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The paper shows the connections between some importance indices for the components
in an engineering coherent system and the performance of the system obtained when a
redundancy mechanism is applied to a specific component. A copula approach is used
to model the dependency among the components. This approach includes the popular
case of independent components. Under some assumptions, it is proved that if compo-
nent i is more important than component j, then the system obtained by applying a
redundancy procedure to the ith component is better, under different stochastic criteria,
than that obtained with the jth component. These results can be applied to several redun-
dancy mechanisms. A new importance index is defined to study active redundancies. Some
illustrative examples are provided.
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1. INTRODUCTION

Coherent systems are basic structures in reliability engineering. They can be used to rep-
resent both simple systems, with few components, and really complex systems. From a
mathematical point-of-view, a two-states system with n components is a Boolean function
φ : {0, 1}n → {0, 1}. Here φ(x1, . . . , xn) denotes the state of the system and xi denotes the
state of the ith component for i = 1, . . . , n (xi = 1 means that the ith component is working
and xi = 0 that it is not). Note that the state of the system is completely determined by the
states of the components. A system φ is coherent if it is increasing, that is, when the state
of a component is improved, the state of the system cannot be worse, and every component
is relevant for the system, that is, φ is strictly increasing in each variable in at least a point.
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Several importance measures have been defined in the literature to study the influence of
the components in the performance of the system. Many of them assume that the component
lifetimes are independent. The most relevant importance measures and their applications
can be seen in Barlow and Proschan [2] and Belzunce, Mart́ınez-Riquelme, and Ruiz [13].
A combinatorial approach to compute component importance indices in coherent systems
with independent components was given in Gertsbakh and Shpungin [9].

Note that, in many practical situations, the component lifetimes are dependent since
they share the same environment. So, in these cases, the independence assumption is unre-
alistic. However, few importance measures have been proposed in the case of dependent
components. For example, the extension of Barlow–Proschan importance index was studied
in Iyer [11] and Marichal and Mathonet [14] and the Birnbaum measure in Miziula and
Navarro [16] and Zhang and Wilson [22]. In the two last references, a copula approach
was used to represent the dependence among the component lifetimes. A different depen-
dence model based on sequential order statistics was proposed in Burkschat and Navarro
[4]. Some information measures were also applied to systems with dependent components
in Cali, Longobardi, and Navarro [5] and the references therein.

Another relevant problem in the theory of coherent systems is to determine the per-
formance of the system when redundancy mechanisms are applied to some components.
There exist several usual options such as active redundancy, standby redundancy, perfect,
and imperfect repairs, etc. The literature on this topic is really wide (see, e.g., the recent
papers [1,3] and the references therein).

In the present paper, we study the connections between the importance measure defined
in Miziula and Navarro [16] and the systems obtained by applying redundancy options to
the different components in the system. Additional importance measures are proposed for
active redundancies as well. The same procedure can be used to define new indices for
other redundancy options. Under some assumptions, we show that if component i is more
important than component j, then the system obtained by applying a redundancy procedure
to the ith component is better, under different stochastic criteria, than that obtained with
the jth component. These results can be applied to several redundancy mechanisms.

The rest of the paper is organized as follows. The main results for the index defined in
Miziula and Navarro [16] are placed in Section 2 where we also propose and study a new
importance measure for active redundancies. Some illustrative examples and counterexam-
ples can be found in Section 3. In Section 4 we include some conclusions and tasks for future
research.

Throughout the paper, we say that a function G : A ⊆ Rn → R is increasing (resp.
decreasing) if G(x) ≤ G(y) (≥) for all x ≤ y, where x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ A
and x ≤ y means xi ≤ yi for all i = 1, . . . , n. The partial derivative of G with respect to its
ith variable will be represented as ∂iG (assuming tacitly that it exists). Furthermore, ek

is the kth vector of the canonical basis of Rn, that is, ek = (δ1,k, . . . , δn,k) being δi,j = 1 if
i = j and δi,j = 0 if i �= j.

2. MAIN RESULTS

Let T be the lifetime of a coherent system based on n possibly dependent components
with lifetimes X1, . . . , Xn. For the definition and basic properties of coherent systems, we
refer the reader to the classic book [2]. The reliability functions of T and X1, . . . , Xn will
be represented as F̄T (t) = Pr(T > t) and F̄i(t) = Pr(Xi > t) for i = 1, . . . , n. Whenever we
assume that the component lifetimes are identically distributed (ID), the common reliability
function will be represented as F̄ .
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It is well known that the reliability function of a coherent system can be obtained from
the reliability functions of its components as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t)), (2.1)

where Q̄ : [0, 1]n → [0, 1] is an increasing continuous function, called distortion function,
such that Q̄(0, . . . , 0) = 0 and Q̄(1, . . . , 1) = 1. The explicit expression for Q̄ can be seen in,
for example, formula (2.3) of Miziula and Navarro [15]. The distortion function Q̄ depends
on both the structure of the system and the dependence structure among the components,
that is, the copula function associated to the component lifetimes. If the components are
independent (i.e., the copula is the product copula), then Q̄ is a multinomial (see, e.g.,
Barlow and Proschan [2], p. 21).

