 0 and αt = 2, the Cercignani–Lampis
scattering kernel describes ‘backwards’ scattering.

We believe that the Cercignani–Lampis model is popular because of the following
two major factors: first, the Cercignani–Lampis model can recover the plume-like
structure around the line of specular reflection in the experiment of thermal
beam scattering (Cercignani 1971). Second, in the free molecular limit of thermal
transpiration flow, the TPD exponent (an important indicator of the performance of the
Knudsen pump) can be less than 0.5 in the Cercignani–Lampis model, which agrees
well with some experimental measurements (Sharipov 2003b), while the Maxwell
model always predicts a TPD exponent of 0.5 at any value of the TMAC and any
shape of the flow cross-section.

Klinc & Kuěčer (1972) also proposed an isotropic scattering to describe the gas–
surface interaction:

RKK(v
′
→ v)=

vn

|v′|3
δ(|v′| − |v|), (2.13)

which was recently extended in Struchtrup (2013) by combining with the Epstein BC.
In Poiseuille and thermal transpiration flows, it can be shown that the Klinc &

Kuěčer (1972) model yields the same mass flow rates as the diffuse BC. Therefore,
in the following, only the Maxwell, Epstein and Cercignani–Lampis BCs will be
considered, and special attention will be paid to the long-overlooked Epstein BC (2.9).

3. Velocity slip coefficients in slightly rarefied gas flows
The Epstein BC, which contains more adjustable parameters than the Cercignani–

Lampis BC, may have a wider range of applications. A simple way to illustrate
this is to calculate the velocity slip and temperature jump coefficients in slightly
rarefied gas flows. Although there exist accurate numerical methods to calculate these
coefficients (i.e. see Loyalka (1989), Siewert (2003) and Takata et al. (2003) for the
Boltzmann equation with the HS potential and Sharipov (2003a) for the Shakhov
kinetic model equation), we adopt the method used in Struchtrup (2013) to obtain
analytical expressions for these coefficients, which have errors of approximately 10 %.
With these approximate expressions, it becomes much easier for us to choose the
appropriate parameters in the BC, without running the numerical simulation over all
the parameter regions.

Here we focus only on the velocity slip coefficients, because it has already been
shown that the Epstein (1967) BC can recover the energy accommodation coefficient
over a wide range of temperature. In general, in the near-continuum flow regime, the
slip velocity Vt can be written as

Vt
√

kTw/m
=−

2− χ
χ

√
π

2
σnt

p
−
ω

5
qt

p
√

kTw/m
, (3.1)

where the normal and tangential components are indicated by the indices n and t,
respectively, and σ is the trace-free viscous stress tensor.

The two coefficients χ and ω in (3.1), which depended on the gas–surface BCs,
describe different physical effects: χ is the effective TMAC, and (2 − χ)/χ is the
viscous slip coefficient frequently used in isothermal slip flows (Sharipov 2003a;
Karniadakis, Beskok & Aluru 2005), while ω is the thermal slip coefficient that
describes a flow induced by a heat flux tangential to the wall surface (thermal
transpiration). For the Maxwell model (2.8), we have

χM = αM, ωM = 1, (3.2a,b)
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FIGURE 1. (Colour online) The effective TMAC χ (solid lines) and thermal slip
coefficient ω (dashed lines) in the Epstein BC. The parameters are Θ0 = 1, Θ1 = 0.5 and
(a) α = β, (b) α = 20β. The viscous slip coefficient is given by (2− χ)/χ .

for the Cercignani–Lampis model (2.11), we have

χCL = αt, ωCL = 1. (3.3a,b)

Note that in the Maxwell model, αM 6 1; hence the viscous slip coefficient cannot
be less than unity. However, in the Cercignani–Lampis model, 0<αt 6 2, so that the
viscous slip coefficient can be less than unity when αt > 1 (this corresponds to some
extent the backwards scattering).

The viscous and thermal slip coefficient in the Epstein model (2.9) are

χE =

Θ0

(1+ α)3
+Θ1 −

Θ1

(1+ β)3

1+
Θ0

2(1+ α)3

(
1−

1
√

1+ α

)
−

Θ1

2(1+ β)3

(
1−

1
√

1+ β

) , (3.4)

ωE = 1−
6
[

α

(1+ α)4
Θ0 −

β

(1+ β)4
Θ1

]
Θ0

(1+ α)3
+

[
1−

1
(1+ β)3

]
Θ1

. (3.5)

Figure 1 shows examples of the effective TMAC χ and thermal slip coefficient ω
in the Epstein model, for Θ0= 1, Θ1= 0.5 and α= β or α= 20β, respectively. When
α and β are small, both the TMAC χ and the thermal slip coefficient ω are close to
unity. When α and β approach infinity, we have ω→ 1 and χ → Θ1. Between the
two limits, χ and ω can be adjusted over a wide range, by choosing different values
of α and β.

It will be useful to bear in mind the following points before comparing the
numerical and experimental data in § 5. First, like the Maxwell BC, the effective
TMAC χ can never be larger than unity in the Epstein BC. Mathematically, χ > 1
can be achieved by choosing, for example, Θ0 > 1. However, this cannot always
guarantee the positiveness of the VDF, and therefore will not be considered. This
means that, if the experimental TMAC is larger than unity, the Cercignani–Lampis
BC must be used. Second, in the Epstein BC the thermal slip coefficient ω can be
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varied over a wide range, including values above unity, or even negative values. This
stands in contrast to the Maxwell and Cercignani–Lampis models, for both of which
the thermal slip coefficient is constant, irrespective of the coefficients in the kernel.
Therefore, if ω deviates significantly from unity, the Epstein BC should be used.
Finally, a (linear) combination of Epstein and Cercignani–Lampis BCs will allow
to simultaneously have TMAC above unity, and a wide range for the thermal slip
coefficient, see § 5.3.3 below.

