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Much of the data used in social science is aggregated into spatial units, even if the analysis itself
does not explicitly incorporate that information. A key concern with such aggregation, however, is
that changes in the units of aggregation themselves cause difficulty in comparing data gathered on
the old boundaries and the new boundaries. Such changes present serious concerns to researchers
who may exclude observations or cases due to a lack of comparable units or omit certain key
variables. While geographers have long examined this problem and created methods of projecting
data from one spatial unit into another, known as areal interpolation,1 it is telling that a recent
article notes the difficulty for researchers in implementing even the most basic solutions without
relying heavily on programming skills or proprietary software.2

This note makes three contributions toward resolving this problem; first, its accompanying R
program allows researchers to easily implement two simple—but flexible—methods of areal inter-
polation in any context for which the relevant spatial representations (shapefiles) exist. Second, it
applies these methods to a specific set of variables that are widely used in political science (electoral
results) and confirms that the methods produce generally accurate results using real data gathered
from six heterogeneous countries (Australia, Canada, Great Britain, Germany, New Zealand, and
the United States). Third, it runs Monte Carlo simulations to examine the performance of the
methods given violations of the assumptions about the underlying distribution of the variables of
interest.

1 Areal Interpolation

The problem addressed in this note is well known in the geographical literature as the Modifiable
Areal Unit Problem (MAUP) and also relates to the problem of ecological inference.3 A simple
example makes this clear; Fig. 1 illustrates two sets of randomly generated constituencies (hereafter
used as a generic term that applies to any spatial unit) that partition a unit square, where the solid
gray and dashed black lines demarcate the old and new constituencies, respectively.

If we knew the value of the variable of interest in each area defined by the intersection of the old
and new boundaries, there would be no problem of areal interpolation—one could simply examine

Author’s note: I thank Catherine de Vries, Andy Eggers, Danny Dorling, Ron Johnston, Iain McLean, Juta
Kawalerowicz, the anonymous reviewers, and the editors for helpful comments. Any remaining errors or omissions are
my own. This work uses shapefiles based on a number of sources that are acknowledged in full in Appendix A (available
on the Political Analysis website). Replication materials and the R program itself can be found on the Political Analysis
Dataverse at http://dx.doi.org/10.7910/DVN/MVIQUD. Supplementary materials for this article are available on the
Political Analysis Web site.
1Openshaw (1984).
2Qiu, Zhang, and Zhou (2012).
3Gotway Crawford, and Young (2004); Fisher and Langford (1995); Lam (1983).
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the sub-constituency variable totals and aggregate them to produce the accurate projections. This
“first-best” solution is possible when the variable in question is known at the level of units at least
as small as the intersection of the old and new boundaries. For example, in the context of elections
studied below, this would occur in case where small units, e.g., polling stations or local wards, were
used to “construct” the old and new constituencies and where electoral returns were released at this
level.

Unfortunately, the first-best method of direct tabulation is not always possible for two key
reasons. First, governments simply may not release information at a sub-constituency level.
Second, even if such data exist, there may be substantial changes in the sub-constituency units
between boundary changes that prevent simple aggregation. This problem likely becomes more
severe when interpolating temporally distant sets of boundaries.

2 Methods of Areal Interpolation

In suboptimal circumstances, the solution to the MAUP is to make some assumption about the
underlying distribution of the variable of interest. My program implements methods that make the
simplest assumption possible: the variable of interest is uniformly distributed through the constitu-
ency and/or sub-constituency unit. In the absence of sub-constituency information, this seems to be
a reasonable prior.

As this assumption is demonstrably false for many phenomena, a large literature exists discuss-
ing different methods of interpolation.4 However, most of the additional methods require detailed,
high-quality information about key covariates on a detailed (sub-constituency) scale that simply
may not be present for historical data. Some researchers have also noted that using poor-quality
ancillary information, i.e., information with a weak relation to the variable of interest, might cause
detailed methods to perform worse than the simplest methods.5 Thus, while incorporating detailed
variable- and case-specific information would likely improve the method’s accuracy, the assump-
tions allow the program to be used in a wide variety of empirical contexts.6 As long as the re-
searcher has spatial representations of the old and new boundaries, my program will provide an
estimate of the interpolated values.