Moreover, since Q̄ is a linear combination of Lipschitz functions (copulas), then the
functions q̄x,i : [0, 1] → [0, 1], defined by

q̄x,i(u) := Q̄(x1, . . . , xi−1, u, xi+1, . . . , xn)

for u ∈ [0, 1], i = 1, . . . , n and x = (x1, . . . , xn) ∈ (0, 1)n are Lipschitz functions with a com-
mon constant. Therefore, the subset Di of (0, 1)n where ∂iQ̄ exists has measure one. Hence,
the subset D = ∩n

i=1Di of (0, 1)n where all the partial derivatives ∂1Q̄, . . . , ∂nQ̄ exist, has
also measure one.

Recently, a new importance index based on (2.1) was defined in Miziula and Navarro
[16] for systems with dependent components. This index extends the well-known Birnbaum
index defined for systems with independent component (see, e.g., Barlow and Proschan
[2]). It is defined as follows. The main properties of this index can be seen in Miziula and
Navarro [16].

Definition 2.1: The importance index Ij for the jth component in a coherent system
with distortion function Q̄ is

Ij(u) = ∂jQ̄(u)

for all u = (u1, . . . , un) ∈ Dj. We say that component i is more important than com-
ponent j (shortly written as i ≥mi j) if Ii(u) ≥ Ij(u) for all u ∈ Di ∩ Dj. We say that
component i is strictly more important than component j (shortly written as i >mi j)
if i ≥mi j and Ii(u) > Ij(u) for at least a point u ∈ Di ∩ Dj.

The reliability of a system can be improved by adding some redundancy mechanisms
to some components. Typically, what we do is to improve the reliability function F̄j of
the jth component, obtaining a new reliability function Ḡj ≥ F̄j . In many cases, the new
reliability function can be written as Ḡj(t) = q̄(F̄j(t)) for all t, where q̄ : [0, 1] → [0, 1] is an
increasing continuous function such that q̄(0) = 0, q̄(1) = 1 and q̄(u) ≥ u for all u ∈ [0, 1].
We shall assume throughout the paper that this redundancy mechanism is the same for all
the components, that is, q̄ does not depend on j. Usually, we will have an explicit expression
for the redundancy function q̄. Some relevant and useful examples will be provided later.

Now we are ready to state the main result of the paper which proves that the importance
index defined above determines the best way to apply any redundancy (as defined above)
to a system with ID components. First, we need two technical lemmas. From now on we
use the notation

[0,1] := [0, 1]n = [0, 1] × · · · × [0, 1].

The set (0,1) is defined in a similar way. The first lemma contains the well-known
Rademacher’s theorem (see, e.g., Theorem 3.1.6 of Federer [8]).
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Lemma 2.2 (Rademacher’s theorem): If A is an open subset of Rn and f : A → R is
Lipschitz continuous, then f is differentiable almost everywhere in A.

Lemma 2.3: Let G : [0,1] → R be a Lipschitz continuous function. Then, the following
conditions are equivalent:

(i) ∂iG(x) ≥ ∂jG(x) for all x ∈ Di ∩ Dj.
(ii) G(x + c ei) ≥ G(x + c ej) for all x ∈ [0,1] and all c > 0 such that x + c ei,x +

c ej ∈ [0,1].

Proof: Without loss of generality, we may suppose (to simplify the notation) that i = 1
and j = 2.

(i) ⇒ (ii) Assume that ∂1G(z) ≥ ∂2G(z) for all z ∈ D1 ∩ D2.
Fix the values x3, . . . , xn ∈ [0, 1] and define the function H : [0, 1] × [0, 1] → R as

H(x1, x2) := G(x1, . . . , xn). Clearly, H is also a Lipschitz continuous function. So, from
the preceding lemma, H is differentiable almost everywhere in (0, 1) × (0, 1). Let A be the
set where H is differentiable. Then the Lebesgue measure of A is λ(A) = 1. Note that for
the points (x1, x2) ∈ A, the partial derivative with respect to the vector v = (1,−1) exists
and is given by ∂1G(x) − ∂2G(x) where x = (x1, . . . , xn).

Consider now for x ∈ [0,
√

2] the segment Sx perpendicular to the main diagonal of
[0, 1] × [0, 1] (i.e., parallel to vector v) determined by the border points of this square
and that passes through the point (x/

√
2, x/

√
2). The length of this segment is f(x) =

2min(x,
√

2 − x). Note that ∫ √
2

0

f(x)dx = 1.

Define now the function � : [0,
√

2] → R where �(x) is the (unidimensional) measure of the
points of A included in Sx. Hence

∫ √
2

0

�(x)dx = λ(A) = 1.

Moreover, since 0 ≤ �(x) ≤ f(x) for all x ∈ [0,
√

2], then � = f almost everywhere (a.e.). Let
B ⊆ [0,

√
2] be the set where these two functions coincide.