4. The linearized Boltzmann equation

In most experiments in gas micro-electro-mechanical systems, the dimensionless
pressure and temperature gradients are small (see the first equation in Sharipov
& Bertoldo (2009b)), so that the Boltzmann equation (2.1) can be linearized.
For convenience, we introduce dimensionless variables: the spatial coordinate is
normalized by the characteristic length `, temperature is normalized by the wall
surface temperature Tw, velocity is normalized by the most probable molecular speed
vm =

√
2kTw/m, molecular number density is normalized by the average number

density n0 and the VDF is normalized by n0/v
3
m.

To calculate the collision kernel for the Lennard–Jones potential (2.5), the
intermolecular distance r is normalized by d, so that the collision kernel can be
calculated by the method of Sharipov & Bertoldo (2009a). The collision kernel is
expressed as B(θ, |u|)= |u|σ(θ, |u|vm), where σ(θ, |u|vm) is exactly the same as the
differential cross-section σ(θ, E) calculated by Sharipov & Bertoldo (2009a), with
the dimensionless relative collision energy E= |u|2kTw/2ε.

In Poiseuille flow, suppose the wall temperature is fixed at Tw, and a uniform
pressure gradient, p= n0kTw(1+ ξPx3/`) with |ξP| � 1, is imposed on the gas in the
x3 direction. Then, the VDF in steady state can be expressed as

f (x1, x2, v)= feq(v)+ ξP[x3feq(v)+ h(x1, x2, v)], (4.1)

where the global equilibrium state is described by

feq(v)=
exp(−|v|2)

π3/2
, (4.2)

and the perturbed VDF h satisfies the linearized Boltzmann equation (LBE),

v1
∂h
∂x1
+ v2

∂h
∂x2
=L(h)− v3feq(v), (4.3)

with the linearized Boltzmann collision operator

L(h) = n0d2`

∫∫
B(θ, |u|) [ feq(v

′

∗
)h(v′)+ h(v′

∗
)feq(v

′)

− h(v∗)feq(v)− feq(v∗)h(v)] dΩ dv∗. (4.4)

We use the fast spectral method to solve the collision operator (4.4) and the fast
iterative method to solve (4.3) with rapid convergence to the steady state; detailed
numerical techniques can be found in Wu et al. (2015a, 2017). When the VDF h is
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solved, the flow velocity V3 and the heat flux q3, which are normalized by vm and
n0kTwvm, respectively, are calculated as

V3(x1, x2)=

∫
v3h dv,

q3(x1, x2)=

∫
v3

(
|v|2 −

5
2

)
h dv.

 (4.5)

The dimensionless MFR and heat flow rate (HFR) in the Poiseuille flow, which are
relevant to experimental measurement, are given by

MFR : GP =−
4
A

∫∫
V3(x1, x2) dx1 dx2,

HFR : QP =
4
A

∫∫
q3(x1, x2) dx1 dx2,

 (4.6)

where A is the cross-sectional area of the flow.
In thermal transpiration flow, a temperature gradient is imposed on the wall

in the x3 direction: the wall temperature is T = Tw(1 + ξTx3/`) with |ξT | � 1,
but the pressure is fixed at n0kTw. In this case, the VDF can be expressed as
f = feq + ξT[x3feq(|v|

2
− 5/2) + h], and the perturbed VDF h satisfies (4.3), with

the source term −v3feq replaced by −v3(|v|
2
− 5/2)feq. In this paper, we do not

calculate the thermal transpiration flow, since, according to the Onsager–Casimir
relation (Loyalka & Cipolla 1971), the MFR in thermal transpiration flow, GT , is
opposite to the HFR in Poiseuille flow,

GT =−QP. (4.7)

Note that the dimensionless flow rates are affected by the gas–surface interaction,
the intermolecular potential between gas molecules and the rarefaction parameter

δ =
n0kTw`

µvm
, (4.8)

where µ is the shear viscosity of the gas. The shear viscosity can be calculated as
long as the intermolecular potential is known, details of which can be found in Wu
et al. (2015a). The dimensionless rarefaction parameter δ is related to the inverse of
the Knudsen number, δ ∼ 1/Kn.

4.1. The linearized boundary conditions
Due to the reciprocity relation (2.6), the BC for the perturbed VDF h can be obtained
by simply replacing f with h in (1.1). Since (4.3) possesses the symmetry

h(x1, x2, v1, v2, v3)=−h(x1, x2, v1, v2,−v3), (4.9)

the Epstein BC can be greatly simplified, as the reflected gas molecules from the
surface are only resulting from the specular reflection. Also, in this case, the Klinc
& Kuěčer (1972) BC is exactly the same with the diffuse BC. Suppose a flat wall
is located at the x2–x3 plane and its normal direction is along the x1 direction. The
perturbed VDF for the reflected gas molecules hr is related to the perturbed VDF of
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the impinging molecules hi as

hr(v1, v2, v3)= [1−Θ(v)]hi(−v1, v2, v3). (4.10)

For the Cercignani–Lampis BC, the scattering kernel (2.11) is simplified to
(Sharipov 2002, 2003a,b):

RCL(v
′
→ v)= Rn(v

′

n→ vn)Rt(v
′

t→ vt), (4.11)

where

Rn(v
′

n→ vn)=
2vn

αn
I0

(
2
√

1− αnvnv
′

n

αn

)
exp

{
−
[v2

n + (1− αn)v
′

n]
2

αn

}
, (4.12)

Rt(v
′

t→ vt)=
1

παt(2− αt)
exp

[
−
|vt − (1− αt)v

′

t|
2

αt(2− αt)

]
. (4.13)

4.2. Numerical results using the Cercignani–Lampis boundary condition
In this section, we present solutions of the LBE for the Poiseuille flow between two
infinite parallel plates and through a circular cross-section. Although this classical
problem has been investigated extensively, accurate numerical results based on the
LBE and the Cercignani–Lampis BC are scarce (Garcia & Siewert 2009). In our
numerical simulations, the accuracy of the flow rates are controlled to within 0.5 %
(Wu et al. 2015a).

We first consider the Poiseuille flow between two infinite parallel plates at
a distance `. Table 1 shows the MFR and HFR for HS molecules, when the
Cercignani–Lampis and Maxwell BCs are used. When the parameters αn, αt, and
αM in the Cercignani–Lampis and Maxwell BCs are fixed, the HFR always increases
when the rarefaction parameter δ decreases, while the MFR first decreases and then
increases with δ, such that the famous Knudsen minimum is observed at δ ≈ 1.