Fig. 1 The problem of areal interpolation.

4Gotway Crawford and Young (2004) provide an overview.
5For example, Sadahiro (1999).
6Further work might also extend this program to include other methods of interpolation, e.g., smoothing the data based
on the values of adjacent units. See Tobler (1979); Gotway Crawford and Young (2004) for some alternative methods.
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The two methods implemented in the program are “areal weighting” (AW) and “dasymetric

interpolation” (DI).7 The AW method uses the physical overlap of the constituencies to determine

the transfers. This is the simplest possible method and can be used in the absence of any ancillary

data; one needs only detailed representations of the old and new boundaries. This method,

however, assumes a uniform distribution of the variable of interest at the constituency level and

does not take into account the (certainly) varying population density of each constituency. The DI

method addresses this by incorporating population data gathered on a smaller geographic scale,

collected approximately at the same time as the event on the old boundaries. It assumes that each

geographic sub-unit contains the variable of interest in proportion to its share of the constituency’s

population—again uniformly distributed inside each sub-unit. Ideally, the sub-units should be

chosen such that they are rarely “split” by the new boundaries, as this makes the assumption of

sub-unit uniformity less important. If that is not possible, however, one can rely on comparably

fine-grained data to estimate the distribution of population in each constituency. As this method

seeks only to approximate the underlying distribution of population, the nearest census (even if it

slightly pre- or post-dates the event being interpolated) may be an especially useful resource.
To formally outline the interpolation methods,8 assume there are J old constituencies, K new

constituencies, and L wards, i.e., a generic term for units of geography that are more numerous

than the electoral districts, indexed by j, k, and l, respectively. Each ward contains some number of

individuals (pl) and each unit of geography has some area, e.g., sl for a given ward. The implemen-

tation of this program maps “smooth” shapefiles onto discrete units of area (“pixels”).9 This implies

that each ward has some “density” of individuals per pixel: yl ¼
pl
sl
. Let the notation sx;y indicate the

area (in pixels) of the portion of (ward) y inside constituency x. The interpolation program calcu-

lates the distribution of pixels (sj;l) into old constituency-ward combinations. These results are

stacked into a matrix for each new constituency (Ck with elements skj;l) where each old constituency

and ward occupy a distinct row and column, respectively. For the distribution of wards into the old

constituencies CO, one can simply sum the K matrices together (CO ¼
P

k Ck).
Each interpolation method relies on weights assigned to each pixel; Equation 1 shows how these

weights are calculated for each constituency-ward paring in both the AW (�j;l) and DI (dj;l)
methods. Areal weighting assumes that each ward has the same density (1). This is equivalent to

stating that population is evenly distributed across all pixels inside a constituency, and therefore the

transfers capture the physical overlap of the constituencies.

�j;l ¼
1

Popj
where Popj ¼

X

l2L

ð�O
j;lÞ ð1aÞ

dj;l ¼
yl

Popj
where Popj ¼

X

l2L

ðyl � CO
j;lÞ ð1bÞ

From here, one creates the transformation matrix—A or D, for AW and DI methods, respect-

ively—that generates by simple matrix multiplication (e.g., DX) the projection of a set of variables

gathered on J old constituencies onto the K new constituencies. The elements of D and A, sub-

scripted k; j, indicate the proportion of any variable in old constituency j that is included in new

constituency k. Equation 2 shows how D and A are calculated. Each element is simply the weighted

sum of the density of each pixel (�j;l or dj;l) and the number of such pixels in new constituency k.

AK;J ¼ fak;jg where ak;j ¼
X

l2L

�j;l � s
k
j;l ð2aÞ

7The first method is regularly used as a “baseline” in articles comparing multiple techniques. Gregory (2002) provides a
description of the latter, though the notation differs and the term “dasymetric” refers to many different types of
interpolation that incorporate ancillary information.