Fix now x1, x2 ∈ [0, 1] and c > 0 such that 0 ≤ x1 < x1 + c ≤ 1 and 0 ≤ x2 < x2 +
c ≤ 1. Let Sx be the segment that contains the points (x1, x2 + c) and (x1 + c, x2) and let
us assume that x ∈ B (i.e., that H is differentiable a.e. in Sx). Then consider the function

g(t) := G(x1 + t, x2 + c − t, x3, . . . , xn)

for t ∈ [0, c]. Clearly, g is Lipschitz continuous and so absolutely continuous in [0, c], it is
differentiable almost everywhere in (0, c) and (when it exists) its derivative satisfies

g′(t) = ∂1G(x1 + t, x2 + c − t, x3, . . . , xn) − ∂2G(x1 + t, x2 + c − t, x3, . . . , xn) ≥ 0.

Therefore, g is increasing in [0, c]. In particular,

g(0) = G(x1, x2 + c, x3, . . . , xn) ≤ g(c) = G(x1 + c, x2, x3, . . . , xn)

and (ii) holds for all those points. This property can be extended to the rest of the points
by using that G is continuous in [0,1] and that B is dense in [0,

√
2].
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(ii) ⇒ (i) Assume that for some x = (x1, . . . , xn) ∈ D1 ∩ D2

G(x1, x2 + c, x3, . . . , xn) ≤ G(x1 + c, x2, . . . , xn)

holds for all c > 0 such that 0 < x1 < x1 + c ≤ 1 and 0 < x2 < x2 + c ≤ 1. Then

G(x1, x2 + c, x3, . . . , xn) − G(x1, . . . , xn)
c

≤ G(x1 + c, x2, . . . , xn) − G(x1, . . . , xn)
c

for all c > 0. Hence, since the partial derivatives exist for x ∈ D1 ∩ D2, taking limits as
c → 0+ in the preceding expression, we get (i). �

The preceding lemma can be extended to a general n-dimensional rectangle [a,b]. Also
note that if G is differentiable in (0,1), then we just need the continuity in [0,1] (i.e.,
we do not need the Lipschitz condition). Moreover, in this case, the proof of “(i) ⇒ (ii)”
can be shortened (we only need the second part of the proof since A = (0, 1) × (0, 1) and
B = (0,

√
2)).

As a consequence of the preceding lemmas, we obtain the following theorem.

Theorem 2.4: In a coherent system with ID components, if component i is more important
than component j, then the system obtained by applying a redundancy to component i is
more reliable than that obtained by applying the same redundancy to component j for any
redundancy function q̄.

Proof: Again, to simplify the notation, we suppose that i = 1 and j = 2. The proof for
general i and j is analogous. Thus, let us assume that component 1 is more important
than component 2, that is, ∂1Q̄(u) ≥ ∂2Q̄(u) for all u ∈ D1 ∩ D2, where Q̄ is the distortion
function of the system.

Let q̄ be the common redundancy function applied to both components. Then, from
(2.1), the resulting reliability functions are

R1(t) = Q̄(q̄(F̄ (t)), F̄ (t), . . . , F̄ (t))

and
R2(t) = Q̄(F̄ (t), q̄(F̄ (t)), F̄ (t), . . . , F̄ (t)),

respectively, where F̄ represents the common reliability function of the components. As
q̄(u) ≥ u for all u ∈ [0, 1], we have

ct = q̄(F̄ (t)) − F̄ (t) ≥ 0

for all t. Therefore, from Lemma 2.3, we have R1(t) ≥ R2(t) for all t. �

The following proposition proves that the condition i ≥mi j, assumed in the preceding
theorem, can be considered as a strong condition. First we need some basic definitions
extracted from Barlow and Proschan [2, p. 9]. A set P ⊆ {1, . . . , n} is a path set of a
coherent system if the system works when all the components in P work. A path set P is
a minimal path set if it does not contain other path sets. It is known that the structure of
a system is completely determined by its minimal path sets (see Barlow and Proschan [2],
p. 12).

Proposition 2.5: Given a coherent system with n independent components and distortion
function Q̄, there does not exist any component more important than another in the sense
of Definition 2.1.
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Proof: We compare the components 1 and 2 of the system. The same argument applies
to any other pair of components.

First we recall that if the components are independent, then Q̄ is a polynomial. Hence,
all its partial derivatives exist and are continuous at any point u ∈ Rn. We want to prove that
the importance indices I1(u) and I2(u) cannot be ordered for all u ∈ (0,1). Let P1, . . . , Pr

be the minimal path sets of the system. We consider the following cases.
Case I: The sets {1} and {2} are minimal path sets. As Q̄ is a polynomial, if u3 = · · · =

un = 0, then Q̄(u) = u1 + u2 − u1u2, I1(u) = 1 − u2 and I2(u) = 1 − u1. Then, as I1 and I2

are continuous functions in [0,1], we can find points v,w ∈ (0,1) such that I1(v) > I2(v)
and I1(w) < I2(w).

Case II: There exist two minimal path sets P1 and P2 such that 1 ∈ P1, 2 /∈ P1, 2 ∈ P2,
1 /∈ P2. Let P ∗

1 = P1 − {1}. Without loss of generality, we can assume that P ∗
1 = {3, . . . , k}

for k ≤ n. Then we choose the vectors u = (u1, . . . , un) such that u1, u2 ∈ (0, 1), u3 = · · · =
uk = 1 and uk+1 = · · · = un = 0 (when k < n).