For the Maxwell BC, when δ is fixed, both the MFR and HFR increase significantly
when the TMAC αM is reduced. For the Cercignani–Lampis BC, when the values of
δ and αn are fixed, the MFR also increases rapidly when αt decreases. From (3.3)
we know that αt is the effective TMAC of the Cercignani–Lampis BC. By choosing
αM = αt, we see in table 1 that the MFR from the Cercignani–Lampis BC increases
slower than that of the Maxwell BC, as αt and αM decrease.

The approximate analytical expression (3.3) predicts no influence of αn on the MFR.
From the numerical simulation we see that the influence is indeed very limited. When
αt and δ are fixed, the MFR decreases slightly when αn increases. For instance, for
δ = 0.01, the MFR is decreased by 10 % when αn is increased from 0.25 to 1; as δ
increases, this influence becomes weaker and weaker.

The variation of the HFR with respect to αn and αt is more complicated than that of
the MFR. First, when αn and δ are fixed, the HFR increases slightly with αt at large
values of δ, while it increases with decreasing αt at small values of δ. Second, when
αt= 1 and δ is fixed, the HFR does not change with αn: in fact, in this case it can be
proven that the Cercignani–Lampis BC is reduced to the diffuse BC (Sharipov 2002).
Third, when αt(6=1) and δ are fixed, the HFR increases slightly with αn at large values
of δ, but it increases with decreasing αn at smaller values of δ. Similar behaviours
have been observed by Sharipov (2002) when the linearized Shakhov kinetic model
is used instead of the LBE.
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GP −QP GP −QP GP −QP GP −QP GP −QP

δ αt αn = 0.25 αn = 0.5 αn = 0.75 αn = 1 αM = αt

0.01 0.5 5.115 1.699 4.871 1.499 4.752 1.390 4.684 1.322 6.844 2.991
1 2.911 1.320 2.911 1.320 2.911 1.320 2.911 1.320 2.911 1.320

1.5 2.084 1.122 2.196 1.205 2.265 1.265 2.320 1.319 — —

0.1 0.5 3.996 1.098 3.854 0.953 3.774 0.866 3.724 0.807 4.389 1.570
1 1.951 0.801 1.951 0.801 1.951 0.801 1.951 0.801 1.951 0.801

1.5 1.200 0.634 1.270 0.699 1.319 0.749 1.360 0.796 — —

0.2 0.5 3.710 0.906 3.616 0.798 3.558 0.726 3.519 0.675 3.907 1.211
1 1.747 0.667 1.747 0.667 1.747 0.667 1.747 0.667 1.747 0.667

1.5 1.037 0.525 1.086 0.577 1.123 0.620 1.156 0.661 — —

1 0.5 3.308 0.458 3.297 0.435 3.288 0.415 3.280 0.398 3.327 0.529
1 1.507 0.389 1.507 0.389 1.507 0.389 1.507 0.389 1.507 0.389

1.5 0.894 0.336 0.901 0.351 0.908 0.366 0.915 0.381 — —

2 0.5 3.340 0.300 3.339 0.296 3.338 0.292 3.337 0.288 3.347 0.328
1 1.564 0.281 1.564 0.281 1.564 0.281 1.564 0.281 1.564 0.281

1.5 0.970 0.265 0.971 0.268 0.971 0.272 0.972 0.275 — —

3.5 0.5 3.518 0.201 3.517 0.203 3.516 0.204 3.515 0.206 3.524 0.212
1 1.742 0.202 1.742 0.202 1.742 0.202 1.742 0.202 1.742 0.202

1.5 1.148 0.203 1.149 0.202 1.150 0.200 1.150 0.198 — —

10 0.5 4.522 0.0834 4.514 0.0861 4.508 0.0887 4.503 0.0912 4.535 0.0843
1 2.729 0.0900 2.729 0.0900 2.729 0.0900 2.729 0.0900 2.729 0.0900

1.5 2.120 0.0962 2.127 0.0938 2.133 0.0913 2.138 0.0889 — —

20 0.5 6.162 0.0437 6.151 0.0454 6.142 0.0470 6.133 0.0485 6.177 0.0437
1 4.360 0.0480 4.360 0.0480 4.360 0.0480 4.360 0.0480 4.360 0.0480

1.5 3.743 0.0519 3.752 0.0505 3.761 0.0490 3.769 0.0474 — —

100 0.5 19.47 0.0091 19.45 0.0094 19.44 0.0098 19.43 0.0102 19.49 0.0090
1 17.66 0.0101 17.66 0.0101 17.66 0.0101 17.66 0.0101 17.66 0.0101

1.5 17.03 0.0110 17.05 0.0107 17.06 0.0103 17.07 0.0100 — —

TABLE 1. Dimensionless flow rates in the Poiseuille flow of HS molecules between two
infinite parallel plates, obtained from the LBE with the Cercignani–Lampis and Maxwell
(last two columns) BCs.

The influence of the intermolecular potential between gas molecules is also
investigated. For this we choose helium and xenon, since from Sharipov & Bertoldo
(2009b) it is known that the results of other noble gases such as neon, argon and
krypton will lie between helium and xenon. Some typical MFR and HFR profiles are
shown in figure 2, from which we see that the influence of the intermolecular potential
is obvious at small values of δ, irrespective of the gas–surface BCs. For small
values of δ (i.e. δ < 1), among the HS gas, helium and xenon, the HS gas has the
largest MFR and HFR, while xenon has the smallest: in the diffuse BC, the relative
differences in the MFR and HFR between HS gas and xenon are approximately 15 %
when δ = 0.01. In the Cercignani–Lampis BC with αn = 1 and αt = 0.75, the relative
differences in the MFR and HFR between HS gas and xenon are approximately 12 %
and 23 %, respectively, when δ = 0.01.
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FIGURE 2. (Colour online) The MFR and HFR in the Poiseuille flow between two parallel
plates, when the Cercignani–Lampis and Maxwell BCs are used. Triangles: HS molecules.
Dashed lines: helium. Dash-dotted lines: xenon. In the Cercignani–Lampis BC, we use
αn= 1, (a) αt = 1 and (b) αt = 0.75. In the Maxwell BC, αM = 0.75 is used (pentagrams).
(c) The TPD exponent.