8A more detailed discussion of the program itself is provided in the Supplementary Information.
9While an important parameter is the number of pixels, i.e., the level of detail of the “map” of each set of boundaries,
the program is fairly robust to changing this parameter—see Appendix C.
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DK;J ¼ fdk;jg where dk;j ¼
X

l2L

dj;l � skj;l ð2bÞ

Most of the final matrices are extremely sparse, thus permitting quick calculation of the
interpolated values by selecting only the relevant sub-matricies. As the sum of each column in
the transformation matrix is one, this method ensures that interpolated variables have the same
sum across boundary changes.10

3 Empirical Application

An interpolation method’s utility can be judged by the extent to which its predictions agree with the
“actual” results calculated using the first-best method or other methods that are sensitive to non-
uniform distributions of the underlying variables. I test the methods by examining their perform-
ance in interpolating electoral results in six countries: Australia, Canada, Germany, Great Britain,
New Zealand, and the United States.11 I chose these countries for two reasons; first, shapefiles exist
for old and new boundaries, as well as sub-constituency units. Second, they vary on a number of
dimensions, such as electoral system, number of constituencies, geographic heterogeneity of
constituencies, and the nature (partisan or non-partisan) of boundary reforms. Unfortunately,
data limitations imply that only a select number of elections can be tested here.

In all of the countries included except Great Britain, I evaluate the results against the first-best
method using results based on official sub-national electoral returns.12 As the British government
does not release any sub-constituency returns for parliamentary elections, I compare the program’s
methods against one employed by two British academics. Their method uses detailed information
on local election results to estimate the non-uniformity of each major party’s vote share in the sub-
constituency units; they contend that high support for Party X in a local ward l suggests that its
support at parliamentary elections in l is higher than the constituency average. Thus, the transfer of
ward l from the old constituency to a new constituency should move proportionally more of the
support for party X in the old constituency into the new constituency than a uniform distribution
would suggest.13 This seeks to approximate the first-best method, and it has been applied to the
three boundary changes since 1979. It is seen as the “gold standard” in the discussion of British
elections, with most broadcasters, government agencies, academics, etc., using their results without
modification. Thus, comparing the methods in my program against theirs serves as a useful test of
the effects of the uniformity assumption versus a different method of dealing with boundary
changes.

I test my program in the following fashion; I project the constituency vote totals for each major
party (as well as the number of valid votes cast and the size of the electorate) onto the new
boundaries.14 I then calculate the projected share of the (valid) vote for each party in each con-
stituency, as this measure is comparable across countries and more directly of interest to re-
searchers. To assess the error in my projections (i.e., my projections against the “first-best”
solution—or its approximation in Britain), I rely on statistics used in the existing literature on
areal interpolation. Zhang and Qiu provide an extensive discussion of possible measures from

10This is because both methods preserve the pyncophylatic property (Tobler 1979) of the data.
11A broader issue, especially in non-proportional systems, is whether the strategic behavior of voters and parties would
differ under the new boundaries. I set aside this issue as outside the scope of this note.

12Appendix A describes the data and it can be downloaded from the Political Analysis Dataverse, citing Goplerud (2015).
The source of the US data—the Harvard Election Data Archive—lacked consistent, comparable, precinct-level infor-
mation (linked to the necessary shapefiles) on congressional elections (in 2008 or 2010). Thus, to provide a fuller test of
this method by including more states with potentially differing patterns of sub-constituency vote distributions, I
collapsed the 2008 presidential vote onto the relevant House boundaries and interpolated this variable. To the extent
that voting behavior in presidential elections tracks voting behavior in legislative elections, the gerrymandering and
spatial autocorrelation present in congressional districts will appear in the collapsed presidential voting data and thus
will provide an adequate test of the accuracy of the interpolation program.