Then we have two subcases:

II.a) If {2} ∪ P is a path set for a P ⊆ P ∗
1 , then Q̄(u) = u1 + u2 − u1u2. So I1(u) = 1 − u2

and I2(u) = 1 − u1 and, as in Case I, we can prove that I1(u) > I2(u) for a u ∈ (0,1).
II.b) If {2} ∪ P is not a path set for all P ⊆ P ∗

1 , then Q̄(u) = u1. So I1(u) = 1 > I2(u) = 0
and hence we can prove that I1(u) > I2(u) for a u ∈ (0,1).

We have proved that there exist points of (0,1) such that I1(u) > I2(u). Analogously,
we can prove that there exist points of (0,1) such that I1(u) < I2(u).

Case III: Components 1 and 2 are in the same minimal path set. Assume, without
loss of generality, that 1, 2 ∈ P1. Then, we choose the vectors u = (u1, . . . , un) such that
u1, u2 ∈ (0, 1) and for i ≥ 3, ui = 1 if i ∈ P1 or ui = 0 if i /∈ P1. Note that all the minimal
path sets P2, . . . , Pr contain components not included in P1. Hence Q̄(u) = u1u2, I1(u) = u2,
and I2(u) = u1. Therefore, I1 and I2 are not ordered in (0,1). �

Since condition i ≥mi j can be considered hard to be satisfied, we now propose a weaker
condition. We will show later that this new condition is also related with the importance
index given in Definition 2.1 and that it can be used to obtain a result similar to that
included in Theorem 2.4, that is, to determine where to apply a redundancy mechanism in
a given system.

Definition 2.6: We say that component i is weakly more important than component
j (shortly written as i ≥wmi j) in a coherent system with n components and distortion
function Q̄ if

Q̄(u + c ei) ≥ Q̄(u + c ej) (2.2)

for all u = (u, . . . , u) ∈ [0, 1)n and c ∈ (0, 1 − u].

It follows from Lemma 2.3 that if component i is more important than component j,
then it is also weakly more important. Example 3.7 proves that the reverse property is not
true (i.e., condition (2.2) is strictly weaker than i ≥mi j).

Next we use this new condition to determine where a general redundancy mechanism
should be applied in a coherent system with ID components.

Theorem 2.7: In a coherent system with ID components, if component i is weakly more
important than component j, then the system obtained by applying a redundancy to compo-
nent i is more reliable than that obtained by applying the same redundancy to component j
for any redundancy function q̄.
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The proof is similar to that of Theorem 2.4. An application of this theorem is illustrated
in Example 3.7.

The following result provides a simple sufficient condition to check whether i ≥wmi j
holds.

Theorem 2.8: In a coherent system with distortion function Q̄, if

∂iQ̄(u + (p − u)ei) ≥ ∂jQ̄(u + (p − u)ej) (2.3)

for all u = (u, . . . , u) ∈ [0, 1]n and all p ∈ [u, 1] such that these partial derivatives exist, then
i ≥wmi j.

Proof: If we integrate in (2.3) with respect to the variable p on the interval [u, t] for
u ≤ t ≤ 1, then

∫ t

u

∂iQ̄(u + (p − u)ei)dp ≥
∫ t

u

∂jQ̄(u + (p − u)ej)dp,

or equivalently,
Q̄(u + (t − u)ei) ≥ Q̄(u + (t − u)ej).

We define now c = t − u ≥ 0, and then

Q̄(u + c ei) ≥ Q̄(u + c ej)

for all 0 ≤ c ≤ 1 − u. Therefore i ≥wmi j. �

Condition (2.3) is sufficient to prove that component i is weakly more important than
component j. Example 3.8 proves that the reverse is not true, that is, (2.3) is not a necessary
condition for the property states in (2.2).

In the case of independent components, the condition given in (2.3) can be simplified
as follows. Note that it is also related with the importance index provided in Definition 2.1.

Corollary 2.9: In a coherent system with independent components and distortion function
Q̄, if

∂iQ̄(u, . . . , u) ≥ ∂jQ̄(u, . . . , u) (2.4)

for all u ∈ [0, 1], then i ≥wmi j.

Proof: If the components are independent, then the distortion Q̄ associated to the system
is a multinomial function and the exponent of each variable is 0 or 1 in each term. Therefore,
the partial derivative with respect to the ith variable does not depend on that variable,
that is,

∂iQ̄(u, . . . , u) = ∂iQ̄(u, . . . , u, p, u, . . . , u)

for all u, p ∈ [0, 1], where, in the above expression, p is placed at the ith position. Hence,
(2.3) holds and the preceding theorem concludes the proof. �

Note that the functions ∂iQ̄(u, . . . , u) and ∂jQ̄(u, . . . , u) in (2.4) are polynomials in u.
So it is easy to check if (2.4) holds in [0, 1]. Moreover, condition (2.4) can be used jointly
with Theorem 2.7 to determine where to apply a general redundancy mechanism in a system
with IID components. Example 3.7 below shows how to use this procedure.
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The ordering properties obtained above can be expressed by using the usual stochastic
(ST) order which compares the reliability functions. To obtain properties for other orders,
we need to assume that the system structure and the dependence among its components are
known, that is, we need the distortion function Q̄ associated to the system. Furthermore, we
will consider a fixed redundancy function q̄ applicable to any component of the system. Some
particular relevant cases are studied below. Next we shall study properties for the hazard
rate (HR) order, the reversed hazard rate (RHR) order, the mean residual life (MRL) order,
and the likelihood ratio (LR) order. Their definitions and basic properties can be seen in
Shaked and Shanthikumar [21].