Figure 2(c) also shows the TPD exponent, which is an important parameter
determining the performance of a Knudsen pump. The TPD exponent is defined
as follows: consider a closed system consisting of two reservoirs connected by a
long channel. If the temperature ratio T1/T2 is maintained between the reservoirs, a
pressure ratio p1/p2 is established between them. When the steady state is reached,
the two ratios are related to each other as

p1

p2
=

(
T1

T2

)γ
, (4.14)

where γ is the TPD exponent. If the temperature ratio between the two reservoirs is
small, it can be expressed as

γ =
GT

GP
=−

QP

GP
. (4.15)

It can be found from figure 2(c) that, in the range of δ considered, the HS gas has the
largest TPD, while xenon has the smallest. This difference increases when δ decreases.
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FIGURE 3. (Colour online) The relative error (GLennard–Jones/GHS − 1) × 100 in the MFR
between the Lennard–Jones and HS potentials, in the Poiseuille (dashed lines) and thermal
transpiration (solid lines) flows through a tube, when the diffuse BC is used.

For instance, in the diffuse BC, the relative difference in TPD exponent between the
HS gas and xenon is approximately 8 % when δ= 0.01. In the Cercignani–Lampis BC,
when δ is fixed, the TPD exponent decreases with αt. In the Maxwell BC, when αM
decreases, the TPD exponent decreases at large values of δ, but at small values of δ
(free molecular flow regime), the TMAC αM does not have any influence on the TPD
exponent.

Next we consider the Poiseuille flow through a long tube, where the characteristic
length ` is chosen as the radius of the circular cross-section. The flow rates are shown
in table 2. Unlike to Poiseuille flow between two parallel plates, where the MFR and
HFR increase logarithmically as − ln δ when δ→ 0 (Takata & Funagane 2011), both
approach constant values when δ→ 0. The influence of the BC on the dimensionless
flow rates is similar to that between two parallel plates.

Figure 3 shows the influence of the intermolecular potential on the MFR in
the thermal transpiration flow. For δ > 0.5, the HS model underpredicts the MFR
of the Lennard–Jones potentials, for example, when δ = 10, by approximately
8 % and 4 % for argon and helium, respectively. When δ < 0.5, however, the HS
model overpredicts the MFR. When δ → 0, the intermolecular potential has no
influence on the dimensionless mass flow rate. On the other hand, the influence of
the intermolecular potential in the MFR of the Poiseuille flow is within 2 % for all
the rarefaction parameters considered.

5. Comparisons between the numerical simulations and experiments
In this section, we solve the LBE (4.3) for the Lennard–Jones potential (2.5),

by the method developed by Wu et al. (2015a, 2017). The performance of various
gas–surface BCs are compared for Poiseuille and thermal transpiration flows between
two infinite parallel plates, and for flows through pipes with rectangular or circular
cross-sections, where several experimental data are available (Ewart et al. 2007;
Rojas-Cárdenas et al. 2013; Yamaguchi et al. 2014, 2016). We emphasise that the
MFR in both Poiseuille and thermal transpiration flows are measured for the same
gas and solid surface interactions simultaneously, which provide ideal and strict test
cases to the kinetic BCs.
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GP −QP GP −QP GP −QP GP −QP

δ αt αn = 0.25 αn = 0.5 αn = 0.75 αn = 1

0 0.5 3.401 1.026 3.356 0.912 3.328 0.838 3.309 0.786
1 1.504 0.752 1.504 0.752 1.504 0.752 1.504 0.752

1.5 0.838 0.608 0.856 0.646 0.871 0.684 0.887 0.725

0.01 0.5 3.363 0.989 3.321 0.881 3.295 0.809 3.277 0.759
1 1.472 0.725 1.472 0.725 1.472 0.725 1.472 0.725

1.5 0.809 0.584 0.825 0.620 0.840 0.657 0.855 0.697

0.1 0.5 3.251 0.837 3.227 0.763 3.210 0.709 3.198 0.669
1 1.397 0.634 1.397 0.634 1.397 0.634 1.397 0.634

1.5 0.753 0.516 0.763 0.545 0.773 0.574 0.784 0.607

0.5 0.5 3.181 0.574 3.176 0.553 3.172 0.536 3.169 0.520
1 1.381 0.492 1.381 0.492 1.381 0.492 1.381 0.492

1.5 0.767 0.432 0.770 0.443 0.772 0.455 0.775 0.468

1 0.5 3.233 0.432 3.232 0.429 3.231 0.426 3.230 0.423
1 1.448 0.403 1.448 0.403 1.448 0.403 1.448 0.403

1.5 0.845 0.379 0.847 0.380 0.847 0.383 0.848 0.385

2 0.5 3.423 0.295 3.420 0.300 3.418 0.305 3.417 0.309
1 1.639 0.298 1.639 0.298 1.639 0.298 1.639 0.298

1.5 1.038 0.301 1.040 0.297 1.042 0.293 1.043 0.288

5 0.5 4.113 0.152 4.105 0.157 4.098 0.162 4.093 0.167
1 2.319 0.164 2.319 0.164 2.319 0.164 2.319 0.164

1.5 1.708 0.175 1.715 0.170 1.721 0.165 1.726 0.161

10 0.5 5.333 0.0835 5.322 0.0868 5.313 0.0899 5.305 0.0929
1 3.531 0.0917 3.531 0.0917 3.531 0.0917 3.531 0.0917

1.5 2.913 0.0992 2.923 0.0963 2.932 0.0934 2.939 0.0904

20 0.5 7.815 0.0437 7.802 0.0456 7.791 0.0472 7.782 0.0489
1 6.007 0.0484 6.007 0.0484 6.007 0.0484 6.007 0.0484

1.5 5.385 0.0527 5.396 0.0511 5.406 0.0495 5.416 0.0479

50 0.5 15.30 0.0179 15.28 0.0187 15.27 0.0194 15.26 0.0201
1 13.49 0.0200 13.49 0.0200 13.49 0.0200 13.49 0.0200

1.5 12.86 0.0218 12.87 0.0212 12.89 0.0205 12.89 0.0198

100 0.5 27.78 0.0090 27.77 0.0094 27.75 0.0098 27.74 0.0101
1 25.97 0.0101 25.97 0.0101 25.97 0.0101 25.97 0.0101

1.5 25.34 0.0110 25.35 0.0107 25.37 0.0103 25.38 0.0100

TABLE 2. Dimensionless flow rates in the Poiseuille flow of HS molecules through a
circular tube, using the Cercignani–Lampis BC.

