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Holomorphic SCFTs with small index
Davide Gaiotto and Theo Johnson-Freyd
Abstract. We observe that every self-dual ternary code determines a holomorphic N = 1 super-
conformal field theory. This provides ternary constructions of some well-known holomorphic
N = 1 superconformal field theories (SCFTs), including Duncan’s “supermoonshine” model and the
fermionic “beauty and the beast” model of Dixon, Ginsparg, and Harvey. Along the way, we clarify
some issues related to orbifolds of fermionic holomorphic CFTs. We give a simple coding-theoretic
description of the supersymmetric index and conjecture that for every self-dual ternary code this
index is divisible by 24; we are able to prove this conjecture except in the case when the code has
length 12 mod 24. Lastly, we discuss a conjecture of Stolz and Teichner relating N = 1 SCFTs with
Topological Modular Forms. This conjecture implies constraints on the supersymmetric indexes of
arbitrary holomorphic SCFTs, and suggests (but does not require) that there should be, for each k,
a holomorphic N = 1 SCFT of central charge 12k and index 24/ gcd(k, 24). We give ternary code
constructions of SCFTs realizing this suggestion for k ≤ 5.

The motivation for this note comes from an attempt to construct two-dimensional
superconformal field theories (SCFTs) that would explain some features of the
generalized cohomology theory known as topological modular forms (TMF). The
connection between SCFTs and TMF is predicted by conjectures of Stolz and Teichner
[ST11] proposing a geometric model of TMF in terms of (not necessarily conformal)
two-dimensional supersymmetric field theory. In particular, as we explain in Section
5, each holomorphic vertex operator algebra (VOA) of central charge c equipped with
N = 1 supersymmetry should determine a class in TMF2c = π2cTMF(pt). Let MFc
denote the space of integral modular forms of weight c. There is an edge map TMF2c →
MFc , which in the proposed model should take an SCFT to its supersymmetric index,
multiplied by η2c = Δc/12. A curious feature of TMF is that the smallest multiple of Δk

in the image of TMF24k → MF12k is 24
gcd(k ,24)Δk . Our goal is to construct holomorphic

N = 1 VOAs realizing these values. We pose this goal as our Main Question:

Main Question For each k, does there exist a holomorphic N = 1 VOA with central
charge c = 12k and supersymmetric index 24

gcd(k ,24) ?
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In order to answer the Main Question, and to explore TMF more generally, it
is useful to have a source for holomorphic N = 1 VOAs. As described in Section 2,
every linear ternary self-dual, also called “Type III,” code determines a VOA equipped
with N = 1 structure; it is a lattice VOA for what in [HM09] is called a “three-framed
lattice,” and so we will refer to the result as a “three-framed VOA.” FurtherN = 1 VOAs
can be constructed by orbifolding three-framed VOAs by nonanomalous symmetries.
We study the supersymmetry-preserving automorphisms of three-framed VOAs in
Section 3. The theory of fermionic orbifolds is studied in Section 4, where we clarify
the role of the ’t Hooft anomaly and of its trivializations. Among the N = 1 VOAs
that arise as orbifolds of three-framed VOAs are the “supermoonshine” model of
[Dun07] (Examples 2.3 and 3.2) and of the “beauty and the beast” model of [DGH88]
(Example 4.5).

The supersymmetric index of the three-framed VOA and of its orbifolds can be
computed directly from the code (Proposition 2.4 and Theorem 5.6). This suggests that
one study the “index” of self-dual ternary codes for their own sake. Our results and
conjectures lead to the following divisibility statement (Theorem 1.3 and Conjecture
1.4): the index of a self-dual ternary code is always divisible by 24. Our proof
requires nontrivial divisibility results about modular forms. Section 1 contains some
elementary background on ternary codes and explains the definition of the index of a
code without reference to supersymmetric field theory.

All together, one way to affirmatively answer the Main Question is to construct
self-dual ternary codes with index 24 (and an appropriate orbifoldable symmetry).
For small c, the complete classification of self-dual ternary codes of length c is known
[HM09], but for large c the best approach available is an exponential-time computer
search. With help from Noam D. Elkies implementing such a search, we succeeded at
finding N = 1 VOAs of central charge c = 12k and supersymmetric index 24

gcd(k ,24) for
k ≤ 5.

This work suggests several interesting future directions of inquiry:

Question 0.1 Is there a systematic construction of self-dual ternary codes of index 24
which would avoid the use of intensive computation? Such a construction could provide
a systematic construction of N = 1 VOAs realizing the modular forms 24

gcd(k ,24)Δk .

Question 0.2 After 24
gcd(k ,24)Δk , the next most interesting modular forms in the image

of TMF → MF are the Theta functions of even unimodular lattices. These will not come
from holomorphic VOAs, but might come from full CFTs withN = (0, 1) supersymmetry.
Is there a systematic construction that inputs an even unimodular lattice Λ of rank r and
produces a N = (0, 1) full CFT of total central charge cR − cL = r and Ramond–Ramond
partition function ΘΛ/ηr?

Question 0.3 Does the Stolz–Teichner proposal generalize to involve supersymmet-
ric field theories equipped with discrete symmetry group actions of specified ’t Hooft
anomaly? It would be nice to find what the corresponding “equivariant” TMF theory
should look like. The holomorphic SCFTs we build have large discrete symmetry groups
and should have interesting images under such a conjectural correspondence.
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Question 0.4 What is the physical meaning of TMF classes, especially of torsion type?
Which physical relation between two theories implies that they represent the same class
in TMF?

1 The index of a ternary code

Let F3 denote the field of order 3. By definition, a ternary code of length c is a
linear subspace C ⊂ Fc

3. The ambient space Fc
3 has a standard “Cartesian” inner

product ⟨(v1 , . . . , vc), (w1 , . . . , wc)⟩ = ∑i v iw i ∈ F3, and so given a code C ⊂ Fc
3 one

can construct its dual code C⊥ = {w ∈ Fc
3 s.t. ⟨w , v⟩ = 0 ∀v ∈ C}. A ternary code is self-

dual if C⊥ = C.
Elements of Fc

3 are called words, and if a code C is fixed, elements of C are called
code words. The Hamming weight of a word is its number of nonzero entries. A word
is maximal if its Hamming weight is c. In a self-dual ternary code, every code word
is self-orthogonal, and so in particular has Hamming weight divisible by 3. It is well-
known that self-dual ternary codes of length c can occur only when c is divisible by
4, and so a self-dual ternary code can contain maximal codewords only when c = 12k
for some k ∈ N.

Suppose w ∈ Fc
3 is a maximal word. Let us say that w is even or odd according to

the number of 1s among its entries, mod 2.

Definition 1.1 Suppose C is a self-dual ternary code. The index of C is

Index(C) = #{even maximal codewords} − #{odd maximal codewords}.

Remark 1.2 The index is the value at (x , y, z) = (0, 1, −1) of the complete weight
enumerator defined as

CWEC (x , y, z) = ∑
w∈C

xn0(w)yn1(w)zn−1(w) = ∑
w∈C

c
∏
i=1

xw(i) ,

where n i (w) is the number of is among the coordinates of w, (x0 , x1 , x−1) = (x , y, z),
and w(i) ∈ {0, 1, −1} = F3 is the ith coordinate of w.

The first main result of this paper is:

Theorem 1.3 If C is a self-dual ternary code of length divisible by 24, then Index(C)
is divisible by 24. If the length of C is merely divisible by 12, then Index(C) is divisible
by 12.

If the length of C is not divisible by 12, then Index(C) vanishes, as there are
simply no maximal codewords. The second sentence in the Theorem follows imme-
diately from the first together with the easy observation that Index(C′ ⊕ C′′) =
Index(C′) Index(C′′) (and the even easier observation that if 24 divides n2, then 12
divides n). We will prove the first sentence in the next section, after Remark 2.5. Our
proof relies on some nontrivial facts about Theta functions of lattices, and we do not
know if there is an elementary proof. Furthermore, we expect that:

Conjecture 1.4 The index of any self-dual ternary code is divisible by 24, even if the
length is merely divisibly by 12. For all lengths c = 12k, there exists a self-dual ternary
code of index 24.
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Conjecture 1.4 follows from the deeper Conjecture 5.5, which, together with
Proposition 2.4, implies that Index(C) is divisibly by 8 whenever C is a self-dual
ternary code of length c = 12 mod 24.
Example 1.5 Up to signed coordinate permutations, there are only three self-dual
ternary codes of length c = 12:
(1) First is the direct sum of three copies of the unique code of length 4. It can be

generated by (i.e., spanned by the rows of) the matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 1 1 0 0 0 0
0 1 0 0 0 0 1 −1 0 0 0 0
0 0 1 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 1 −1 0 0
0 0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

This code has no maximal codewords, hence index 0.
(2) Second, there is a self-dual ternary code of length c = 12 with eight even and eight

odd maximal codewords, hence index 0. A generating matrix is:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 1 0 −1 1 −1 1
0 1 0 0 0 0 1 0 1 −1 1 −1
0 0 1 0 0 0 0 1 −1 1 1 −1
0 0 0 1 0 0 0 1 1 −1 −1 1
0 0 0 0 1 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3) Finally, there is the Ternary Golay code from [Gol49], which has 24 even and no
odd maximal codewords, hence index 24. It can be generated by the matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 −1 0 1 −1 −1 1
0 0 1 0 0 0 −1 1 0 1 −1 −1
0 0 0 1 0 0 −1 −1 1 0 1 −1
0 0 0 0 1 0 −1 −1 −1 1 0 1
0 0 0 0 0 1 −1 1 −1 −1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

In particular, Conjecture 1.4 holds for c = 12.
Example 1.6 For c = 24, we may confirm Conjecture 1.4 by appealing to the classi-
fication of self-dual ternary codes from [HM09]. The first step of their classification
is to convert each self-dual ternary code C of length c into an odd unimodular lattice
Λ(C) of rank c; we will review that construction in the next section. Odd unimodular
lattices of rank ≤ 24 were classified by Borcherds and listed in [CS99, Chapter 17].
As we will explain during the proof of Theorem 1.3, when c = 24 the index of C is
precisely the difference between the numbers of roots of the two “even neighbors” of
Λ(C). Inspecting the list, we find that of the 338 inequivalent self-dual ternary codes
of length 24, 30 have index 24.

Conjecture 1.4 is further supported by the following experimental evidence.
Together with Noam D. Elkies, we randomly generated self-dual codes and calculated
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their indexes. (The runtime of this calculation grows exponentially with the length
c.) A random sampling of hundreds of self-dual ternary codes of length c = 36 and
of dozens of self-dual ternary codes of lengths c = 48 and c = 60 always produced
codes of index divisible by 24. Codes of index precisely 24 appeared fairly often. A
coarse estimate predicts that the expected value of Index(C)2 grows slowly with c,
contributing to the difficulty of finding codes of index 24 by random search, but the
total number of codes grows very quickly with c, so the existence of a code of index
24 remains likely.