13Rallings and Thrasher (2007). Appendix A provides further details and discusses the limitations of their method.
14Appendix A contains further information on each party included as well as the party-specific interpolation error.
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which I use the RMSE (root mean-squared error) and MAE (mean absolute error).15 To get a sense
of the distribution, I also report the middle 90% of the Absolute Error (AE) distribution of the
party shares interpolated. I pool the projection errors for each of the major parliamentary parties
when calculating each measure, as this captures the possibility of different parties having different
degrees of sub-constituency heterogeneity.16 Finally, I created a measure of “correct prediction”
(CP) by noting the percentage of cases where the interpolation methods and the “first-best” results
predict the same first-place party. To provide a hard test of the accuracy of my interpolation
methods, I report this measure only for marginal seats, i.e., those in which the difference
between the first- and second-place party is below 10%.17 In all of the results reported, I exclude
constituencies with only minor changes.18 As Table 1 illustrates, both the AW and DI methods
perform well in all countries. While the DI method generally performs better, both have a mean
absolute predictive error of around 2–3%. The rates of “correct prediction” in marginal contests
are more variable, though the DI method more clearly outperforms the AW method in some
elections. As Appendix A shows, when all constituencies are included (regardless of marginality),
both methods “correctly predict” the first-place party in each constituency at least 90% of the time.
Overall, the methods perform least well in the United States, but this is perhaps unsurprising due to
the existence of gerrymandering—discussed in the next section.

4 Simulations

This section runs Monte Carlo simulations to examine the robustness of the projection methods to
variation in the constituencies and the underlying voting population. I examine three key factors
that likely affect the accuracy of the program: the homogeneity of the constituencies, the homo-
geneity of the voters, and the existence of gerrymandering in the boundary change process.19 The
simulations discussed below take a unit square as representing the geographic area of interest.

I first simulate spatially correlated data to represent the proportion of individuals in any given
area who vote for the government. This is generated using a Gaussian process, described in
Appendix B, and then rescaled to a unit interval. I then independently simulate a second set of
spatially correlated data to represent the population in any given area. The expected population
value in any given location, in the absence of spatial correlation, is 100.20 Multiplying the two sets
of data generates a smooth underlying field that represents the “exact” distribution of government
support. A key parameter here is the extent of spatial autocorrelation in the share of those sup-
porting the government (rshare) and in the population (rpop). I vary this by changing the “range” in
the variogram that generates the random fields. The range represents the distance at which spatial
autocorrelation has decreased to zero; as I specify an exponential variogram, the range is ap-
proached asymptotically and thus the “effective range” (approximately three times the “actual”
range) is reached when 95% of the spatial autocorrelation has disappeared. Higher ranges create
greater autocorrelation, leading to larger “clustering” of support (or lack thereof), while lower
ranges approximate data generated in an i.i.d. random fashion at all locations. My expectation
is that the interpolation method should perform better in the presence of lower spatial
autocorrelation.

I randomly create constituencies in this square by drawing N i.i.d. points from inside this square
using a truncated normal distribution with mean � and standard deviation �. I use those points to

15Zhang and Qiu (2011).
16Party-specific errors are reported in Appendix A.
17Appendix A varies this threshold to show how the CP rate changes (rises) as more “safe” contests are included.
18Appendix A outlines the exact rule and perform sensitivity analysis by varying the threshold at which a constituency is
sufficiently “changed.” The rule used here is approximately equivalent to excluding constituencies where a single transfer
from an old constituency made up 90% of the new constituency.

19Existing simulations of areal interpolations tend to rely on creating random combinations of “real” underlying units for
which a variable is known to create “constituencies”; Fisher and Langford (1995) is an early and influential example.
Others, notably Sadahiro (1999, 2000), have employed a related strategy to the one used here.