5.1. Thermal transpiration through a rectangular cross-section
Consider the thermal transpiration of helium through a long rectangular channel made
of polyether ether ketone (Yamaguchi et al. 2014, 2016), where the aspect ratio of
the rectangular cross-section is 27.27. For such a large aspect ratio, the numerical
simulation based on the Shakhov kinetic model revealed that, when δ > 0.5, there is
no difference in the dimensionless flow rates for flows through two infinite parallel
plates and rectangular cross-sections (Graur & Ho 2014). Thus, we use the numerical
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FIGURE 4. (Colour online) The MFR in the thermal transpiration of helium through a
rectangular cross-section of aspect ratio 27.27. Solid dots: experimental data collected from
table 1 in Yamaguchi et al. (2016). Pentagrams: the diffuse BC. Squares: the Cercignani–
Lampis BC with αn= 0.25 and αt = 0.5. Triangles: the Cercignani–Lampis BC with αn=

0.25 and αt = 1.75. Lines without symbols: the Epstein BC (2.9) with the thermal slip
coefficient ω = 0.9: dash-dotted line for Θ0 = 0.9 and α = 0.0192, while solid line for
Θ0=1 and α=0.019. Other parameters are Θ1=0.1 and β=α, so that according to (3.4),
the effective TMAC χ are 0.85 and 0.95 when Θ0 = 0.9 and 1, respectively. Inset: the
MFR in the Poiseuille flow between two parallel plates.

data for flows between two parallel plates to reduce the computational cost, since the
experimental measurements are limited to this region of the rarefaction parameter.

Figure 4 and table 3 compare the experimental data with the numerical results, when
the diffuse, Cercignani–Lampis, and Epstein BCs are used. From table 1 we know that,
for the Maxwell BC, when δ<3.5 is fixed, the lowest MFR is reached for αM=1. The
comparison with the experiment shows that the diffuse BC overpredicts the MFR by
more than 10 %, and choosing other values of the TMAC will increase the prediction
error drastically. We then turn to the Cercignani–Lampis BC. From table 1 we know
that, for large values of δ, better agreement between the simulation and experiment can
be achieved when we choose small values of αn and αt, see the squares in figure 4
and data denoted by ‘Cercignani–Lampis1’ in table 3, where αn = 0.25 and αt = 0.5.
However, when δ < 2, the agreement becomes even worse than that of the diffuse
BC, for example, for δ = 2.22 and 0.998, this Cercignani–Lampis BC overpredicts
the MFR by approximately 16 % and 42 %, respectively. One can significantly reduce
this difference by choosing large values of αt (see triangles in figure 4 and data
corresponding to ‘Cercignani–Lampis2’ in table 3, where αn = 0.25 and αt = 1.75),
but this increases the error when δ is large. For example, when δ > 5, numerical
results overpredicts the MFR by approximately 20 %. This large difference in the slip
regime is caused by the fact that the thermal slip coefficient of the Cercignani–Lampis
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δ 0.998 1.48 2.22 2.98 3.71 5.57 7.41 11.1
Exp. 0.316 0.276 0.239 0.210 0.188 0.140 0.107 0.0803
Diffuse 0.385 0.326 0.267 0.226 0.198 0.149 0.119 0.0851
Cercignani–Lampis1 0.450 0.360 0.278 0.227 0.193 0.141 0.111 0.0779
(αt = 0.5)
Cercignani–Lampis2 0.301 0.274 0.243 0.217 0.197 0.156 0.128 0.0932
(αt = 1.75)
Epstein1 (Θ0 = 0.9) 0.355 0.300 0.245 0.208 0.181 0.137 0.110 0.0784
Epstein2 (Θ0 = 1) 0.375 0.312 0.251 0.210 0.182 0.136 0.109 0.0771

Relative error:
Diffuse 21.66 17.94 11.67 7.73 5.04 6.35 11.59 5.98
Cercignani–Lampis1 42.41 30.43 16.32 8.10 2.66 0.71 3.74 −2.99
Cercignani–Lampis2 −4.85 −0.87 1.62 3.50 4.55 11.34 19.63 16.07
Epstein1 12.22 8.59 2.66 −1.02 −3.49 −2.21 2.69 −2.33
Epstein2 18.60 12.86 4.91 0.02 −3.18 −2.93 1.42 −4.01

TABLE 3. The MFR in the thermal transpiration of helium between two infinite parallel
plates, using the diffuse, Cercignani–Lampis, and Epstein BCs. The experimental data
are collected from table 1 in Yamaguchi et al. (2016). The relative error between the
experimental and numerical results is defined as 100× (Gnumerical

T /Gexp
T − 1). The parameters

for various BCs are given in figure 4.

BC is larger than one (Sharipov 2003a), which is much larger than the experimental
measured value of approximately 0.9.

The Epstein BC allows more flexibility to choose the velocity slip coefficients and
should be able to give better agreement with the experiment. To demonstrate this, we
choose the effective thermal slip coefficient ω to be the experimental measured value
(Yamaguchi et al. 2016). To achieve this, we choose α = β in (2.10) for simplicity.
We first fix the values of Θ0 and Θ1, and obtain α and β from (3.5) by setting
ω = 0.9. We then vary the values of Θ0 and Θ1, to see the possible influence of
different parameters. Our numerical results show that Θ1 has very small influence on
the MFR, so in figure 4 and table 3 only the results for Θ1= 0.1 are shown. It is clear
that for ω = 0.9, the simulation results agree well with the experimental data when
δ& 2, for a wide range of Θ0, see Θ0= 0.9 and 1 in figure 4 and table 3. For δ. 2,
the value of Θ0 begins to have a strong influence on the MFR: the larger the value
of Θ0, the smaller the MFR in thermal transpiration flow. Taking into account that
the experimental data have large errors when δ < 1 (the accuracy of the measurement
decreases when the pressure decreases because the physical variation of the pressure
is no longer very great with respect to the resolution of the pressure sensor), it seems
that the case of Θ0 = 1 provides good agreement with the experimental measured
MFR.