2 From ternary codes to SCFTs

Suppose C ⊂ Fc
3 is a ternary code of length c such that C ⊂ C⊥. One can construct an

integral lattice Λ(C) from C as follows. Consider the lattice
√

3Z, i.e., the rank-1 lattice
with basis vector of square-length 3, and its dual lattice (

√
3Z)∗ = 1√

3Z. Choose an
identification of (the additive group of)F3 with the quotient group 1√

3Z/
√

3Z. (There
are two such identifications, and the choice does not affect the final answer.) Then
Λ(C) is defined by the following pullback:

C

Λ(C)

Fc
3

1√
3Z

c

⌟

This lattice is integral because C ⊂ C⊥. It is unimodular exactly when C is self-dual.
Note that one automatically has an injection

√
3Zc ↪ Λ(C). Following [HM09], we

will call a rank-c lattice Λ equipped with an injection
√

3Zc ↪ Λ three-framed. Each
three-framed lattice arises from a unique ternary code C = Λ/

√
3Zc .

There is a well-known construction that produces from each integral lattice Λ of
rank c a vertex operator algebra VΛ of central charge c. For the definition of “vertex
operator algebra” and for details of the construction, we refer the reader to the standard
textbooks [Kac98, FBZ04]. In outline, the construction of VΛ goes as follows. One
begins with a “free boson” VOA Bos(h) built functorially from the vector space h =
L ⊗Z C. The irreducible vertex modules for Bos(h) are naturally indexed by the points
in h: given λ ∈ h, there is a module Mλ generated over Bos(h) by an element Γλ ∈ Mλ ;
as a vector space, Mλ ≅ Bos(h) ⊗ CΓλ , where CΓλ is the one-dimensional space with
basis Γλ . The element Γλ has conformal dimension λ2/2. Finally, we set

VΛ = ⊕
λ∈Λ

(−1)λ2
Mλ ,

where the notation “ (−1)λ2
” denotes that the summands corresponding to vectors of

odd square-length are considered to be fermionic, and those of even square-length
are bosonic. If Λ is an integral lattice, then VΛ is naturally a VOA [FLM88, Theorem
8.10.2]. It is holomorphic (i.e., it has only one irreducible module) exactly when Λ is
unimodular.
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The above description of VΛ can be made quite explicit when Λ = Λ(C) for a
ternary code C ⊂ C⊥ ⊂ Fc

3. Consider first the case c = 1 and C = {0}, so that Λ(C) =√
3Z. Then V√3Z is generated by a “free boson at level 3” α together with fermionic

operators Γ±√3. The operator product expansions are

α(z) α(w) ∼ 3
(z − w)2 ,

α(z) Γ±√3(w) ∼
±3Γ±√3(w)

z − w
,

Γ±√3(z) Γ±√3(w) ∼ 0 (same sign),

Γ+√3(z) Γ−√3(w) ∼ 1
(z − w)3 + α(w)

(z − w)2 +
1
2 ∶α2(w)∶ + 1

2 ∂α(w)
z − w

.

The subalgebra Bos(
√

3Z ⊗ C) is generated by α alone. For general λ = ±n
√

3 ∈
√

3Z
with n ≥ 0, we have Γ±n

√
3 = ∶Γn

±
√

3∶.
When c is arbitrary and C = {0}, we set

V√3Zc = V⊗c√
3Z .

The irreps of V⊗c√
3Z

are naturally indexed by (
√

3Zc)∗/
√

3Zc = Fc
3 [Don93], and for

arbitrary C ⊂ Fc
3 we set

VΛ(C) = ⊕
w∈C

(V√3Zc -module indexed by w) .

The VOA V√3Z is also called “U(1) at level 3.” It is well known to be an N = 2
minimal model: the boson α generates the R-symmetry, and the polarized supersym-
metry generators are Γ±√3. It follows that VΛ(C) ⊃ V⊗c√

3Z
has the structure of N = 2

supersymmetric VOA. We will focus on the induced N = 1 structure. The generator
of N = 1 supersymmetry on V√3Z is G = Γ+√3 + Γ−√3. Letting G i = 1 ⊗ ⋅ ⋅ ⋅ ⊗ 1 ⊗ G ⊗
1 ⊗ ⋅ ⋅ ⋅ ⊗ 1 ∈ V⊗c√

3Z
, with the G in the ith spot, the generator of N = 1 supersymmetry

on VΛ(C) is ∑c
i=1 G i . Based on the lattice notion from [HM09], we will use the term

three-framed VOA for a VOA V of central charge c ∈ Z equipped with an injection
V⊗c√

3Z
↪ V . A three-framed VOA V is necessarily of the form VΛ(C) for some ternary

code C ⊂ C⊥.

Example 2.1 Consider the non-self-dual code C3 of length 3 spanned by the vector
(1, 1, 1) ∈ F3

3. The corresponding lattice is Λ(C3) ≅ A2 × Z, where A2 denotes the
root lattice of sl(3). Indeed, Λ(C3) ⊂ 1√

3Z
3 has two vectors of length 1, namely

± 1√
3 (1, 1, 1); orthogonal to these are six vectors of square-length 2, namely the cyclic

permutations of ± 1√
3 (1, 1, −2). We therefore find an isomorphism VΛ(C3) ≅ VA2 × VZ.

The famous “boson-fermion correspondence” identifies the lattice VOA VZ with the
VOA Fer(2) of two Majorana fermions, and so VΛ(C3) ≅ VA2 × Fer(2).

For any rank-r integral lattice Λ, the VOA VΛ ⊗ Fer(r) can be equipped with an
N = 1 supersymmetry that simply exchanges the r free fermions generating Fer(r)
with the r free bosons generating Bos(r) = Bos(Λ ⊗ C) ⊂ VΛ [HK07]. In the basis,
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we are working in, the N = 1 supersymmetry on VΛ(C3) ≅ VA2 × Fer(2) is not this
one. However, we claim that there is an automorphism of VΛ(C3) intertwining the
two N = 1 structures. In general, to write a rational VOA V of central charge c ∈ Z
as a lattice VOA, one must choose a subalgebra Bos(c) ⊂ V , i.e., one must choose
c many commuting fields of conformal weight 1; the lattice is then the lattice of
weights of the action of Bos(c) on V [LX95]. (The choice of Bos(c) ⊂ V is analo-
gous to a choice of Cartan subalgebra of a semisimple Lie algebra.) Starting with
VΛ(C3) ≅ VA2 ⊗ VZ, we choose to keep the free boson pointing in the (1, 1, 1)-direction,
but to replace the other two bosons (spanning the (A2 ⊗ C)-plane inside Λ(C3) ⊗
C) with X = Γ 1√

3
(1,1,−2) + Γ 1√

3
(1,−2,1) + Γ 1√

3
(−2,1,1) and Y = Γ 1√

3
(−1,−1,2) + Γ 1√

3
(−1,2,−1) +

Γ 1√
3
(2,−1,−1). One may check that X and Y commute, and that the supersymmetry

G = Γ(√3,0,0) + ⋅ ⋅ ⋅ + Γ(0,0,−
√

3) exchanges X and Y with the free fermion fields
Γ 1√

3
(1,1,1) and Γ− 1√

3
(1,1,1) respectively. Thus for this new Cartan we find the N = 1

structure on VA2 ⊗ Fer(2) of [HK07].

Example 2.2 Let C4 ⊂ F4
3 denote the unique self-dual ternary code of length 4, which

has generator matrix

( 1 0 1 1
0 1 1 −1 ) .

Then Λ(C4) ≅ Z4, and so VΛ(C4) ≅ Fer(8) by the boson-fermion correspondence.
N = 1 supersymmetry structures on Fer(n) were classified in [GO85], and correspond
to n-dimensional semisimple Lie algebras. There is a unique semisimple Lie algebra of
dimension eight, namely su(3), and so we must have an isomorphism of N = 1 VOAs
VΛ(C4) ≅ Fer(su(3)).

Example 2.3 Let us work out the VOAs corresponding to the three self-dual ternary
codes of length 12 from Example 1.5.
(1) The first code from Example 1.5 was C⊕3

4 , where C4 is the unique self-dual
ternary code of length 4 from Example 2.2. TheN = 1 structure on VΛ(C4⊕C4⊕C4) ≅
V⊗3

Λ(C4) ≅ Fer(8)⊗3 ≅ Fer(24) is the one coming from the Lie algebra su(3)3.
(2) Let C3 denote the nonself-dual code of length 3 from Example 2.1, and let C denote

the second self-dual ternary code C in Example 1.5. Then C is an extension of
C⊕4

3 , and so VΛ(C) is an extension of V⊗4
Λ(C3) = VA4

2
⊗ Fer(8). The lattice A4

2 has
only one unimodular extension, namely the E8 lattice. After changing bases as in
Example 2.1, we find an isomorphism of N = 1 SCFTs between VΛ(C) and VE8 ⊗
Fer(8) made into an N = 1 SCFT as in [HK07].

(3) Finally, consider the Ternary Golay code, listed third in Example 1.5. The lattice
Λ(Golay) turns out to be isomorphic to the D+12 lattice, i.e., the D12 root lattice
together with its coset containing the highest weight of the (positive) half-spin
representation of Spin(24). (Indeed, Λ[Golay] contains no vectors of length 1,
and D+12 is the unique unimodular lattice of rank 12 with this property.) The
corresponding VOA VD+12

is isomorphic to the Duncan’s “supermoonshine” VOA
V f ♮ from [Dun07]. One of the main results of that paper is that V f ♮ carries a
unique-up-to-isomorphism N = 1 supersymmetry structure (and is the unique
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c = 12 and N = 1 SCFT with no fields of conformal dimension 1/2). See also
Example 3.2.

Suppose V is a holomorphic N = 1 VOA of central charge c, and let VR denote its
Ramond sector, i.e., the Hilbert space assigned by V to the circle with nonbound-
ing spin structure. Consider the Ramond–Ramond partition function ZRR(V) =
trVR (−1) f qL0−c/24, i.e., the partition function of V evaluated on elliptic curves with
spin structure induced from the Lie group framing of the elliptic curve. If V were
merely a nonsupersymmetric holomorphic VOA, then ZRR(V) would be merely a
(level one, meromorphic) modular function in q. But the supersymmetry generator
determines an odd endomorphism of VR whose square is L0 − c

24 , and so all contri-
butions to ZRR(V) with L0 − c

24 ≠ 0 cancel. Thus ZRR(V) ∈ Z merely counts (with
signs) the Ramond-sector ground states, i.e., the Ramond-sector states of conformal
dimension c/24. This count is called the (supersymmetric) index of V.

When V = VΛ for an odd self-dual lattice Λ, the Ramond sector (VΛ)R can
be constructed analogously to the construction of VΛ above. Indeed, call a vector
χ ∈ Λ characteristic if ⟨χ, λ⟩ = ⟨λ, λ⟩ mod 2 for all λ ∈ Λ. It is easy to see, using
unimodularity, that a characteristic vector exists. The coset Λ + χ

2 of Λ does not
depend on the choice of characteristic vector, and VR is the sum of Bos(h)-modules
indexed by vectors in Λ + χ

2 . Actually, “the” Ramond sector of a holomorphic VOA is
well-defined only up to an overall fermion parity. The choice of characteristic vector
χ determines this parity operator: one sets

(VΛ)R = ⊕
λ∈Λ

(−1)⟨χ,λ⟩Mλ+ χ
2

.