20Other parameters are specified in Appendix B but are held constant across all simulations.
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create the Voronoi partition of the unit square; this creates N polygons such that for any polygon i
corresponding to point n, all points inside i are closer to point n than any other point n0 2 N.21 The
draws from the truncated normal distribution set � ¼ 0:5 and vary �; a low � will tend to generate a
number of small tightly clustered constituencies at the center of the square as well as larger
constituencies towards the “outskirts” of the square. As � increases, the truncated normal distri-
bution approaches the uniform distribution (see Appendix B) and thus generates constituencies that
are roughly equally sized. Old and new constituency boundaries are independently generated using
this procedure. My expectation is that the interpolation methods should perform better with more
homogeneous constituencies.

While gerrymandering is a complex process, I create a simple version to implement in the
simulations. The program randomly select some proportion (g) of the sub-constituency units
(i.e., the set of polygons defined by the intersection of the old and new boundaries) and then re-
assigns them, if possible, to an adjacent constituency if doing so would decrease the government’s
share in the gerrymandered new constituency.22 In the simulations presented below, the gerryman-
dering procedure causes the median of the mean vote share to rise slightly (by around 2.5% from
g¼ 0 to g¼ 0.7) but also causes a noticeable increase in the number of constituencies the

Table 1 Error of interpolation program

Country Year Method N RMSE MAE Middle 90% of AE CP (Marg)

Australia 2010 DI 156 2.366 1.550 [0.055, 5.660] 0.833
AW 144 2.729 1.730 [0.139, 5.398] 0.778

2013 DI 45 1.426 1.039 [0.047, 2.964] 1.000

AW 48 2.440 1.470 [0.086, 5.267] 1.000
Canada 2004 DI 611 1.594 0.944 [0.032, 3.700] 0.892

AW 589 2.417 1.446 [0.057, 5.262] 0.838

2013 DI 428 2.456 1.662 [0.098, 4.534] 0.816
AW 444 3.542 2.265 [0.083, 6.766] 0.784

Germany 2005 DI 147 0.495 0.332 [0.013, 1.280] 1.000

AW 136 0.597 0.332 [0.011, 1.475] 1.000
2009 DI 288 0.702 0.460 [0.026, 1.546] 0.971

AW 288 0.689 0.454 [0.017, 1.528] 0.971

2013 DI 80 0.465 0.334 [0.015, 0.937] 1.000
AW 70 0.409 0.279 [0.017, 0.800] 1.000

Great Britain 1983 DI 1278 3.099 1.922 [0.048, 6.559] 0.777
AW 1394 3.589 2.363 [0.075, 7.668] 0.699

1997 DI 785 3.171 2.288 [0.133, 6.772] 0.766
AW 826 3.325 2.421 [0.122, 6.929] 0.721

2005 DI 216 2.840 1.735 [0.064, 5.659] 0.800

AW 192 3.395 2.224 [0.274, 6.651] 0.889
2010 DI 546 3.051 2.181 [0.119, 6.244] 0.619

AW 588 3.241 2.290 [0.148, 6.992] 0.702

New Zealand 2014 DI 220 1.720 0.854 [0.003, 4.282] 0.833
AW 236 2.825 1.160 [0.003, 5.497] 0.857

United States 2012 DI 656 4.075 2.913 [0.197, 7.494] 0.810
AW 620 4.441 3.352 [0.212, 9.147] 0.718

Note. Methods: DI - Dasymetric Interpolation; AW - Areal Weighting. N indicates the number of observations, i.e., the total number of
major party candidates in the constituencies that were changed. In Germany and New Zealand, this pools the constituency-level results
from both tiers of the electoral system. The RMSE and MAE are calculated with respect to the vote shares of each party. RMSE - Root
Mean-Squared Error; MAE - Mean Absolute Error; Middle 90% of AE - Middle 90% of the Absolute Error Distribution; CP (Marg) -
Proportion Correctly Predicted in Marginal (Majority below 10%) Seats.

21One of the founding works on the MAUP also uses this method: Openshaw (1984, 20).
22Appendix B outlines the exact procedure and visualizes the results of the procedure on government vote share and
number of seats won.
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government “wins”; the median government when g¼ 0.7 wins 64% of contests versus 50%
without gerrymandering. My expectation is that the interpolation method should perform better
with lower levels of gerrymandering.