So far, based solely on the comparison in figure 4 and table 3, it is too early to
say that the Epstein BC is better than the Cercignani–Lampis BC. In the inset of
figure 4 we find that the MFR in Poiseuille flow varies a lot among different BCs.
Therefore, the TPD exponent and thermal molecular pressure ratio (TPR) should
vary significantly between the two BCs. Fortunately, these two parameters have
been measured experimentally using the same gas and solid surface (Yamaguchi
et al. 2014), which provides an ideal case to assess the accuracy of the Epstein and
Cercignani–Lampis BCs.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

32
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.326


528 L. Wu and H. Struchtrup

0.80.5 1.0 1.5 2 3 5 7 10 2015

0.80.5 1.0 1.5 2 3 5 7 10 2015

0.95

0.96

0.97

0.98

0.99

1.00

TPR

T
PD

 e
xp

on
en

t
0.2

0.1

0

0.3

FIGURE 5. (Colour online) The TPD exponent and TPR in the thermal transpiration of
helium through a rectangular cross-section of aspect ratio 27.27. Solid dots: experimental
data collected from figure 8 in Yamaguchi et al. (2014). Pentagrams, squares, triangles
and lines without symbols: see the parameters in figure 4.

In the two experiments (Yamaguchi et al. 2014, 2016), the temperature difference is
small compared to the average gas temperature. Therefore, the TPD exponent can be
accurately approximated by (4.15), while the TPR is calculated as follows: in steady
state, according to (3.2) in Yamaguchi et al. (2016), the gas pressure p along the flow
direction satisfies

dp
dx3
=−

QP(δ)

GP(δ)

p
T

dT
dx3

, (5.1)

where p and T have been normalized by the initial pressure and the average pressure
of the hot and cold reservoirs, respectively. Assuming a linear temperature variation
along the rectangular channel, the pressure distribution can be obtained easily; we
find that the result does not change even when using the exponential shape of the
temperature distribution (Rojas-Cárdenas et al. 2013), due to the small temperature
difference between two reservoirs in the experiments. The TPR is then calculated as
the ratio of the pressures of the cold and hot reservoirs.

Figure 5 compares the TPD exponent and TPR between the experimental and
numerical results using different gas–surface BCs. It becomes clear that the Epstein
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BC with Θ0 = 0.9 (other parameters shown in figure 4) gives the best agreement,
while the Cercignani–Lampis BC either overestimates (αt = 1.75) or underestimates
(αt = 0.5) the TPD exponent significantly. For the TPR, the trend is opposite to that
of the TPD exponent. We believe the discrepancies between the very Epstein BC and
the experimental data when δ < 2 are due to the experimental errors, which become
larger and larger as the gas pressure reduces.

5.2. Poiseuille flow through a rectangular cross-section
Consider Poiseuille flow of helium through a silicon microchannel, with a rectangular
cross-section of aspect ratio 52.45, subject to a pressure ratio of 5 between the inlet
and outlet of the long channel. With such a large pressure ratio, the experimental
measurement of the MFR can be made very accurate even in the free molecular flow
regimes. This provides a more strict test of the gas–surface BC, as the profile of
the perturbed VDF varies significantly at small values of δ. For instance, both the
theoretical and numerical analysis (Takata & Funagane 2011; Wu et al. 2014) show
that the width of the VDF in the normal direction to the wall surface is proportional
to the rarefaction parameter δ, when δ→ 0. Thus, the effective TMAC in § 3 obtained
using the VDF from the Chapman–Enskog expansion becomes inaccurate.

Since the pressure ratio is not small, the dimensionless MFR GP(δ), obtained from
the LBE for the Lennard–Jones potential, is transformed to the measured MFR G(δm)
by (Sharipov & Seleznev 1994)

G(δm)=
3

4δm

∫ 5δm/3

δm/3
GP(δ) dδ, (5.2)

where δm is the gas rarefaction parameter at the average value of the inlet and outlet
pressures, with the characteristic flow length ` being the shorter side of the rectangular
cross-section.

At such a large aspect ratio, when δ >1, the numerical results for the Poiseuille flow
between two parallel plates can be safely used (Graur & Ho 2014). However, when
δ < 1, the numerical simulation is performed in the two-dimensional cross-section:
the symmetry is considered and only one quarter of the rectangular cross-section is
simulated, which is approximated by 31 × 101 non-uniform cells, with most of the
cells adjacent to the surface (Wu et al. 2014).

Figure 6 compares the MFR between the experimental and the numerical results,
when the Maxwell, Cercignani–Lampis and Epstein BCs are used. Since in the slip
flow regime the measured TMAC is approximately 0.92, we choose αM = 0.92 in the
Maxwell BC, αt= 0.92 in the Cercignani–Lampis BC with αn= 1 and χ = 0.92 in the
Epstein BC, together with Θ0= 1, Θ1= 0.1 and α= β = 0.0293. At δm > 2, the three
BCs yield almost identical results. However, as δm decreases, the Cercignani–Lampis
and Epstein BCs generate smaller MFRs than the Maxwell BC. For the Epstein BC,
this behaviour is easy to understand: as δ decreases, the VDF in the normal direction
to the wall shrinks (Takata & Funagane 2011; Wu et al. 2014), so that according
to (2.10), fewer gas molecules are specularly reflected than that of the Maxwell BC
and the MFR is therefore smaller.