As in the construction of VΛ from the beginning of this section, “(−1)⟨χ,λ⟩” indicates
the fermion parity to use for the Bos(h)-module Mλ+ χ

2
.

Proposition 2.4 Suppose C is a self-dual ternary code. Then ZRR(VΛ(C)) = Index(C).

Proof By the remarks above, ZRR(VΛ(C)) merely counts states in (VΛ(C))R of
conformal dimension c/24: the contributions from all other states cancel. The states
of minimal conformal dimension are the Γλ+ χ

2
where 1

2 (λ + χ
2 )2 is as small as pos-

sible. Since
√

3Zc ⊂ Λ(C) ⊂ 1√
3Z

c , as our characteristic vector we may take χ =
√

3(1, 1, . . . , 1). Then λ + χ
2 ∈ 1√

3 (Z + 1
2 )c , and so 1

2 (λ + χ
2 )2 is bounded below by

1
2 ( 1√

3 ( 1
2 , 1

2 , . . . , 1
2 ))2 = c/24, with equality only when λ + χ

2 ∈ 1√
3 {± 1

2 }c . This, in turn,
forces λ + χ

2 = 1
2
√

3 ι(w), where w ∈ C is a maximal codeword and ι ∶ F3 = {−1, 0, 1} ↪
Z is the canonical injection. So Ramond-sector ground states of VΛ(C) are in natural
bijection with maximal codewords in C, and their signed count is precisely the index
of C. ∎

Remark 2.5 One can alternately prove Proposition 2.4 by formula. (The following
argument was pointed out to us by Noam D. Elkies.) Let η(q) = q1/24 ∏∞n=1(1 − qn)
denote Dedekind’s eta function. For an arbitrary odd unimodular lattice Λ, it follows
easily from the construction of the Ramond sector of VΛ indicated above that
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ZRR(VΛ) = η(q)−c ∑
λ∈Λ

(−1)⟨λ , χ⟩q
1
2 (λ+

χ
2 )

2
.

Set Λ = Λ(C), choose the characteristic vector χ =
√

3(1, 1, . . . , 1), and let ι ∶ F3 ≅
{−1, 0, 1} ↪ Z denote the natural injection. Then

Λ(C) = {
√

3v + 1√
3

ι(w) s.t. v ∈ Zc and w ∈ C} .

Expand each vector v ∈ Zc and each codeword w ∈ C ⊂ Fc
3 in coordinates: v =

(v1 , . . . , vc), w = (w1 , . . . , wc). Note that ⟨
√

3v + 1√
3 ι(w), χ⟩ = ∑c

i=1 (v i + ι(w i )) mod
2. Then

∑
λ∈Λ(C)

(−1)⟨λ , χ⟩q
1
2 (λ+

χ
2 )

2

= ∑
w∈C

∑
v∈Zc

(−1)∑ v i+∑ ι(w i)q
3
2 ∑(v i+ 1

2+
1
3 ι(w i))2

= ∑
w∈C

c
∏
i=1

∑
n∈Z

(−1)n+ι(w i)q
3
2 (n+ 1

2+
1
3 ι(w i))2

= CWEC ( ∑
n∈Z

(−1)n q
3
2 (n+ 1

2 )
2
, ∑

n∈Z
(−1)n+1q

3
2 (n+ 5

6 )
2
, ∑

n∈Z
(−1)n−1q

3
2 (n+ 1

6 )
2
) .

Here, CWEC is the complete weight enumerator mentioned in Remark 1.2. Similar
formulas present the ordinary Theta function of Λ(C) in terms of CWEC ; see for
example the last section of [Elk00].

But

∑
n∈Z

(−1)n q
3
2 (n+ 1

2 )
2

= 0

because the nth summand cancels with the (1 − n)th summand. Furthermore, the
Euler identity implies

∑
n∈Z

(−1)n+1q
3
2 (n+ 5

6 )
2

= η(q), ∑
n∈Z

(−1)n−1q
3
2 (n+ 1

6 )
2

= −η(q).

All together, we find

ZRR(VΛ(C)) = η(q)−c CWEC (0, η(q), −η(q)) = CWEC (0, 1, −1) = Index(C)

since CWEC is homogeneous of degree c.

We may now prove Theorem 1.3, which asserts that if C is a self-dual ternary code
of length divisible by 24, then Index(C) is divisible by 24.

Proof of Theorem 1.3 Let Λ be an odd unimodular lattice of rank c and, as in the
proof of Proposition 2.4, choose a characteristic vector χ ∈ Λ. Decompose Λ = Λev ⊔
Λodd, where Λev, resp. Λodd, is the set of vectors in Λ of even, resp. odd, square-length.
Consider the sets

Λ+ = Λev ⊔ (Λev + χ
2

) ,
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Λ− = Λev ⊔ (Λodd + χ
2

) .

When c is divisible by 4, Λ± are unimodular lattices, called the neighbors of Λ. They
are even lattices when c is divisible by 8. (A different choice of characteristic vector
might exchange Λ+ ↔ Λ−.) Recall that the Theta function of a lattice Λ is

ΘL(q) = ∑
λ∈Λ

qλ2/2 .

Then, when c is divisible by 4, we find

ZRR(VΛ) = η−c(ΘΛ+ − ΘΛ−).

Suppose now that C is a self-dual ternary code of length c = 24k, and take Λ =
Λ(C). Since Λ± is even unimodular of rank 24k, ΘΛ± is an integral modular form of
weight 12k, and so has an expansion of the form

ΘΛ± = a±0 Δk + a±1 Δk−1c3
4 + ⋅ ⋅ ⋅ + a±k c3k

4 ,

where c4 denotes the weight-4 Eisenstein series and Δ = η24 is the discriminant. Since
Index(C) = Δ−k(ΘΛ+ − ΘΛ−) is a supersymmetric index, it is an integer, and so a+i =
a−i for i > 0 and the index is Index(C) = a+0 − a−0 . But by [Bor95, Theorem 12.1] (see
also [Hop02, Theorem 5.10]), a±0 is divisible by 24. ∎

3 Automorphisms of 3-framed SCFTs

The standard definition of automorphism of a self-dual ternary code C ⊂ Fc
3 is the fol-

lowing. Consider the group 2c ∶Sc . (The notation follows that of the ATLAS [CCN+85].
In particular, the colon denotes a semidirect product, pn denotes an elementary
abelian group of that order, and Sn denotes the symmetric group.) It acts by signed
coordinate permutations on Fc

3, and

Aut(C) = {g ∈ 2c ∶Sc s.t. g(C) = C as a set}.

The signed coordinate permutation action of 2c ∶Sc on F3 lifts to actions on
√

3Zc and
on 1√

3Z
c , and so Aut(C) acts naturally on the lattice Λ(C) built from C.

In general, the automorphism group Aut(Λ) of a lattice Λ does not act on the
corresponding vertex algebra VΛ . Indeed, the modules Mλ , or equivalently their
generators Γλ , are defined only up to phase, and so the action of Aut(Λ) suffers from a
phase ambiguity. Let Λ̂ = hom(Λ, U(1)) denote the Pontryagin dual torus to Λ. Then
Aut(VΛ) contains a subgroup of shape Λ̂.Aut(Λ), where the dot denotes an extension
which might or might not split. This subgroup, in turn, contains a subgroup of shape
Λ̂[2].Aut(Λ), where Λ̂[2] = hom(Λ, 2) is the two-torsion subgroup of Λ̂; if Λ has
rank c, then Λ̂[2] ≅ 2c . (The subgroup Λ̂[2].Aut(Λ) ⊂ Λ̂.Aut(Λ) is not canonical, but
it is canonical up to conjugation by an element of Λ̂. Said another way, the phase
ambiguity in defining Γλ can be resolved to a sign ambiguity. That sign ambiguity
cannot be resolved in general.) The subgroups Λ̂[2].Aut(Λ) ⊂ Λ̂.Aut(Λ) ⊂ Aut(VΛ)
were first studied in [Lep85], and the complete calculation of Aut(VΛ) is due to
[DN99]. These results are nicely surveyed in [Möl16, Section 5.3].
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In spite of the fact that, in general, the extension Λ̂[2].Aut(Λ) ⊂ Aut(VΛ) might
not split, we claim:
Theorem 3.1 Let C ⊂ Fc

3 be a self-dual ternary code of length c. Then Aut(C) ⊂
Aut(Λ(C)) acts on VΛ(C) — the extension Λ̂(C)[2].Aut(C) splits. The group
AutN=1(VΛ(C)) of automorphisms of VΛ(C) preserving the N = 1 supersymmetry
contains a subgroup of shape C∗∶Aut(C), where C∗ = Fc

3/C ≅ 3c/2. The group
AutN=2(VΛ(C)) of automorphisms preserving the N = 2 structure contains a subgroup
of shape C∗∶(Aut(C) ∩ Sc).
Proof We first observe that the signed permutation action of 2c ∶Sc on

√
3Zc lifts

to an action on V√3Zc . Indeed, V√3Zc = V⊗c√
3Z

carries a permutation action by Sc ,
and the reflections 2c also act since the automorphism n

√
3 ↔ −n

√
3 of

√
3Z lifts

to an order-2 automorphism Γ+√3 ↔ Γ−√3 of V√3Z. Note further that this automor-
phism preserves the N = 1 supersymmetry generator G = Γ+√3 + Γ−√3 on V√3Z, and
so 2c ∶Sc ⊂ AutN=1(V√3Zc ). The reflections Γ+√3 ↔ Γ−√3 do not preserve the N = 2
structure, but the permutations do: Sc ⊂ AutN=2(V√3Zc ).

The action of the group Λ̂(C)[2].Aut(C) on VΛ(C) preserves (as a set) the subal-
gebra V√3Zc , and so we have a map

Λ̂(C)[2].Aut(C) →
√̂

3Zc[2].(2c ∶Sc)

extending the map Λ̂(C)[2] →
√̂

3Zc[2] (dual to the inclusion
√

3Zc ↪ Λ(C))
and covering the map Aut(C) ↪ 2c ∶Sc . But the remarks in the previous paragraph
imply that the latter extension

√̂
3Zc[2].(2c ∶Sc) splits. Since

√
3Zc has odd index

in Λ(C), the map Λ̂(C)[2] →
√̂

3Zc[2] is an isomorphism. Thus the extension
Λ̂(C)[2].Aut(C) splits. The subgroup Aut(C) manifestly preserves the N = 1 struc-
ture, and Aut(C) ∩ Sc preserves the N = 2 structure.

Not all of the torus Λ̂(C) ⊂ Aut(VΛ(C)) preserves the supersymmetry, but the
subgroup that acts trivially on the subalgebra V√3Zc ⊂ VΛ(C) does. This subgroup is
the kernel of the map Λ̂(C) →

√̂
3Zc , and so is Pontryagin dual to the cokernel of the

inclusion
√

3Zc ↪ Λ(C). But there is a canonical isomorphism Λ(C)/
√

3Zc ≅ C, and
its Pontryagin dual is canonically isomorphic to C∗. ∎
Example 3.2 Let c = 12 and consider the Ternary Golay code mentioned in Exam-
ple 2.3, so that VΛ(Golay) ≅ V f ♮ is the “supermoonshine” module of [Dun07].
According to [Dun07], AutN=1(V f ♮) ≅ Co1, Conway’s largest simple sporadic group.
Since Aut(Golay) ≅ 2M12, our construction makes manifest the maximal subgroup
36∶2M12 ⊂ Co1, which contains the three-Sylow subgroup. For comparison, the con-
struction from [Dun07] makes manifest the two-Sylow-containing maximal subgroup
of shape 211∶M24. (The groups Mn are those of Mathieu. The “ 2” in 2M12 denotes the
Schur cover, called 2.M12 in [CCN+85].)