Figure 2 presents a number of figures for selected values of � and rprop to give a visual sense of
the possible distributions of support and the constituencies. The simulations set � and rprop as
follows to create twenty-five different combinations.

rrange 2 f0:01; 0:05; 0:10; 0:20; 0:25g s 2 f0:05; 0:10; 0:25; 0:50; 1g

I draw fifteen points to form the old constituency boundaries and twenty to form the new set;
existing research suggests that methods of interpolation perform less well when the number of units
is increased and thus this is a harder test of the methods.23

For each simulation, I create a set of boundaries and an accompanying vote distribution. I run
the interpolation program and calculate the RMSE and the MAE at each level of gerrymandering
g 2 f0; 0:1; 0:3; 0:5; 0:7g. I do this 750 times for each combination of rrange;s. To concisely analyze
the results, I present a heat map of the average RMSE and MAE for each combination of the three
simulation parameters and interpolation method.

An initial point to note in Fig. 3 is that the interpolation method is a substantively small predictor
of either measure of error. The clearer improvement when using actual data suggests that while using
dasymetric interpolation is preferable, reliance on simple areal weighting is likely acceptable. The
results also confirm the three expectations; increasing the homogeneity of the constituencies (increasing
�) and decreasing the spatial autocorrelation (decreasing rrange) corresponds to a lower RMSE and
MAE. The effect appears larger for spatial autocorrelation, though this may be a function of moving
from very limited spatial autocorrelation (rrange ¼ 0:01) to more substantial levels. Despite the simu-
lation’s reliance on an “automated” gerrymandering procedure, it still worsens the performance
of both interpolation methods. The limited effect of gerrymandering in these simulations should
be interpreted cautiously; one could imagine forms of gerrymandering that would cause large

(a) (b)

Fig. 2 Illustrations of � and rprop.

23Sadahiro (2000, 81). I add points at the upper-right and bottom-left corners of the square to coerce the Voronoi
polygons to a unit square; this means that there are 17 and 22 constituencies in the simulation. One could think of
these simulations as focusing on a sub-national region of a country. The results here are likely robust to an increased
number of constituencies/zones.
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interpolation errors. Rather, the clearest message from the simulations is that high-spatial autocor-
relation in party vote share will probably correspond to larger errors in the interpolation program.
A plausible explanation for this result is that increasing spatial autocorrelation likely leads to more
severe violations of the key assumption of a uniform underlying distribution of support, and thus
greater interpolation error will arise.

While it is difficult to directly compare the simulation parameters to the electoral data analyzed in
the previous section,24 examining a rough ordinal ranking of the six countries is illustrative. The
country with the worst results for the interpolation program (the United States) has the highest
spatial autocorrelation, the most extensive gerrymandering, and high heterogeneity in constituency
sizes. The country with the best performance (Germany) has the lowest heterogeneity in constituency
size, non-partisan redistricting, but the second highest spatial autocorrelation (albeit only around one-
third of that in the United States).25 As other countries have somewhat less spatial autocorrelation
(but more extensive boundary reforms and more heterogeneous constituencies), this could suggest that
interactive effect suggested in the heat maps—more homogeneous constituencies (higher �) correspond
to lower interpolation error when spatial autocorrelation is also lower—operates in more subtle ways
than the existing simulations captured.

5 Conclusion

This note began by noting that boundary changes complicate the systematic study of many key
topics in social science. It implemented and evaluated a systematic, transparent solution to this
problem where shapefiles of the aggregate units (and perhaps sub-unit population data) exist. The

(a)

(a) (b)

Fig. 3 Heat maps of projection errors.
Note. This figure presents the mean value of the RMSE and MAE for each combination of the simulation

parameters. The results are horizontally faceted by interpolation method and vertically by the extent of
gerrymandering, i.e., blocks of cells closer to the bottom of the figure report results from simulations with
more extensive gerrymandering.