In general, it is seen that the Cercignani–Lampis and Epstein BCs perform better
than the Maxwell BC in this special case. But since the MFR in the thermal
transpiration flow is not available, it is hard to say which one is best. If only
MFR in the Poiseuille flow is concerned, we prefer to use the Epstein BC, since in
the discrete velocity method the computational cost for the gas–surface interaction is
of the order of N3

v , while that of the Cercignani–Lampis BC is N6
v , where Nv is the

number of discretized points in each velocity direction.
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FIGURE 6. (Colour online) The comparison of the MFR in the Poiseuille flow through
a rectangular cross-section of aspect ratio 52.45 with the experimental data (Ewart et al.
2007), where the LBE with the Lennard–Jones potential of helium is solved, with the
Maxwell, Cercignani–Lampis and Epstein BCs.

5.3. Thermal transpiration through a long tube
Rojas-Cárdenas et al. measured the thermal transpiration flow through a glass tube
of circular cross-section (Rojas-Cárdenas et al. 2013), where, like the thermal
transpiration along the channel of rectangular cross-section (Yamaguchi et al. 2014,
2016), data of the MFR, TPD exponent and TPR are available. This means that both
the viscous and thermal slip coefficients χ and ω in the various BCs need to be
adjusted simultaneously, and again, provides a tough assessment of the various BCs.

Before the comparison, it is noted that, according the definitions in Rojas-Cárdenas
et al. (2013) and Yamaguchi et al. (2016), the experimental measured MFR G(δm) is
related to the simulated MFR GT =−QP as

G(δm)= 2GT(δm)

(√
Tm

TC
−

√
Tm

TH

)
, (5.3)

where δm is the gas rarefaction parameter at the initial gas pressure and mean
temperature of the two reservoirs, with the characteristic flow length ` being the
radius of the tube.

The experiments are conducted for both argon and helium. In the following we
consider them separately since different gases have different interactions with the same
glass tube. Also, it is noted that when the temperature difference is small, the TPD
exponent and the TPR are closely related: if the BC can accurately describe the TPR,
it can definitely describe the TPD exponent with good accuracy, see the example in
figure 5. For this reason, in the following only the MFR and TPR are considered.
Finally, the experimental error is large when δ is small, i.e. when the gas pressure is
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FIGURE 7. (Colour online) The MFR and TPR in the thermal transpiration of argon
through a circular glass tube. Solid dots: the experimental MFR is adopted from figure 8
in Rojas-Cárdenas et al. (2013) and has been normalized by (5.3), while the TPR is
adopted from figure 9 in Rojas-Cárdenas et al. (2013) when the temperature difference
is 71 K. Solid lines: diffuse BC. Dashed lines: the Epstein BC with Θ0 = Θ1 = 1 and
α= 20β = 50.6, so that the thermal slip coefficient is ω= 1.1 and the effective TMAC is
χ = 0.98. Dotted lines: the Cercignani–Lampis BC with αt = 1.2 and αn = 0.25.

low such that the pressure sensor is no longer very sensitive to the pressure variations
and the accuracy of the MFR measurement is reduced. Therefore, in the following, we
only analyse the region where δ > 2.

5.3.1. Experiment on argon
We solve the LBE with the realistic Lennard–Jones potential for argon. The results

of GT and TPR for the diffuse BC are shown as solid lines in figure 7. It can be seen
that GT agrees well with the experimental data, but the TPR is slightly higher than the
experimental data at large values of δ. This means that, according to (5.1), GP should
be decreased and/or GT should be increased when compared to the diffuse BC. This
cannot be realized in the Maxwell BC (since according to table 1, the diffuse BC
with αM = 1 has the minimum MFR in the Poiseuille flow and maximum MFR in
the thermal transpiration flow, compared to other Maxwell BC with αM < 1), but can
be easily done in the Cercignani–Lampis BC by choosing the effective TMAC αt > 1.
The results for αt = 1.2 are shown as dotted lines, and good agreement in both GT
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FIGURE 8. (Colour online) The MFR and TPR in the thermal transpiration of helium
through a circular glass tube. Solid triangles: the experimental MFR is adopted from
figure 8 in Rojas-Cárdenas et al. (2013) and has been normalized by (5.3), while the TPR
is adopted from figure 9 in Rojas-Cárdenas et al. (2013) when the temperature difference
is 71 K. Solid lines: diffuse BC. Dashed lines: the Epstein BC with Θ0 = 1, Θ1 = 0.1,
and α= β = 0.019, so that the effect thermal slip coefficient ω= 0.9 and effective TMAC
is χ = 0.95. Dash-dotted lines: the combined BC (5.4), where αn = 1 and αt = 1.5 in the
Cercignani–Lampis BC, while Θ0= 1, Θ1= 0.1 and α=β = 0.06, so that the thermal slip
coefficient is ω= 0.7 and the effective TMAC is χ = 0.85 in the Epstein BC.

and TPR is observed for δ > 2. Alternatively, one can use the Epstein BC with the
effective thermal slip coefficient ω > 1; the results for ω = 1.1 are shown as dashed
lines, which are slightly better than the diffuse BC.

5.3.2. Experiment on helium
We first solve the LBE with the realistic Lennard–Jones potential for helium, using

the diffuse BC. Although the TPR predicted by the numerical solutions agrees well
with the experimental data, the MFR GT is higher than the experimental measurements,
see the solid lines in figure 8. Like the thermal transpiration through the rectangular
channel studied in § 5.1, the Cercignani–Lampis BC has difficulty to predict both the
MFR and TPR correctly. Therefore, we solve the LBE with the Epstein BC to obtain a
good agreement in GT first. This is easily achieved when we choose ω= 0.9, however,
the TPR from the numerical simulation is higher than the experimental ones when
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δ > 2, see the dashed lines in figure 8. This means that, according to (5.1), we have
to make the effective TMAC in the Epstein BC larger than unity, which is impossible
to guarantee the positiveness of the VDF, see the discussion in the end of § 3. Thus,
a new kinetic BC is required to describe this experimental data.