The Ternary Golay code is unique up to signed permutations, but it is not unique
if one uses only unsigned coordinate permutations, and different choices produce
different N = 2 structures. By adjusting the signs of the coordinates, one may find
a copy of the Ternary Golay code which contains the all- 1s word (1, 1, . . . , 1); the
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version given in Example 1.5 has this property. For this choice of Ternary Golay
code, Aut(Golay) ∩ Sc ≅ M11, and so for this N = 2 structure, AutN=2(V f ♮) ⊃ 36∶M11.
According to [CDD+15], a choice of N = 2 structure on V f ♮ corresponds to a choice
of oriented two-plane inside the real span of the Leech lattice, and its group of
automorphisms is the subgroup of Co1 whose lift to Co0 = 2Co1 (the Schur cover
of Co1) preserves this two-plane. There is only one two-plane, up to isomorphism,
whose automorphism group contains a group of shape 36∶M11. In the notation of
[CS99, Chapter 10], it is the two-plane spanned by a simplex of “type 333,” and its
full automorphism group is ∗333 ≅ 36∶M11.

4 Orbifolds of 3-framed SCFTs

Let V be a holomorphic, possibly fermionic, VOA and G ⊂ Aut(V) a finite group of
automorphisms of V. A typical question in conformal field theory is to “gauge” the
action of G on V, to produce a new holomorphic VOA V � G—in the language of
VOAs, the result of such a gauging procedure is the called “twisted orbifold” of V
by G. One expects on physical grounds that there might be choices involved when
gauging a symmetry group, and that the problem might be obstructed. Specifically,
one expects to encounter an ’t Hooft anomaly living in some cohomology group of G
such that trivializations of the anomaly correspond to choices of V � G. (In particular,
if the anomaly is trivializable, then there are as many choices of orbifold V � G as there
are elements in the cohomology group of one lower degree.) The bosonic case is well
studied in the VOA literature: the ’t Hooft anomaly is an ordinary cohomology class
α ∈ H3(G;C×) [DVVV89, Kir02, Müg10], and is known to exist when G is solvable
[CM16] and expected to exist in general.

We will need the fermionic generalization, which has been only partially explored
in the VOA literature. The main complication is that the anomalies do not live in
ordinary C×-valued cohomology, but rather in a generalized cohomology theory
called “supercohomology.” There are two versions of this cohomology theory, a
“restricted” version rSH● introduced in the condensed matter literature in [GW14]
and an “extended” version SH● introduced in [WG18]. (These objects have been
introduced earlier in the mathematics literature. For example, rSH● is isomorphic to
the cohomology theory called “E-theory” in [Fre08].)

These cohomology theories can be constructed in various ways. The quickest
description is the following.

First, consider the symmetric monoidal category SVecC of complex super vector
spaces. It has a symmetric monoidal subcategory SVec×C of ⊗-invertible objects and
morphisms: up to isomorphism, SVec×C has two objects (the bosonic and fermionic
lines C0∣1 and C1∣0); all morphisms in SVec×C are isomorphisms, and the automor-
phism group of any object is C×. Any category C has a classifying space ∣C∣ built as a
simplicial complex: each object in C provides a point in ∣C∣; each one-morphism in
C provides a one-simplex in ∣C∣; each composable pair X

f→ Y
g→ Z provides a two-

simplex with sides f, g, and g f ; and so on. This construction is simplest when starting
with a groupoid like SVec×C, as one can immediately read off the homotopy groups:
π0∣SVec×C∣ = {objects of SVec×C}/isomorphism, π1∣SVec×C∣ = C× for any basepoint,
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and all other homotopy groups are trivial. In other words, at the level of spaces there
is a homotopy equivalence ∣SVec×C∣ ≅ Z2 × BC× — but we will equip ∣SVec×C∣ with
more structure that does not factor as a product. Specifically, the symmetric monoidal
structure on SVecC restricts to a symmetric monoidal structure on SVec×C, and this
induces an infinite loop space structure on ∣SVec×C∣ which does not factor as a product.

The same construction can be applied to the the symmetric monoidal bicategory
SAlgC of complex super algebras and super bimodules (so that equivalences in SAlgC

are super Morita equivalences). One first restricts attention to its sub-bicategory
SAlg×C of ⊗-invertible objects and morphisms; it is a symmetric monoidal two-
groupoid. Then one constructs the classifying space ∣SAlg×C∣, which is an infinite
loop space because of the symmetric monoidal structure. Its homotopy groups are
π0∣SAlg×C∣ ≅ Z2, π1∣SAlg×C∣ ≅ Z2, and π2∣SAlg×C∣ ≅ C×.

Any infinite loop space determines a generalized cohomology theory. When start-
ing with a symmetric monoidal n-groupoid C, it is convenient to index the degrees so
that the degree-k cohomology of a point is πn−k ∣C∣; in this way, the cohomology of all
spaces is supported in nonnegative degrees. With this convention, we define:

Definition 4.1 The generalized cohomology theory rSH● of restricted supercohomol-
ogy is the cohomology theory determined by the infinite loop space ∣SVec×C∣, with
degrees indexed so that rSH0(pt) = C× and rSH1(pt) = Z2 (and the other cohomol-
ogy groups of a point vanish). Its values on a space X are:

rSH●(X) = π1 maps(X , B●∣SVec×C∣).

In this formula, the space Bk ∣SVec×C∣ is the k-fold delooping of ∣SVec×C∣, witnessing it
as an infinite loop space, with homotopy groups πk+i Bk = π i . The use of π1 is because
SVecC is a one-category.

The generalized cohomology theory SH● of extended supercohomology is the coho-
mology theory determined by the infinite loop space ∣SAlg×C∣, with degrees indexed
to that SH0(pt) = C×, SH1(pt) = Z2, and SH1(pt) = Z2 (and the other cohomology
groups of a point vanish). Its values on a space X are:

SH●(X) = π2 maps(X , B●∣SAlg×C∣).

The fibre sequences BC× → ∣SVec×C∣ → Z2 and B∣SVec×C∣ → ∣SAlg×C∣ → Z2 of infi-
nite loop spaces lead to long exact sequences

⋅ ⋅ ⋅ → H●(X;C×) → rSH●(X) → H●−1(X;Z2) → H●+1(X;C×) → . . . ,
⋅ ⋅ ⋅ → rSH●(X) → SH●(X) → H●−2(X;Z2) → rSH●+1(X) → . . .

In the first of these, the connecting map H●−1(X;Z2) → H●+1(X;C×), also called
the k-invariant of ∣SVec×C∣, is (−1)Sq2

, where Sq2 is the degree-2 Steenrod square.
This arises directly from (indeed, it encodes) the Koszul sign rules in SVecC. This
long exact sequence can be used to compute the restricted supercohomology of any
space, and, together with the general construction of [KKM67], it determines a cocycle
model of rSH● that exactly matches the cocycle model from [GW14]. The second long
exact sequence is more complicated and we do not know a complete formula for its
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connecting map; discussion of the k-invariants in SH● can be found for example in
[GJF19, Section 5.4].

Given a class in SH●(X), its image in H●−2(X;Z2) is called its Majorana layer.
Given a class in rSH●(X), its image in H●−1(X;Z2) is called its Gu–Wen layer. The
connecting maps in the above long exact sequences are stable cohomology operations,
and so vanish in very low degrees. In particular, for ● = 3, we have inclusions

H3(X;C×) ↪ rSH3(X) ↪ SH3(X).

When G is a finite group and H●(−) a cohomology theory, we will write H●gp(G)
in place of H●(BG). We will denote reduced cohomology by H̃, S̃H, etc; for instance,
S̃H●gp(G) is by definition the kernel of the restriction map SH●gp(G) → SH●gp(pt), so
that there is a canonical direct sum decomposition SH●gp(G) ≅ S̃H●gp(G) ⊕ SH●gp(pt).
(In particular, SH● and S̃H● agree except for in degrees ● ≤ 2.) Recall that a VOA is
regular if its category of admissible modules is finite semisimple.
Theorem 4.2 Let V be a holomorphic, possibly fermionic, VOA and G a finite group
acting faithfully on (the NS sector of) V. Assume that the G-fixed sub-VOA V G is regular.
Then there is a well-defined ’t Hooft anomaly α ∈ S̃H3

gp(G). Each trivialization of α
determines an orbifold VOA V � G. In particular, there are S̃H2

gp(G)-many orbifolds.
When V is bosonic, the ’t Hooft anomaly α lives in H̃3

gp(G;C×) ⊂ S̃H3
gp(G). Trivial-

izations in H̃2
gp(G;C×) ⊂ S̃H2

gp(G) give bosonic orbifolds.

Note that if G is solvable, then regularity of V G follows from the main result
of [CM16]. (That paper discusses the bosonic case, but the fermionic case follows
immediately by passing to the bosonic subalgebra of V.)
Proof The bosonic statement is the main result of [Kir02]. The proof of the
fermionic version is essentially the same, replacing everywhere the word “category”
with “supercategory”—a C-linear supercategory is a category enriched and tensored
over SVecC. Details on supercategories, as well the analytic steps to identify cate-
gorical constructions inside modular tensor (super)categories with vertex operator
(super)algebraic constructions, can be found in [CKM17]. One version of the proof
goes as follows.

For each g ∈ G, consider the supercategory Rep(V , g) of g-twisted V-modules.
It is nonempty, and regularity of V G provides a fusion product ⊗ ∶ Rep(V , g) ×
Rep(V , g′) → Rep(V , g g′). Thus the direct sum C = ⊕g∈G Rep(V , g) is a G-graded
“superfusion category.” Its neutral component Rep(V , 1) is a copy of SVecC since V
is holomorphic. The tensor product of nonzero objects in a (super) fusion category
never vanishes. (Indeed, let X , Y ∈ C be nonzero. Then idY ≠ 0 ∈ hom(Y , Y), which by
adjunction says that the coevaluation map coevY ∶ 1C → Y ⊗ Y∗ is nonzero, hence an
injection since the unit object 1C is simple. But then idX ⊗ coevY ∶ X → X ⊗ Y ⊗ Y∗ is
an injection, and so X ⊗ Y cannot vanish.) Fix g, and suppose X , Y ∈ Rep(V , g). Then
X ⊗ Y∗ ∈ Rep(V , 1) = SVecC is nonzero, and so hom(Y , X) = hom(1C , X ⊗ Y∗) is a
nonzero super vector space. It follows that for each g, Rep(V , g) has only one (up to
possibly odd isomorphism) simple object, with endomorphism algebra either C or
Cliff(1,C).
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There is a natural “Deligne” tensor product ⊠ of supercategories. Consider
the assignment g ↦ Rep(V , g). The previous paragraph shows that Rep(V , g) is
⊠-invertible, and the fusion ⊗ ∶ Rep(V , g) × Rep(V , g′) → Rep(V , g g′) turns the
assignment g ↦ Rep(V , g) into a monoidal functor

G → {⊠-invertible supercategories},

where G is considered a monoidal bicategory with only identity one- and two-
morphisms. The functor that to each superalgebra assigns its supercategory of mod-
ules provides an equivalence

SAlg×C ≃ {⊠-invertible supercategories}

of (symmetric) monoidal bicategories. All together, we have constructed a monoidal
map α ∶ G → SAlg×C, which is precisely the data of a class α ∈ SH3

gp(G). Going the
other way, a class α ∈ SH3

gp(G) determines a super fusion category SVecα[G], and the
construction is arranged to produce an equivalence ⊕g∈G Rep(V , g) ≃ SVecα[G].