24Specifically, fitting a variogram to empirical data is quite a complicated process and doing so combines the effects of
rprop and rpop. When fitting the variograms using the centroids of each constituency, some models for specific party vote
shares did not converge. These are excluded from the following discussion. Secondly, heterogeneity in constituency size
must be assed via a different metric; I look at the standard deviation of constituency sizes where each size is normalized
to be a proportion of the total area of all constituencies.

25It is also worth noting, however, that boundary changes in Germany are fairly limited at each electoral cycle.
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R program associated with this note allows researchers to easily and quickly implement these

methods for any arbitrary combination of shapefiles and data. Further research in this area

might examine the implementation of more complex methods or calculating a measure of uncer-

tainty of the projections.
After outlining their critical simplifying assumptions, this note tested the performance of these

methods on electoral data from six countries as well as using Monte Carlo simulations. It showed

that the methods perform well—with a mean absolute error of no more than 2–3%. It relied on

simulations to further clarify some conditions under which the method should perform less well

(heterogeneous constituencies, spatial autocorrelation in the distribution of the vote, and

gerrymandering).
Researchers who use this tool should be mindful of the counterfactual it is implicitly assuming; it

is important to consider the prevalence of the aforementioned conditions as well as the extent to

which the variables of interest are uniformly distributed inside each constituency. However, at its

core, the methods implemented here may not be so dissimilar from what researchers already

assume. If one believes that using the Nth lag of, say, a party’s share is an acceptable covariate

across boundaries that have not changed, then the program used here attempts to produce the

same—given the inherent constraints on the data.

References

Fisher, P. F., and M. Langford. 1995. Modelling the errors in areal interpolation between zonal systems by Monte Carlo

simulation. Environment and Planning A 27(2):211–24.

Goplerud, M. 2015. Replication data for: Crossing the boundaries: An implementation of two methods for projecting

data across boundary changes. http://dx.doi.org/10.7910/DVN/MVIQUD, Harvard Dataverse, V1.

Gotway Crawford, C. A., and L. J. Young. 2004. A spatial view of the ecological inference problem. In Ecological

inference: New methodological strategies, eds. G. King, O. Rosen, and M. A. Tanner. Cambridge: Cambridge University

Press.

Gregory, I. 2002. The accuracy of areal interpolation techniques: standardising 19th- and 20th-century census data to

allow long-term comparisons. Computers, Environment and Urban Systems 26(4):293–314.

Lam, N. S.-N. 1983. Spatial interpolation methods: A review. American Cartographer 10(2):129–49.

Openshaw, S. 1984. The modifiable areal unit problem. Number No. 28 in concepts and techniques in modern geography.

Norwich: Geo Books.

Qiu, F., C. Zhang, and Y. Zhou. 2012. The development of an areal interpolation ArcGIS extension and a comparative

study. GIScience & Remote Sensing 49(5):644–63.

Rallings, C., and M. Thrasher. 2007. Media guide to the new parliamentary constituencies. Plymouth: Local Government

Chronicle Elections Centre.

Sadahiro, Y. 1999. Accuracy of areal interpolation: A comparison of alternative methods. Journal of Geographical

Systems 1(4):323–46.

——— 2000. Accuracy of count data estimated by the point-in-polygon method. Geographical Analysis 32(1):64–89.

Tobler, W. R. 1979. Smooth pycnophylactic interpolation for geographical regions. Journal of the American Statistical

Association 74(367):519–30.

Zhang, C., and F. Qiu. 2011. A point-based intelligent approach to areal interpolation. Professional Geographer 63(2):

262–76.

Crossing the Boundaries 129

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pv
02

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

Deleted Text: programme 
Deleted Text:  
Deleted Text: -
Deleted Text:  
Deleted Text: programme 
Deleted Text:  
http://dx.doi.org/10.7910/DVN/MVIQUD
https://doi.org/10.1093/pan/mpv029