If a system has possibly dependent ID components, then the reliability function of the
system obtained by applying the redundancy q̄ to its ith component is

Ri(t) = Q̄(F̄ (t), . . . , F̄ (t), q̄(F̄ (t)), F̄ (t), . . . , F̄ (t)) = q̄i(F̄ (t)), (2.5)

where q̄i(u) = Q̄(u, . . . , u, q̄(u), u, . . . , u) and the q̄ function is placed at the ith position. The
function q̄i is a distortion function, that is, it is a continuous increasing function in [0, 1] that
satisfies q̄i(0) = 0 and q̄i(1) = 1. The relationships for the respective distribution functions
are 1 − Ri(t) = 1 − q̄i(F̄ (t)) = qi(F (t)), where qi(u) = 1 − q̄i(1 − u) for i = 1, . . . , n. In this
case, we can state the following result which allows us to obtain stronger comparisons
between the improved systems. The proof is immediate from the representation given in
(2.5) and the ordering results for distorted distributions obtained in Navarro and Gomis
[17] and Navarro et al. [18].

Proposition 2.10: Let q̄i and q̄j be the distortion functions obtained in (2.5) for a coherent
system with ID components by applying a common redundancy q̄ to components i and j,
respectively. Let Ti and Tj be the respective system lifetimes. Then:

(i) Ti ≤ST Tj for all F if and only if qi ≤ qj in (0, 1).
(ii) Ti ≤HR Tj for all F if and only if qj/qi is decreasing in (0, 1).
(iii) Ti ≤RHR Tj for all F if and only if qj/qi is increasing in (0, 1).
(iv) Ti ≤LR Tj for all F if and only if q′j/q′i is decreasing in (0, 1).
(v) If there exists u0 ∈ (0, 1] such that qj/qi is decreasing in (0, u0) and increasing in

(u0, 1), then Ti ≤MRL Tj for all F such that E(Ti) ≤ E(Tj).

In the general case (i.e., when we do not assume that the component lifetimes are
ID), the reliability function of the system obtained by applying redundancy q̄ to the ith
component is

Ri(t) = Q̄(F̄1(t), . . . , F̄i−1(t), q̄(F̄i(t)), F̄i+1(t), . . . , F̄n(t)) = Q̄i(F̄1(t), . . . , F̄n(t)), (2.6)

where Q̄i(u1, . . . , un) = Q̄(u1, . . . , ui−1, q̄(ui), ui+1, . . . , un). The function Q̄i is a distortion
function, that is, it is a continuous increasing function in [0, 1]n that satisfies Q̄i(0, . . . , 0) = 0
and Q̄i(1, . . . , 1) = 1. The relationships for the respective distribution functions are

1 − Ri(t) = 1 − Q̄i(1 − F̄1(t), . . . , 1 − F̄n(t)) = Qi(F1(t), . . . , Fn(t))

for i = 1, . . . , n, where Qi(u1, . . . , un) = 1 − Q̄i(1 − u1, . . . , 1 − un). In this general case, we
have the following result that can be used to improve the results proved above for the ST
order. The proof is immediate from the representation obtained in (2.6) and the ordering
results for distorted distributions obtained in Navarro et al. [19].
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Proposition 2.11: Let Q̄i and Q̄j be the distortion functions obtained in (2.6) for a coher-
ent system with possibly dependent components by applying a common redundancy q̄ to
components i and j, respectively. Let Ti and Tj be the respective system lifetimes. Then:

(i) Ti ≤ST Tj for all F1, . . . , Fn if and only if Qi ≤ Qj in (0,1).

(ii) Ti ≤HR Tj for all F1, . . . , Fn if and only if Qj/Qi is decreasing in (0,1).
(iii) Ti ≤RHR Tj for all F1, . . . , Fn if and only if Qj/Qi is increasing in (0,1).

The two preceding propositions can be applied to the following typical and useful cases,
as well as other redundancy mechanisms.

Case I: Active redundancies (hot standby).
Here it is assumed that a new component is added in parallel to one of the system

components. If the lifetime of the new unit added to the ith component is Yi and it has the
same distribution as Xi, then the lifetime of the resulting component is X∗

i = max(Xi, Yi)
with reliability

F̄ ∗
i (t) = Pr(X∗

i > t) = 2Pr(Xi > t) − Pr(Xi > t, Yi > t)

= 2F̄i(t) − K(F̄i(t), F̄i(t)) = q̄(F̄i(t)),

where K is the survival copula of (Xi, Yi) and

q̄(u) := 2u − K(u, u) ≥ u

for u ∈ [0, 1]. The basic properties of copulas can be seen in Durante and Sempi [6] and
Nelsen [20]. Here we can choose any copula K. In particular, if Xi and Yi are independent,
which is a usual assumption in practice, then the survival copula K is the product copula
and the associated distortion is given by

q̄2:2(u) = 2u − u2. (2.7)