Following [Kir02], we can identify Rep(V G ) with the Drinfeld center of
⊕g∈G Rep(V , g), understood of course in the super sense. Trivializations of α deter-
mine algebra objects in Rep(V G ) with certain nice properties (in particular, they are
“Lagrangian”), and hence extensions of V G to holomorphic VOAs. These extensions
are the orbifolds V � G. ∎

Example 4.3 Suppose V is a holomorphic VOA with a nonanomalous action by the
Klein-4 group G = Z2

2. We will work out all possible orbifolds of V by subgroups of G.
First, suppose that V is bosonic—what are its bosonic orbifolds? There are three

copies of Z2 ↪ G, each nonanomalous, and so we find three VOAs Wi = V �Z2.
There are also two ways to orbifold V by all of G, since H2

gp(G;C×) ≅ Z2. Anticipating
the answer, we rename V = V1, and call the two orbifolds V1 � G by the names V2 and
V3. One can form V2 from V1 in two steps. First, orbifold one of the Z2s inside G,
say the first one ⟨g⟩ ⊂ G, resulting in the VOA W1. Then W1 has a new Z2 acting on
it by changing the sign of the twist field. It also has an “old” Z2 = G/⟨g⟩ symmetry.
Actually, to define this “old” Z2 action requires the data of the trivialization of the
anomaly α: W1 has two canonical “old” Z2 actions, differing by the action of the “new”
Z2. After choosing the trivialization of α, we can build V2 by orbifolding W1 by this
old Z2 action. If we had used the other trivialization of α, hence the other “old” Z2,
we would land not at V2 but at V3. If instead we had orbifolded W1 by the “new” Z2
that changed the sign of the twist field, we would return to V1. All together we find
that our six VOAs V1 , V2 , V3 , W1 , W2 , W3 form a K3,3 graph, where the edges denote
possible Z2-orbifolds:

V1 V2 V3

W1 W2 W3
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Consider now to the situation that V = V1 is still bosonic, but allow fermionic
orbifolds. For each Z2 ⊂ G, there is a unique bosonic orbifold V �Z2, since
H2

gp(Z2;C×) = 0, but there is also a fermionic one, since S̃H2
gp(Z2) = Z2. Note that

since V is bosonic and holomorphic, its central charge, hence the central charge of all
of its orbifolds, is divisible by 8. Now suppose F is any actually-fermionic holomorphic
VOA of central charge divisible by 8—by “actually fermionic” we mean that F is not
bosonic. Then F has two bosonic neighbors, defined as the two bosonic holomorphic
VOAs containing the even subalgebra of F, or equivalently the two results of gauging
the fermion parity operator (−1) f on F. (Only when the central charge is divisible by
8 is (−1) f is nonanomalous with F � (−1) f bosonic.) These two neighbors V , W of
F are related by a (bosonic) Z2-orbifold. In this way actually-fermionic holomorphic
VOAs of central charge divisible by 8 are identified with pairs of bosonic VOAs related
by Z2 orbifold. This identification is a VOA analog of the “even neighbors” of an odd
unimodular lattice of rank divisible by 8.

Returning to our question, we find that the actually-fermionic orbifolds of V = V1
by subgroups of G = Z2

2 are in bijection with the edges of the above K3,3 graph. For
i , j ∈ {1, 2, 3}, we will let Fi j denote the fermionic VOA whose neighbors are Vi and
Wj . The orbifolds of V1 by a single Z2 ⊂ G are the Wjs and the F1 js. (There are three
Z2s, and each gives S̃H2

gp(Z2) = Z2 many orbifolds.) The remaining V2 , V3 , F2 j , F3 j
are the results of orbifolding V1 by all of G = Z2

2. To check that we have not missed
any, note that there should be precisely ∣S̃H2

gp(Z2
2)∣ = ∣H2

gp(Z2
2;C×).H1

gp(Z2
2;Z2)∣ = 8

such orbifolds.
Just as in the bosonic case, the fermionic orbifolds Fi j each come with an action of

a Klein-4 group Z2
2, which now contains the fermion parity operator (−1) f . Each of

the other Z2s provides two orbifolds, which are themselves related by a Z2-orbifold:
in the fermionic world, Z2-orbifolds always come in trios (for example, an actually-
fermionic VOA together with its even neighbors). All together, we find that the above
K3,3 graph expands to the following:

V1 V2 V3

W1 W2 W3

F11

F12

F13
F21

F22

F23
F31

F32

F33

Finally, in the case where there is no bosonic theory in sight, one finds the same
graph of possible orbifolds, with the only difference being that there is no way to
distinguish which vertices are “V,” “F,” or “ W .” This graph has a more symmetrical
description. (We thank David Treumann for helping to understand this point.) The
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vertices correspond to Lagrangian two-planes inside symplectic F4
2 (equivalently

Lagrangian algebras in Rep(V G )). The edges correspond to pairs of planes inter-
secting in a line. Every isotropic line is contained in precisely three Lagrangian
planes, hence the triangles. The symmetry group of the graph is the symplectic group
Sp(4,F2) ≅ S6.

The construction of α ∈ SH3
gp(G) in the proof of Theorem 4.2 identifies its layers

as follows. Choose, for each g ∈ G, a simple object V(g) ∈ Rep(V , g). The object
V(g) is “the” g-twisted sector—the word “the” is in quotes because V(g) is unique
only up to possibly-odd isomorphism. The Majorana layer α(1) ∈ H1

gp(G;Z2) records
whether V(g) is “ordinary” with End(V(g)) ≅ C or “Majorana” with End(V(g)) ≅
Cliff(1,C). Suppose that the Majorana layer vanishes, and let α(2) ∈ H2

gp(G;Z2)
denote the Gu–Wen layer of α. Then α(2)(g1 , g2) records whether the isomorphism
V(g1) ⊗ V(g2) ≅ V(g1 g2) is even or odd. Finally, the “ordinary cohomology” layer of
α provides the associator on C, just as in the bosonic case.

There is another description of the Majorana and Gu–Wen layers of α that is
more useful for computation. (One can show the two descriptions agree by studying
the “bosonic shadow” of the super fusion category ⊕g∈G Rep(V , g) of G-twisted V-
modules; see [BGK17].) Consider the action of g ∈ G on “the” Ramond sector VR of
V. Again the word “the” is in quotes because VR is defined only up to possibly-odd
isomorphism. In particular, the action of g on VR might be even or odd, determined
by the Majorana layer α(1)(g). Suppose that the Majorana layer vanishes, so that the
anomaly α lives in restricted supercohomology. Then G acts by even automorphisms
of VR , but the action may still be projective (since VR is determined only up to
isomorphism). The projectivity of the action is precisely the Gu–Wen layer α(2) ∈
H2

gp(G;Z2).
In this paper we care most about the case when G = Zm is a cyclic group. The

abelian group structure of extended supercohomology can be hard to understand—
formulas for it in [BGK17] require the quaternion group Q8. Restricted supercohomol-
ogy is easier. In particular, if G = Zm = ⟨g⟩ is a cyclic group of order m with generator
g, then

rSH3
gp(Zm) ≅

⎧⎪⎪⎨⎪⎪⎩

Zm , m odd,
Z2m , m even,

generated by the ’t Hooft anomaly of the action of Zm on Fer(2) in which g acts by
2π
m -rotation of the two fermions.

Suppose G = Zm = ⟨g⟩ acts on V with trivial Majorana layer. Consider the charac-
ter of g, defined as

Z1,g
N S ,N S (V) = trV (gqL0−c/24).

Since V is holomorphic, this character will have good modularity properties. In
particular, it will be a meromorphic level-m modular function, perhaps with mul-
tiplier, when m is even. When m is odd, the spin structures get rearranged by the
modular transformation T m , and so Z1,g

N S ,N S (V) will have level 2m. In both cases,
if the action were nonanomalous, the multiplier would agree with the multiplier of
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Z1,1
N S ,N S (V) = trV (qL0−c/24). By studying the 2π

m -rotation of two free fermions, one
finds that when m is odd andZm = ⟨g⟩ acts on V with anomaly α ∈ rSH3

gp(Zm) = Zm ,
then ST2m S−1 will act on Z1,g

N S ,N S(V)/Z1,1
N S ,N S(V) with eigenvalue exp(α 2πi

m ). If m
is even and Zm = ⟨g⟩ acts on V with anomaly α ∈ rSH3

gp(Zm) = Z2m , then ST m S−1

will act on Z1,g
N S ,N S (V)/Z1,1

N S ,N S (V) with eigenvalue exp(α 2πi
2m ). Thus, when G is cyclic

and the Majorana layer vanishes, the multiplier fully determines the ’t Hooft anomaly
(compare [GPRV13, Section 3]).

Example 4.4 Let Λ be a (possibly odd) unimodular lattice, and g ∈ Aut(Λ) an
automorphism of order m. Choose a lift g̃ of g to Λ̂.Aut(Λ) ⊂ Aut(VΛ). Choose
also a characteristic vector χ ∈ Λ, so that the Ramond sector is built from the states
Γλ+ χ

2
for λ ∈ Λ. Then g̃ acts on the Ramond sector by g̃(Γλ+ χ

2
) ∝ Γg(λ)+ g(χ)

2
, where

the proportionality factor has not been determined. In particular, g̃ is even or odd
depending only on the relative parity of the vectors λ + χ

2 and g(λ) + g(χ)
2 . Since χ is

characteristic, this relative parity is

⟨χ, (λ + χ
2

) − (g(λ) + g(χ)
2

)⟩

= ⟨χ, (1 − g)λ⟩ + ⟨χ, (1 − g) χ
2

⟩ = 1
2

⟨χ, (1 − g)χ⟩ mod 2.

The second equality follows from the fact that ⟨χ, gλ⟩ = (gλ)2 = λ2 = ⟨χ, λ⟩ mod 2,
for any λ ∈ Λ. In particular, ⟨χ, (1 − g)χ⟩ ∈ 2Z, and we find that the Majorana layer of
the ’t Hooft anomaly of the g̃ action vanishes if and only if ⟨χ, (1 − g)χ⟩ ∈ 4Z.