5.3.3. A new combined boundary condition
We note that both Epstein and Cercignani–Lampis models are well rooted in

arguments based on the physics of the gas–surface interactions, so that their
parameters are not merely curve-fitting parameters. Nevertheless, as models, they
only approximate the actual behaviour of the molecular collisions. Hence, each model
has individual shortcomings which limit its range of application: the Epstein model
cannot describe flows with serious ‘backwards’ scattering, for which the viscous slip
coefficient (2 − χ)/χ is below unity (i.e. the TMAC is above unity), and does not
give plume-like structure for reflection of molecular beams; the Cercignani–Lampis
model predicts a fixed value (ωCL = 1) for the thermal slip coefficient.

For gas–surface interactions where the experimental results indicate viscous slip
coefficient and thermal slip coefficient below unity, neither model can be used to
model the ensuing flow problems. Since the Epstein BC can adjust the thermal slip
coefficient easily (see figure 1), and the Cercignani–Lampis BC can have an effective
TMAC (3.3) above unity, we propose to combine them together linearly, that is, to
use the following new gas kinetic BC:

RMix(v
′
→ v)=$RCL(v

′
→ v)+ (1−$)RE(v

′
→ v), (5.4)

to describe the gas–surface interaction, where $ is a constant with a value between
zero and one. Since the only reason to include the Cercignani–Lampis BC into
the combined BC is to make the effective TMAC larger than unity, the normal
accommodation coefficient αn, which has little effect to the effective TMAC, can be
chosen as unity. This will reduce the computational complexity of the BC from N6

v

to N5
v , where Nv is the number of discrete velocities in each velocity direction. It

should also be noted that the combined model should only be used when significant
backwards scattering (χ > 1) occurs, which is the case for only a few gas–surface
interactions, e.g. the scattering of light molecules by a rough surface such as for
the helium flow through a glass tube (Rojas-Cárdenas et al. 2013), because the
computational cost to compute the Epstein model is only O(N3

v ).
Considering that both Epstein and Cercignani–Lampis models have a solid

background in physics, and give reliable results within their realm of application,
a linear combination of both appears to be the most reasonable approach to maintain
the benefits of both, and extend their range of validity. Unfortunately, this increases
the number of parameters to be fitted. The new boundary condition has six free
parameters: α, β, Θ0, Θ1 in (2.10), αt in (2.11) with αn = 1, and $ in (5.4). These
parameters allows more freedom to fit the experimental data. Following the method
in Struchtrup (2013), approximate analytical solutions for the effective TMAC and
thermal slip coefficient are derived to guide the comparison, as

1
χMix
=
$

χCL
+

1−$
χE

,

ωMix =$ωCL + (1−$)ωE.

 (5.5)

To compare with the experimental data of Rojas-Cárdenas et al. (2013) on helium,
we consider an equal mixture of the Epstein and Cercignani–Lampis BCs, i.e. $ =0.5
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in (5.4). We choose αt = 1.5 in the Cercignani–Lampis BC and χ = 0.85 and ω =

0.7 in the Epstein BC, so that according to (5.5), the effective TMAC is χMix ≈ 1.1
and the thermal slip coefficient is ωMix≈ 0.9. Good agreement between the numerical
simulation and experiment is now achieved, see the dash-dotted lines in figure 8.

It should be noted that the parameters used here are chosen from a range of
possible choices. This means that our new BC (5.4) still has the freedom to fit
other experiments, such as those involving the thermal accommodation coefficient.
Unfortunately, there is no experiment measuring the Poiseuille, thermal transpiration
and Fourier flows for the same gas and solid surface interaction. Therefore, we leave
the further validation of the new BC to future experiments.

6. Conclusions

In summary, various gas kinetic boundary conditions – Maxwell, Cercignani–
Lampis, and Epstein – have been assessed by comparing the numerical solution of
the linearized Boltzmann equation with recent experimental data on Poiseuille and
thermal transpiration flows. To our knowledge, this assessment is the first of its kind,
in the sense that (i) mass flow rates in both Poiseuille and thermal transpiration flows
are measured for the same gas and solid surface interaction, which poses an ideal
and strict test of the boundary conditions and (ii) the linearized Boltzmann equation
for the Lennard–Jones potential has been solved accurately, so that the comparison
is only affected by the details of the boundary conditions and the accuracy of
the experiments. Within the confidence interval of the recent accurate experiments,
we found that, although being widely used, the Maxwell and Cercignani–Lampis
boundary conditions cannot accurately describe Poiseuille and thermal transpiration
flows simultaneously, while the overlooked Epstein model can provide accurate
predictions of the mass flow rate as long as the effective TMAC is less than unity.

When the effective TMAC is larger than unity (this corresponds to the backwards
scattering to some extent), the Cercignani–Lampis model must be used, since neither
the Maxwell model nor the Epstein model can give such a value for the coefficient
while guaranteeing the positiveness of the velocity distribution function. For this case
a linear combination of the Epstein and Cercignani–Lampis models (5.4) is proposed
to describe gas–surface interaction for the Boltzmann equation. Although it contains
six free parameters, our approximate analytical expressions for the viscous and thermal
slip coefficients provide a useful guidance to select these parameters. It has been found
that only the combined boundary condition can reproduce the experimental data of
Rojas-Cárdenas et al. (2013) on the helium flow through a glass tube.

To conclude, if there is no backwards scattering, the Epstein model should be
used. Otherwise, our newly proposed boundary condition should be used. Typically,
backwards scattering is not a dominant process, and the measured value of the
TMAC is below unity. If this is the case, the four-parameter Epstein model promises
the best overall description of rarefied flows, since it allows us to fit the TMAC,
the thermal slip coefficient and the thermal accommodation coefficient with a less
computational cost compared to the Cercignani–Lampis model when solved by the
discrete velocity method. Once the free parameters are determined by comparing
the numerical solution of the Boltzmann equation with simple experiments, the
kinetic boundary condition can be used in gas micro-electro-mechanical systems with
complex geometries and flow conditions. This is a practical way to study internal
rarefied gas flows until efficient and accurate methods to determine the gas–surface
boundary condition become mature. Finally, we point out that the Epstein model
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and the combined Epstein and Cercignani–Lampis model may also find application
at the vapour–liquid interface (Ishiyama, Yano & Fujikawa 2005; Kon, Kobayashi &
Watanabe 2014).
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