The application of the preceding propositions to this case is illustrated in Example 3.9.
Case II: Inactive redundancies (cold standby) or perfect repair.
Here we assume that, when the ith component fails at time Xi, then it is replaced by

another component with lifetime Yi. If we assume that (Xi, Yi) has an absolutely contin-
uous joint distribution, then the lifetime of the resulting component is X∗

i = Xi + Yi with
reliability

F̄ ∗
i (t) = Pr(Xi + Yi > t) = Pr(Xi > t) +

∫ t

0

Pr(Yi > t − x|Xi = x)fi(x)dx (2.8)

where fi represents the probability density function (pdf) of Xi. If the joint reliability of
(Xi, Yi) is represented as

H̄(x, y) = Pr(Xi > x, Yi > y) = K(F̄i(x), Ḡi(y)),

where K is the survival copula and Ḡi is the reliability function of Yi, then its joint pdf is

h(x, y) = fi(x)gi(y)∂2∂1K(F̄i(x), Ḡi(y)),

where gi is the pdf of Yi. Hence the conditional pdf of (Yi|Xi = x) is

h2|1(y|x) =
h(x, y)
fi(x)

= gi(y)∂2∂1K(F̄i(x), Ḡi(y))

https://doi.org/10.1017/S0269964819000159 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964819000159


592 J. Navarro et al.

and

Pr(Yi > t − x|Xi = x) =
∫ ∞

t−x

gi(y)∂2∂1K(F̄i(x), Ḡi(y))dy = ∂1K(F̄i(x), Ḡi(t − x)).

Therefore, from (2.8),

F̄ ∗
i (t) = Pr(Xi + Yi > t) = F̄i(t) +

∫ t

0

fi(x)∂1K(F̄i(x), Ḡi(t − x))dx. (2.9)

In particular, if K is the product copula, then we get the convolution formula for the
reliability

F̄ ∗
i (t) = F̄i(t) +

∫ t

0

Ḡi(t − x)fi(x)dx. (2.10)

If F̄i is strictly decreasing and F̄−1
i is its inverse function, we obtain from (2.9) that

F̄ ∗
i (t) = F̄i(t) +

∫ t

0

fi(x)∂1K(F̄i(x), Ḡi(t − F̄−1
i (F̄i(x))))dx,

and making the change of variables v = F̄i(x)

F̄ ∗
i (t) = F̄i(t) +

∫ 1

F̄i(t)

∂1K(v, Ḡi(t − F̄−1
i (v)))dv.

If Fi = Gi, that is, the failed component is replaced by a new one with the same distribution
(or it is perfectly repaired), then

F̄ ∗
i (t) = F̄i(t) +

∫ 1

F̄i(t)

∂1K(v, F̄i(t − F̄−1
i (v)))dv = q̄

(i)
cold(F̄i(t)),

where

q̄
(i)
cold(u) = u +

∫ 1

u

∂1K(v, F̄i(F̄−1
i (u) − F̄−1

i (v)))dv

is a distortion function such that q̄
(i)
cold(u) ≥ u for all u ∈ [0, 1] (since Xi ≤ Xi + Yi). Here

we need to assume that q̄i does not depend on i. This expression can be simplified if
F1 = · · · = Fn = F , that is, when the components are ID. In this case, we obtain

q̄cold(u) = u +
∫ 1

u

∂1K(v, F̄ (F̄−1(u) − F̄−1(v)))dv ≥ u (2.11)

for all u ∈ [0, 1].
Case III: Minimal repair.
As in the preceding case, we assume that the ith component is replaced (or repaired)

when it fails at an age x > 0 by another component with lifetime Yi and that (Xi, Yi) has an
absolutely continuous joint distribution. However, in this case, we assume that the new unit
has age x, that is, when Xi = x, Yi is replaced by Yx = (Yi − x|Yi > x). Then the lifetime
of the resulting component is X∗

i = Xi + YXi
, where the reliability of YXi

is

Ḡx,i(t) = Pr(Yi > t|Xi = x) = Pr(Yi > x + t|Yi > x) =
Ḡi(x + t)

Ḡi(x)
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for t ≥ 0. Hence, from (2.8), the reliability of X∗
i is

F̄ ∗
i (t) = Pr(Xi + YXi

> t) = F̄i(t) +
∫ t

0

Pr(Yi > t − x|Xi = x)fi(x)dx

= F̄i(t) +
∫ t

0

Ḡi(t)
Ḡi(x)

fi(x)dx. (2.12)

In particular, if Fi = Gi, then

F̄ ∗
i (t) = F̄i(t) +

∫ t

0

F̄i(t)
F̄i(x)

fi(x)dx = F̄i(t) − F̄i(t) ln F̄i(t) = q̄(1)(F̄i(t)),

where q̄(1)(u) = u − u ln(u) ≥ u is a redundancy function. If the same component is repaired
k times, then the resulting component has reliability F̄

(k)
i (t) = q̄(k)(F̄i(t)), where

q̄(k)(u) = u

k∑
j=0

1
j!