Suppose that this Majorana layer does vanish, and suppose further that g has no
(nonzero) fixed points. Then all lifts g̃ of g are conjugate. Since conjugate automor-
phisms have the same ’t Hooft anomaly, we will drop the tilde, writing g ∈ Aut(VΛ)
for any lift of g ∈ Λ. Let us assume that this lift still has order m. This is automatic when
m is odd; when m is even, it happens if and only if ⟨λ, (1 − gm/2)λ⟩ ∈ 2Z for all λ.

Since the action of g on Λ has no fixed points, the character of g is easy to compute.
Since g is a lattice automorphism, its characteristic polynomial factors as

det(g − x) = ∏
k∣m

(1 − xk)dk

for some integers dk . The corresponding formal expression ∏ kdk is the Frame shape
of g, introduced by Frame in [Fra70]. Define the corresponding eta product to be

ηg(q) = ∏
k∣m

η(qk)dk .

Then standard formulas give

Z1,g
N S ,N S = 1

ηg(q) .
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Noting that η itself has a multiplier of exp( 2πi
24 ) under the action of T, we find that

ST m S−1 (or ST2m S−1, if m is odd) acts on Z1,g
N S ,N S /Z1,1

N S ,N S with eigenvalue

exp
⎛
⎝

2πi
24 ∑

k∣m
dk

m
k

(k2 − 1)
⎞
⎠

.

It is a basic fact that if k is coprime to 6, then k2 − 1 is divisible by 24. (Conway and
Norton in [CN79] call this fact “the defining property of the number 24.”) In particular,
lattice automorphisms of order coprime to 6 always have vanishing ’t Hooft anomaly.
Assuming the Majorana layer vanishes, the ’t Hooft anomaly of an arbitrary fixed-
point-free lattice automorphism always has order dividing 24, and is determined by
the Frame shape of the automorphism: α “ =” ∑k∣m dk

m
k (k2 − 1) mod 24.

If g had fixed a sublattice Λg ⊂ Λ, then the character would have a numerator of
the form ∑λ∈Λg ϕ(λ)qλ2/2 for some phases ϕ(λ), and the lift of g would not be unique
up to conjugation. There is always a “standard” lift [Lep85], for which these phases
are trivial. In this case the ’t Hooft anomaly is again determined the the Frame shape
(provided the Majorana layer vanishes); compare [Möl16, Chapter 5]. We warn the
reader, however, that, when Λ is odd and m is even, the most natural lift might not
be the “standard” one, and encourage the interested reader to consider the case of
g = ( 0 1

1 0 )acting on the Z2 lattice.

Example 4.5 There are precisely two self-dual ternary codes of length c = 24 with
minimal Hamming weight 9 [LPS81]: the quadratic residue code Q23 and Pless’s
code P11 from [Ple69]. Letting C be either of these codes, the corresponding lattice
Λ(C) will be a rank-24 lattice whose shortest vectors have square-length 3. There is
a unique such lattice, the “odd Leech lattice” OddLeech discovered in [OP44]. The
automorphism group of OddLeech has shape 212∶M24; the codes Q23 and P11 make
visible the subgroups SL2(F23) and SL2(F11) respectively.

Each of these codes C equips VOddLeech = VΛ(C) with an N = 1 supersymme-
try. These two supersymmetries are not related by an automorphism of VOddLeech .
Indeed, since the shortest vectors in OddLeech have square-length 3, the con-
nected component of Aut(VOddLeech) is merely the dual torus ̂OddLeech, and
so the action of ̂OddLeech on VOddLeech is canonical (and not just canonical
up to isomorphism). Decompose the supersymmetry generator coming from the
self-dual ternary code C into ̂OddLeech-eigenvectors. Its “support” (i.e., those
eigenvalues appearing with nonzero coefficient in the decomposition) gener-
ates the sublattice

√
3Z24 ⊂ Λ(C) = OddLeech. Since the only automorphisms of√

3Z24 are signed coordinate permutations, the embedding
√

3Z24 ↪ OddLeech,
which was determined by the supersymmetry generator, determines C up to
isomorphism.

Consider the automorphism g ∶ λ ↦ −λ of OddLeech of order m = 2. As with all
lattices, g lifts to an order-2 automorphism of VOddLeech , unique up to conjugation. As
with all lattices built from self-dual ternary codes, we may choose the characteristic
vector χ =

√
3(1, 1, . . . , 1) ∈

√
3Z24 ⊂ Λ(C), and calculate ⟨χ, (1 − g)χ⟩ = 2χ2 = 6c =

144 ∈ 4Z. So the Majorana layer of the ’t Hooft anomaly of g vanishes. The full
anomaly may be calculated as in Example 4.4: the Frame shape of g is 1−24224,
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and ∑k∣m dk
m
k (k2 − 1) = (−12) 2

1 (12 − 1) + (24) 2
2 (22 − 1) = 72 = 0 mod 24. Thus the

action of g on VOddLeech is nonanomalous.
We claim that both orbifolds VOddLeech � (λ ↦ −λ) are isomorphic to the “beauty

and the beast” odd VOA from [DGH88], which we will call V ♯ (it is not given a
name in [DGH88]). Recall the usual construction of the Moonshine VOA V ♮ from
[FLM88]: V ♮ = VLeech � (λ ↦ −λ), where implicitly the bosonic orbifold is chosen.
One can instead choose the fermionic orbifold, with bosonic neighbors VLeech and
V ♮. That fermionic orbifold is precisely V ♯.

To explain the isomorphism VOddLeech � (λ ↦ −λ) ≅ V ♯, let us first recall some of
the standard Moonshine story from [FLM88]. The presentation V ♮ = VLeech � (λ ↦
−λ) makes visible the maximal subgroup of shape 21+24 .Co1 of the Monster group M;
to see the whole Monster group, one must make visible one further automorphism,
and this is done in [FLM88] by starting not with the Leech lattice but with the
Niemeier lattice Nie(A24

1 ) with root system A24
1 . The connected component of the

automorphism group of VNie(A24
1 ) is isomorphic to the quotient SU(2)24/212, where

the normal subgroup 212 ⊂ Center(SU(2)24) = 224 is a copy of the binary Golay code,
and in particular contains the element (−I, −I, . . . , −I), where I ∈ SU(2) is the identity
matrix. Consider the Klein-4 subgroup of SU(2)24/212 generated by the elements
g = (S , . . . , S) and h = (H, . . . , H), where S = ( 0 1

−1 0 ) and H = ( i 0
0 −i ). The orbifold

VNie(A24
1 ) � ⟨h⟩ is manifestly isomorphic to VLeech , since h is the lattice momentum

vector picking out the lattice neighborship relating Nie(A24
1 ) and Leech, whereas g

is a lift of the lattice involution λ ↦ −λ. For either trivialization of the anomaly, the
action of ⟨g⟩ on VLeech ≅ VNie(A24

1 ) � ⟨h⟩ is a lift of λ ↦ −λ. Thus, we find that, for
either trivialization, VNie(A24

1 ) � ⟨g , h⟩ ≅ VLeech � ⟨g⟩ ≅ V ♮. But g and h are conjugate
in SU(2)24/212, and this symmetry survives to V ♮, providing the extra automorphism
desired.

In terms of the bosonic K3,3 diagram from Example 4.3, we have V1 ≅ VNie(A24
1 ),

W1 ≅ W2 ≅ W3 ≅ VLeech , and V2 ≅ V3 ≅ V ♮. From this we can fill in the fermionic
theories: F1 j ≅ VOddLeech for all j, and F2 j ≅ F3 j ≅ V ♯. Identifying F11 = VOddLeech with
the fermionic orbifold VNie(A24

1 ) � ⟨h⟩, we find that the other Z2 actions on F11—
the groups ⟨g⟩ and ⟨gh⟩—both lift the lattice involution λ ↦ −λ. Inspecting the
fermionic diagram from Example 4.3, we find that the possible orbifolds VOddLeech �
(λ ↦ −λ) are the theories called Fi j with i , j ∈ {2, 3}, which are all isomorphic
to V ♯.

The main result of the paper [DGH88] is that V ♯ admits N = 1 supersymmetry.
Their proof is nonconstructive (and we were unable to follow certain important steps
in it). By instead realizing V ♯ as VΛ(C) � (λ ↦ −λ) for a self-dual ternary code C, we
have made the supersymmetry explicit. Indeed, the two different codes P11 and Q23
provide, a priori, two different N = 1 supersymmetries to V ♯. We do not know if they
are in fact isomorphic.

5 Topological modular forms

TMF are a fairly mysterious object from stable homotopy theory that refines
the usual ring of modular forms (see e.g., [Hop02, DFHH14]). TMF is a “chro-
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matic height two” analog of oriented K-theory: “chromatic height” in stable homo-
topy theory is roughly the same as “category number” and so one expects that,
whereas the K-theory of a manifold measures its one-category of vector bundles,
the TMF of that manifold measures some two-category. TMF owes its origins to
Witten’s work connecting supersymmetric string theory to the K-theory of loop
spaces [Wit87, Wit88]; see also Segal’s early survey [Seg88], in which he suggests
a model of TMF in terms of his then-recent axiomatization of conformal field
theory. Building on those ideas, Stolz and Teichner proposed a conjectural geometric
description of TMF [ST04, ST11]. Translated into more physical language, their
description is:

Conjecture 5.1 (Stolz–Teichner) Let X be a manifold. The degree-n TMF of X is

TMFn(X) = π0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

N = (0, 1) boundary conditions for the nth power
of the c = 1

2 invertible fermionic (2+1)d TFT
which couple to a background scalar field valued in X

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

By “the nth power of the c = 1
2 invertible fermionic (2+1)d TFT,” we mean the

invertible topological order admitting n antichiral Majorana fermions as a bound-
ary condition. Take any N = (0, 1) boundary condition for this bulk theory. Up
to minor ambiguities (see Remark 5.3), we can identify the boundary condition
with an N = (0, 1) SQFT with gravitational anomaly n/2. Taking X to be a point,
we have:

Conjecture 5.2 (Stolz–Teichner, simplified)

πnTMF = π0{N = (0, 1) SQFTs with gravitational anomaly n/2}.

Remark 5.3 Recall that for an SCFT, the gravitational anomaly is cR − cL ; the notion
of “gravitational anomaly” makes sense even when the SQFT is not conformal. The
relationship between gravitational anomalies and boundary theories is explored,
among other places, in [FT14].

Conjecture 5.2 should not be taken too literally because of a minor sign ambiguity
stemming, ultimately, from the choice of fermion parity of “the” Ramond sector.
This leads to a sign ambiguity in defining the Ramond–Ramond partition function.
Changing that sign corresponds to stacking the theory with an invertible fermionic
(1+1)d TFT.

There is an alternate way to relate the Conjectures. By employing the reference
Majorana fermions boundary condition, one can map the N = (0, 1) boundary condi-
tion to an N = (0, 1) SQFT with no gravitational anomaly and a decoupled subsector
consisting of n left-moving Majorana fermions, acted upon trivially by the N = (0, 1)
supercharge. Conversely, one can rephrase Conjecture 5.1 to avoid any mention of
(2+1)d TFTs by instead using the moduli space of nonanomalous SQFTs equipped with
such a subsector. The coset of the subsector is the gravitationally-anomalous SQFT in
Conjecture 5.2.