(− ln(u))j (2.13)

for k = 1, 2, . . . . This procedure is called the relevation transform; see, for example,
Krakowski [12]. Ordering properties for this case were widely studied in Arriaza, Navarro,
and Suarez-Llorens [1]. So we do not include examples here.

Note that q̄2:2(u) ≤ q̄cold(u) and q̄2:2(u) ≤ q̄(1)(u) ≤ q̄(2)(u) ≤ · · · for all u ∈ [0, 1], where
q̄cold and q̄(k) are given in (2.11) and (2.13), respectively. The first inequality is obtained from
max(X,Y ) ≤ X + Y and the second by a straightforward calculation. Hence, the systems
obtained by applying active redundancy to the ith component are always worse than those
obtained by cold standby with perfect or minimal repair. The following result compares the
last two redundancies, that is, perfect and minimal repairs. To this end, we need the well-
known concepts of new better than used (NBU) and new worse than used (NWU) defined
as follows. We say that a reliability Ḡ is NBU (NWU) if Ḡ(t) ≥ Ḡx(t) (≤) for all x, t ≥ 0,
where Ḡx(t) = Ḡ(t + x)/Ḡ(x).

Proposition 2.12: If Gi is NBU (NWU), then to apply a perfect repair to the ith
component is better (worse) than to apply a minimal repair to the same component.

Since Q̄ is increasing, the proof is immediate from (2.6), (2.10), and (2.12).
Case IV: Component redundancy versus system redundancy.
Some authors also consider comparisons between redundancy at a component level

and redundancy at the system level (see, e.g., Hazra and Nanda [10]). In the first option,
as above, the redundancy is assigned to a component. When the redundancy function q̄ is
applied to the ith component, the resulting reliability is given by (2.6). In the second option,
the redundancy function q̄ is applied to the system obtaining the following reliability

R∗(t) = q̄(Q̄(F̄1(t), . . . , F̄n(t))) = Q̄∗(F̄1(t), . . . , F̄n(t)),

where Q̄∗(u1, . . . , un) = q̄(Q̄(u1, . . . , un)). Note that these two cases can be compared
proceeding as in Proposition 2.11.

Finally, we propose an alternative importance index closely related with active redun-
dancy. Similar importance measures can be defined by using other redundancy mechanisms
(as minimal repair).
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Definition 2.13: The importance index under active redundancy for the jth
component in a system with a distortion function Q̄ is defined by

I
(j)
2:2(u) = Q̄(u1, . . . , uj−1, q̄2:2(uj), uj+1, . . . , un)

for all u = (u1, . . . , un) ∈ [0, 1]n, where q̄2:2 is the distortion function associated to a par-
allel system with two IID components given in (2.7). We say that the ith component is
more important under active redundancy than the jth component (shortly written as
i ≥miar j) if

I
(i)
2:2(u) ≥ I

(j)
2:2(u) (2.14)

for all u = (u1, . . . , un) ∈ [0, 1]n. Analogously, we say that the ith component is weakly
more important under active redundancy than the jth component (shortly written as
i ≥wmiar j) if

I
(i)
2:2(u, . . . , u) ≥ I

(j)
2:2(u, . . . , u) (2.15)

for all u ∈ [0, 1].

Note that

i ≥mi j ⇒ i ≥wmi j ⇒ i ≥wmiar j ⇐ i ≥miar j.

It is easy to see that 1 ≥wmi 2 does not imply 1 ≥mi 2 and that 1 ≥wmiar 2 does not imply
1 ≥miar 2 (e.g., consider a series system with two independent components). Examples 3.4
and 3.10 below prove that i ≥miar j does not imply i ≥mi j and that i ≥wmiar j does not
imply i ≥wmi j, respectively.

The following proposition will be used to show that the importance index based on
active redundancy can also be applied to study other redundancy mechanisms.

Proposition 2.14: In a coherent system with a distortion function Q̄, if i ≥wmiar j and

∂iQ̄(u + (p − u)ei) ≥ ∂jQ̄(u + (p − u)ej) (2.16)

for all u = (u, . . . , u) ∈ [0, 1]n and p ∈ [q̄2:2(u), 1], then

Q̄(u + (c − u)ei) ≥ Q̄(u + (c − u)ej)

for all c ∈ [q̄2:2(u), 1].

Proof: If we integrate in (2.16) with respect to the variable p on the interval [q̄2:2(u), c]
with c ∈ [q̄2:2(u), 1], then we obtain∫ c

q̄2:2(u)

∂iQ̄(u + (p − u)ei)dp ≥
∫ c

q̄2:2(u)

∂jQ̄(u + (p − u)ej)dp,

or equivalently,

Q̄(u + (c − u)ei) − Q̄(u + (q̄2:2(u) − u)ei) ≥ Q̄(u + (c − u)ej) − Q̄(u + (q̄2:2(u) − u)ej).

That is to say,

Q̄(u + (c − u)ei) − I
(i)
2:2(u) ≥ Q̄(u + (c − u)ej) − I

(j)
2:2(u).

Hence

Q̄(u + (c − u)ei) ≥ Q̄(u + (c − u)ej) + I
(i)
2:2(u) − I

(j)
2:2(u) ≥ Q̄(u + (c − u)ej),

as we wanted to prove. �
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As a consequence of the preceding proposition, we obtain the following result for redun-
dancy options whose distortion functions, q̄, are greater than the distortion function of an
active redundancy q̄2:2.