A basic property of topological modular forms is that there is a map from TMF
to ordinary cohomology with coefficients in the ring MF of ordinary integral mod-
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ular forms. (The homotopy theorists’ convention is to think of MF as a graded-
commutative ring concentrated entirely in even degrees, so that weight-c modular
forms are in homotopical degree n = 2c.) When the primes 2 and 3 are inverted, this
map TMF → MF is an isomorphism, but it has interesting kernel and cokernel at the
primes 2 and 3. The map has been computed on homotopy. In particular, the image of
πnTMF → MFn/2 is fully understood [Hop02, Proposition 4.6]. It is not a surjection.
Its most interesting feature is that mΔk is in the image of πnTMF → MFn/2 when and
only when 24 divides mk.

In terms of Conjecture 5.2, the map TMF → MF should take an N = (0, 1) SQFT
V to its Ramond-Ramond partition function ZRR(V), multiplied by ηn . The super-
symmetry plays two roles: it protects ZRR(V) to be invariant under deformations, and
in particular under RG flow; it makes ZRR(V), which for a general QFT would be a
function of both q and q̄, into a function of q alone. As a special case, Conjecture 5.1
predicts:

Conjecture 5.4 Each holomorphic VOA V of central charge c equipped with N = 1
supersymmetry determines a class in π2cTMF. Its image in MF is ZRR(V)η2c , where
ZRR(V) ∈ Z denotes the supersymmetric index of V.

Conjecture 5.5 In particular, if V is a holomorphic N = 1 SCFT of central charge c =
12k, then ZRR(V) is divisible by 24

gcd(k ,24) .

One may prove this Conjecture when k ≤ 2 by inspecting the classification of
holomorphic VOAs of small central charge:

Proof of Conjecture 5.5 for k ≤ 2 When k = 1, the only holomorphic N = 1 VOA
of central charge c = 12 and nonzero index is Duncan’s supermoonshine SCFT V f ♮

[Dun07]; see Examples 2.3 and 3.2. Its index is 24.
When k = 2, Conjecture 5.5 holds even when there is no supersymmetry. Indeed,

suppose V is an actually-fermionic holomorphic VOA of central charge c = 24. Its
bosonic neighbors V± are the two results of gauging the fermion parity operator (−1) f

on V. This symmetry is nonanomalous, and the results of gauging it are bosonic,
because the central charge is divisible by 8. (This generalizes the “even neighbors” of
an odd lattice; c.f. [CS99, Chapter 17].) Just as in the proof of Theorem 1.3, we find
ZRR(V) = Z(V+) − Z(V−), where Z(V±) denotes the ordinary partition function of
V±. Being holmorphic VOAs of central charge c = 24, these V± are highly constrained
[Sch93]. In particular, their partition functions are of the form Z(V±) = J + dim(V±1 )
where J(q) = q−1 + O(q) = c3

4Δ−1 − 744 is the normalized SL(2,Z) hauptmodule and
dim(V±1 ) are the dimensions of the horizontal Lie algebras in V±. By inspecting
Schellekens’ list [Sch93], we find that dim(V±1 ), hence ZRR , is always divisible
by 12. ∎

The converse of Conjecture 5.5 is our Main Question, restated here:

Main Question For each k, does there exist a holomorphic N = 1 VOA with central
charge c = 12k and index 24

gcd(k ,24) ?

Our ternary code methods answer the Main Question in the affirmative for k ≤ 5:
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Theorem 5.6 Let C be a self-dual ternary code of length c = 12k and index 24 which
admits an automorphism g ∈ Aut(C) ⊂ 2c ∶Sc of order m = gcd(24, k). Suppose that:

(1) If m is even, then gm/2 = −1 ∈ Aut(C) is the central element.
(2) If m is divisible by 3, then gm/3 fixes the same number of even and odd maximal

codewords, and the image of gm/3 in Sc has cycle shape 3c/3.

Lift g to an automorphism of VΛ(C) via Theorem 3.1. Then VΛ(C) � ⟨g⟩ answers the Main
Question: its index is 24

m . In particular, the codes listed in Example 5.7 provide answers
to the Main Question for k ≤ 5.

Proof We first check that the action of ⟨g⟩ on VΛ(C) is nonanomalous. We will do
so by following Example 4.4.

When m is even, we must first check that the anomaly has no Majorana layer, i.e.
we must check that ⟨χ, (1 − g)χ⟩ ∈ 4Z, where χ =

√
3(1, 1, . . . , 1). Condition (5.6) says

that the (m/2)th power of g is −1 ∈ Aut(C) ⊂ 2c ∶Sc . Together with condition (5.6)
when m = 2a × 3, we find that the image of g in Sc consists entirely of blocks of size
m/2, and each block changes an odd number of signs. There are c/(m/2) = 2c/m =
24k/m blocks, each contributing 3(m/2) − 2 × odd to ⟨χ, (1 − g)χ⟩. The claim follows.

Let us continue the case when m is even. Then g acts without fixed points on Λ(C),
and so we may apply Example 4.4. The previous paragraph identifies the Frame shape
of g: it is (m/2)−24k/m m24k/m . Noting that m divides k, we see that the ’t Hooft anomaly
of the action of g is 24 times that of an automorphism of Frame shape (m/2)−k/mmk/m ,
and so vanishes.

The final case to check is when m = 3. Then g preserves a sublattice, and so there
are multiple lifts of g ∈ Aut(Λ(C)) to an automorphism of VΛ(C). The lift we are using
is standard in the sense that it commutes with a choice of lift of −1 ∈ Aut(Λ(C)),
and so the Frame shape formula from Example 4.4 applies [Möl16, Chapter 5]. The
Frame shape of g is 312k/m , and k is divisible by m, completing the verification that the
anomaly vanishes.

It remains to actually calculate ZRR(VΛ(C) � ⟨g⟩).
Let V be any holomorphic VOA and G ⊂ Aut(V) a nonanomalous finite subgroup,

with chosen trivialization of the anomaly, so that the orbifold V � G is defined. The
Ramond–Ramond partition function V � G can be computed as a sum over “twisted-
twined” partition functions of the action of G on V :

ZRR(V � G) = 1
∣G∣ ∑

g′ ,g′′∈G
[g′ ,g′′]=1

ZRR (g′′

g′
)

The notation means the following. One takes the “ g′-twisted Ramond-sector” V-
module, and computes the super (i.e., signed) trace of the action of g′′ thereon. The
choice of trivialization of the anomaly is hidden in the notation: it is used to define
the action of g′′ on the g′-twisted Ramond sector (a priori the action of g′′ is defined
only projectively) and to assign fermion parities to the twisted sectors.
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We now take V = VΛ(C) and G = ⟨g⟩ of order ∣G∣ = n. The “untwisted” contribution
to ZRR(V � G) is

1
m

ZRR (1
1

) = 1
m

ZRR(V) = 24
m

.

Thus it suffices to show that the “twisted” terms all vanish.
Suppose that g′ , g′′ ∈ ⟨g⟩ are not both the identity. The subgroup of ⟨g⟩ generated

by g′ , g′′ is a cyclic group; let h denote a choice of generator. Then ZRR (g′′

g′
) is

related by a modular transformation to ZRR (h
1

) = trVR ((−1) f qL0−c/24h). So it

suffices to show that ZRR (h
1

) = 0 for h ≠ 1.
By construction, the action of h commutes with the supersymmetry, and so, just

as for ZRR(V), the contributions to ZRR (h
1

) from non-ground states cancel:

ZRR (h
1

) is simply the trace of (−1) f h acting on the Ramond-sector ground
states. In the proof of Proposition 2.4 we identified the Ramond-sector ground states
with maximal code words in C. Thus the action of h on the Ramond-sector ground
states lifts the permutation action of h on the maximal codewords. In particular,
trground states ((−1) f h) receives contributions only from the fixed points of the per-
mutation action of h on {maximal codewords}.

If h has even order, then, by the first condition, some power of h acts by the
central element −1 ∈ Aut(C), and so h has no fixed points. If h has odd order, then
there is no sign ambiguity when lifting the action of h from Aut(C) to Aut(VΛ), and
trground states ((−1) f h) is simply a signed count of h-fixed maximal codewords. The
second condition assures that this signed count vanishes. ∎

Example 5.7 We end by listing codes satisfying the conditions of Theorem 5.6 for
k ≤ 5. They were found by randomly generating self-dual codes with an appropriate
automorphism and then calculating the index, repeating the search until one with
index 24 turned up. We received significant help from Noam D. Elkies. In particular,
he explained to us how to run such a search in a reasonable amount of time, and
provided the k = 5 solution.

(1) The only, up to signed permutations of the coordinates, self-dual ternary code of
length 12 and non-zero index is the (extended) Ternary Golay code from [Gol49].
Its index is 24. It can be presented by the generator matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 . . . . . . 1 1 1 2 1
. 1 . . . . 2 1 . 2 1 1
. . 1 . . . 1 2 1 2 . 1
. . . 1 . . 1 . 2 1 1 1
. . . . 1 . 1 1 2 2 2 .
. . . . . 1 1 1 1 . 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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(2) The following generator matrix spans a code of length 24 and index 24:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 . . . . . . . . . . . 1 2 . . 2 1 1 1 2 1 . .
. 1 . . . . . . . . . . . . . 1 1 1 1 1 . 1 2 1
. . 1 . . . . . . . . . 1 2 . 1 1 . 2 . 1 1 2 .
. . . 1 . . . . . . . . 1 1 2 . 1 2 . 2 1 1 . .
. . . . 1 . . . . . . . . 2 1 1 . . 2 2 . 1 1 1
. . . . . 1 . . . . . . 1 1 1 2 2 1 1 . 2 2 1 2
. . . . . . 1 . . . . . . 2 2 1 1 . . . 1 1 2 2
. . . . . . . 1 . . . . 2 . 1 2 2 . 2 2 . 2 . 2
. . . . . . . . 1 . . . 2 1 1 1 1 2 1 . 1 1 1 1
. . . . . . . . . 1 . . 2 . . . . 1 1 2 2 2 2 2
. . . . . . . . . . 1 . 2 2 1 . . 1 . 2 . . . .
. . . . . . . . . . . 1 . . 1 1 . 1 . 2 2 2 2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We set g = −1 ∈ Aut(C).
(3) The following generator matrix spans a self-dual ternary code of length 36 and

index 24.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 . . . . . . . . . . . . . . . . 2 2 . 2 2 2 1 . . 2 . 1 1 1 1 1 2 . 2
. 1 . . . . . . . . . . . . . . . 1 2 . . 2 . . 2 . . . 2 1 . . . 1 1 .
. . 1 . . . . . . . . . . . . . . 1 . . . 2 1 . 1 2 2 . 1 . 2 1 . 1 2 .
. . . 1 . . . . . . . . . . . . . 1 . . . . 1 . 2 1 1 1 . 1 2 2 . 2 1 .
. . . . 1 . . . . . . . . . . . . . 2 . 1 2 2 1 . 2 2 2 . 2 . 1 1 1 1 1
. . . . . 1 . . . . . . . . . . . . 2 . 2 . 2 2 2 . . 2 . 2 1 1 . 2 . 1
. . . . . . 1 . . . . . . . . . . 1 . . 1 . 1 1 . 2 1 1 2 1 1 . . . . 1
. . . . . . . 1 . . . . . . . . . 1 2 . . . 2 2 2 . 1 2 . . 1 2 . 2 1 .
. . . . . . . . 1 . . . . . . . . 2 1 . 2 . . 1 . 1 1 2 1 1 1 2 1 . 2 1
. . . . . . . . . 1 . . . . . . . 2 1 . 1 . 1 1 1 1 . 1 . . 2 1 2 2 1 2
. . . . . . . . . . 1 . . . . . . 1 2 . . 2 . 1 1 . 2 2 2 1 1 1 2 1 1 .
. . . . . . . . . . . 1 . . . . . 1 . . 1 2 . 1 . . 1 1 2 . . . 2 . . .
. . . . . . . . . . . . 1 . . . . . . . 2 2 1 1 1 1 1 2 . 2 2 2 1 . 1 2
. . . . . . . . . . . . . 1 . . . 2 2 . . 2 1 1 2 1 2 . 2 1 2 2 1 . 2 .
. . . . . . . . . . . . . . 1 . . 2 . . . 2 1 . 1 1 . 1 . 1 . . 1 1 2 2
. . . . . . . . . . . . . . . 1 . 2 2 . 2 2 2 2 1 . 2 2 1 1 2 2 1 2 1 1
. . . . . . . . . . . . . . . . 1 2 1 . 1 . 1 2 . 1 1 1 1 2 2 1 . . 1 2
. . . . . . . . . . . . . . . . . . . 1 2 1 1 2 . 1 2 1 2 1 1 1 1 . 2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

This code is invariant under the permutation g ∶ e i ↦ e i+12 of the coordinates,
where the coordinates are e1 , . . . , e36 and the sum is considered mod 36. The
fixed subcode, when considered as a code inside (F36

3 )⟨g⟩ = F12
3 , has the following

generator matrix:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

. . . . . 2 2 . 1 1 1 1

. 1 . . . 2 1 . 2 2 2 .

. . 1 . . . . . 2 1 . .
1 . . 1 . . 1 . 1 1 2 .
1 . . . 1 . 2 . 2 2 1 .
. . . . . . 1 1 . . 1 .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

This is a copy of the self-dual ternary code of length 12 with 8 even and 8 odd
maximal codewords, and so this pair (C , g) satisfies condition (2) of Theorem
5.6.

(4) The following generator matrix spans a self-dual ternary code of length 48 and
index 24.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 . . . . . . . . . . . . . . . . . . . . . . . 1 . . 1 2 1 . 2 1 2 1 2 2 . . 1 2 2 2 . 2 . 2 2
. 1 . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 2 2 2 2 . 1 . . 2 . 1 2 1 . 2 2 . . 1
. . 1 . . . . . . . . . . . . . . . . . . . . . . . 2 1 2 . . 2 . . 2 2 2 1 2 2 . . . . 1 2 1 1
. . . 1 . . . . . . . . . . . . . . . . . . . . 1 1 1 . 1 1 . . 1 . 2 . 1 1 . 1 1 2 1 1 1 1 . 2
. . . . 1 . . . . . . . . . . . . . . . . . . . 2 2 2 1 . 2 . 2 1 2 1 1 1 1 1 2 1 1 1 . . 1 1 2
. . . . . 1 . . . . . . . . . . . . . . . . . . 1 2 . 1 2 1 2 . . . 2 1 1 1 1 2 2 1 2 . . . 2 2
. . . . . . 1 . . . . . . . . . . . . . . . . . . 2 . . . 2 1 2 1 1 2 . . 2 1 2 . 2 . . 2 . 2 1
. . . . . . . 1 . . . . . . . . . . . . . . . . 2 2 2 . 2 . 2 2 2 2 1 2 1 . 1 1 . 2 1 . 1 . . 2
. . . . . . . . 1 . . . . . . . . . . . . . . . 1 2 . 1 1 . 1 2 . 1 1 . . 1 2 . 1 1 1 1 . 1 1 1
. . . . . . . . . 1 . . . . . . . . . . . . . . 2 . . . 2 . 1 2 1 . 1 2 . 1 1 2 . . 1 . . 2 1 1
. . . . . . . . . . 1 . . . . . . . . . . . . . 1 1 2 2 1 2 2 1 1 1 1 2 2 . . . . 1 . 2 . 1 . 2
. . . . . . . . . . . 1 . . . . . . . . . . . . 2 . 2 . 1 1 . 2 . 2 2 2 2 . 1 . 1 2 . . 2 2 . .
. . . . . . . . . . . . 1 . . . . . . . . . . . 2 . 2 1 1 1 . 1 . . 2 2 2 1 . 1 . . . . 2 1 . 2
. . . . . . . . . . . . . 1 . . . . . . . . . . . 2 1 1 1 1 2 . 1 1 . . 1 2 1 1 1 . 1 2 1 . 1 .
. . . . . . . . . . . . . . 1 . . . . . . . . . . . 2 . 1 1 1 1 2 1 . 1 . 1 2 . . 2 1 2 1 2 2 2
. . . . . . . . . . . . . . . 1 . . . . . . . . 1 1 2 1 2 2 2 1 . 2 . . 1 1 . 1 . 2 1 1 1 . 1 .
. . . . . . . . . . . . . . . . 1 . . . . . . . 2 2 . 1 1 2 . . 1 . . 1 . 1 . . 1 2 1 1 2 . 1 .
. . . . . . . . . . . . . . . . . 1 . . . . . . 2 1 . 2 1 1 2 2 1 . 1 2 . . 2 2 2 2 2 1 1 2 2 1
. . . . . . . . . . . . . . . . . . 1 . . . . . 2 . . 1 1 2 . 1 1 1 . . . 1 1 1 1 2 1 1 1 1 . 2
. . . . . . . . . . . . . . . . . . . 1 . . . . . 2 . 1 . . . . 1 . 2 . . 2 2 1 1 1 1 . . . . 2
. . . . . . . . . . . . . . . . . . . . 1 . . . 2 2 1 1 . . 2 1 . . . 2 2 1 1 1 2 1 1 . 2 1 . 2
. . . . . . . . . . . . . . . . . . . . . 1 . . . . 2 1 1 . . . 1 2 1 2 1 . 2 . . 2 1 . 1 1 . 2
. . . . . . . . . . . . . . . . . . . . . . 1 . 2 . 1 . 1 2 2 . 1 1 . . . 1 2 1 1 2 . . . . 2 2
. . . . . . . . . . . . . . . . . . . . . . . 1 2 1 1 2 2 2 1 2 1 1 2 . 2 . 2 . . 1 2 2 2 2 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

It is invariant under the signed permutation

e i ↦
⎧⎪⎪⎨⎪⎪⎩

e i+24 , i ≤ 24,
−e i−24 , i > 24.
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(5) The following generator matrix spans a self-dual ternary code of length 60 and
index 24:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 2 . 1 2 2 1 2 . 2 1 . 2 2 1 2 2 2 2 2 1 1 . 1 1 . 1 . .
. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 1 . . . 2 . . 2 1 1 . . . . . . 2 1 1 2 . . . . 1 2 . 2
. . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 2 . . . 1 1 1 2 . 1 . 1 1 1 1 1 1 1 . 2 2 1 1 . . 1 . 1
. . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 2 . 2 . 2 . 2 2 1 . 2 . 1 . 2 . 2 . . 2 2 1 2 . 2
. . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 1 1 1 . 1 . 2 . 1 2 . 1 1 . 1 2 1 . 1 . 2 2 . 1 . 2 2
. . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . 2 . 1 1 1 2 . 2 1 2 1 2 2 2 . 1 2 1 2 1 . . . 2 . .
. . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 1 . . 2 2 . . . 2 1 1 2 1 1 . 1 2 1 . 1 2 1 . . .
. . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . 1 1 . 1 2 . 1 2 1 2 2 2 1 . 1 2 1 . 2 1 2 1 . . 2 1 2 2 . 2
. . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . 1 . . 1 1 2 2 . 1 2 1 . 1 2 2 . 1 . . 1 . 1 . . . 2 2 . . 1
. . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . 1 2 1 2 1 2 . 1 . 2 2 2 2 . 1 2 2 2 1 1 1 2 . . . . 1 1 2 2
. . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . 1 1 . . . . 1 1 . . 1 2 1 . . 1 2 1 . 1 . . 2 1 . 1 1 1 1
. . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . 2 2 . 1 1 2 2 1 . . 2 1 . 1 . . 2 . 1 1 1 1 2 1 1 . . 2 . 1
. . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . 2 1 . 2 2 2 . 2 2 . 2 1 1 1 . 2 . 1 2 . . 2 1 . 1 1 . 2 2 .
. . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . 1 . . 2 1 . 1 2 . . 2 . 2 . 1 . 1 2 . 2 1 1 . 1 1 . 1 . 2 .
. . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . 2 2 1 2 . 1 1 . 1 . 1 1 1 1 1 1 . 1 2 . . 2 . . 1 2 1 . . 1
. . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . 2 1 . 2 . 2 1 . 2 . 1 1 . . . 1 . . . 1 1 2 1 . 2 . 2 2 . 1
. . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . 2 1 1 1 . 1 2 2 1 2 2 2 2 . 2 . . 2 1 . . 1 2 2 2 . . 1 .
. . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . 1 2 . . 1 1 . 1 2 . 2 . . 2 . . . . 1 2 1 1 2 . . 1 2 2 1
. . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . 2 . . . 2 . 2 1 1 1 2 1 . 1 2 . 2 1 2 . 2 1 2 1 . . 1 1 2 .
. . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . 2 . 2 2 . 2 . 2 1 2 2 2 2 2 2 2 1 . 2 1 2 2 1 2 1 1 2 2 2 1
. . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . 2 . . . . 1 1 1 . 1 . 2 1 1 2 1 1 1 1 1 2 2 1 2 1 2 1 2 1
. . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . 2 . 2 2 2 . 1 2 1 . . 2 1 1 . 2 2 2 1 1 2 2 . 2 . 2 . 1 .
. . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . 2 2 1 2 1 2 2 2 1 2 2 1 1 2 1 2 . . . 2 . 1 . . . . 2 . . 2
. . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . 2 1 . . . 2 2 2 1 . 1 1 . . 2 2 2 1 . 1 2 2 . 1 1 1 2 . 2 .
. . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . 1 1 2 1 1 2 1 2 . . 2 . . 2 . . 2 . 1 2 1 . 1 . 1 1 2 . 2 2
. . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . 2 2 2 1 2 1 1 2 . . 2 . 1 1 . 1 . 2 . 2 2 . 1 1 2 1 . 2 .
. . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . 2 2 1 1 . 2 1 . . 2 2 . 2 2 . 2 2 2 1 1 2 . 2 1 2 . 2 .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 2 . 2 . . . 1 1 2 1 2 1 2 . . 2 2 . 2 2 2 1 1 . 1 2 . 2 2 .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 1 . 1 2 1 1 . 2 1 2 2 . . 1 2 1 2 1 . . . 1 2 1 2 2 1 1 1 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 2 1 2 1 . 1 . 1 1 . 1 . 1 1 . . 1 . . . . 1 2 2 . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Since 5 is coprime to 24, we do not need any automorphism.
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