Corollary 2.15: Under the same conditions of the previous proposition, if q̄ is a distortion
function such that q̄2:2(u) ≤ q̄(u) for all u ∈ [0, 1], then

Q̄(u − (q̄(u) − u)ei) ≥ Q̄(u − (q̄(u) − u)ej)

for all u = (u, . . . , u) ∈ [0, 1]n.

Proof: The proof follows from Proposition 2.14 by using c = q̄(u). �

Note that, in the case of systems with ID components, the redundancy mechanisms
associated to cold standby and minimal repair can be expressed as the distortion functions
q̄cold and q̄(1), respectively, which satisfy q̄2:2 ≤ q̄cold and q̄2:2 ≤ q̄(1). This means that, in
the conditions of Proposition 2.14, if i ≥wmiar j, then the lifetimes of the systems obtained
by applying the same redundancy (cold or minimal repair) to the components i and j are
ordered similarly.

3. SOME ILLUSTRATIVE EXAMPLES

In the first example, we study parallel systems with two components. We show that if
a component is more important than the other, in the sense of Definition 2.1, then they
actually are equally important. Moreover, the components should be dependent with the
Fréchet–Hoeffding lower bound copula given by

W (u, v) = max(u + v − 1, 0) (3.1)

for u, v ∈ [0, 1].

Proposition 3.1: If in a parallel system with two components having a copula C, 1 ≥mi 2,
then 1 =mi 2 and C = W .

Proof: The lifetime of the parallel system is T = max(X1,X2). Then, its distribution
function is

FT (t) = Pr(max(X1,X2) ≤ t) = Pr(X1 ≤ t,X2 ≤ t) = C(F1(t), F2(t))

for all t, where F1 and F2 are the distribution functions of the component lifetimes. Hence,
its reliability is

F̄T (t) = 1 − FT (t) = 1 − C(F1(t), F2(t)) = Q̄(F̄1(t), F̄2(t)),

where F̄1 and F̄2 are the reliability functions of the component lifetimes and

Q̄(u, v) = 1 − C(1 − u, 1 − v)

for u, v ∈ [0, 1]. Hence, if I1 ≥ I2 in D1 ∩ D2, then

∂1C(u, v) ≥ ∂2C(u, v)
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for almost all u, v ∈ (0, 1). Therefore,

1/2 =
∫ 1

0

vdv

=
∫ 1

0

∫ 1

0

∂1C(u, v)dudv

≥
∫ 1

0

∫ 1

0

∂2C(u, v)dudv

=
∫ 1

0

∫ 1

0

∂2C(u, v)dvdu

= 1/2

since C(u, 1) = C(1, u) = u and C(u, 0) = C(0, u) = 0 for all u ∈ (0, 1). Therefore
∂1C(u, v) = ∂2C(u, v) and I1(u, v) = I2(u, v) (a.e.) in (0, 1)2.

Moreover, for u0 ∈ (0, 1), we can write

u2
0

2
=

∫ u0

0

udu

=
∫ u0

0

∫ 1

0

∂2C(u, v)dvdu

=
∫ u0

0

∫ 1

0

∂1C(u, v)dvdu

=
∫ 1

0

∫ u0

0

∂1C(u, v)dudv

=
∫ 1

0

C(u0, v)dv

where the third equality follows from I1 = I2. A straightforward calculation shows that

u2
0

2
=

∫ 1

0

W (u0, v)dv.

So ∫ 1

0

[C(u0, v) − W (u0, v)]dv = 0

for all u0 ∈ (0, 1), where C(u0, v) − W (u0, v) ≥ 0 since W is the lower bound. Therefore, as
C and W are continuous, we have C = W . �

A similar result can be obtained for series systems. It can be stated as follows. The
proof is similar.

Proposition 3.2: If in a series system with two components having a copula C, 1 ≥mi 2,
then 1 =mi 2 and C = W .

The following example shows that the preceding property cannot be extended to other
parallel or series systems.
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Example 3.3: Let us consider the parallel system with lifetime T = max(X1,X2,X3) where
the random vector of the component lifetimes (X1,X2,X3) has the copula

C(u1, u2, u3) = u3W (u1, u2)

and W is given in (3.1). Then

Q̄(u1, u2, u3) = 1 − (1 − u3)W (1 − u1, 1 − u2)

and, by the symmetry, I1 = I2. Note that, in this case, C cannot be equal to the Fréchet–
Hoeffding lower bound since that bound is not a copula.

The next example shows that a component can be more important than another one
when they are dependent (with a given copula). It also shows that i ≤mi j does not imply
i ≤miar j.

Example 3.4: As in the preceding example let us consider a parallel system with three
dependent components. In this case, we choose the copula with a uniform distribution over
the segment which connects the point (1, 0, 1) with the point (0, 1, 0), that is, the function
defined in [0, 1]3 by

C(u1, u2, u3) =

⎧⎨
⎩

u1 + u2 − 1, for 0 ≤ u1 ≤ u3, 1 − u3 ≤ u2 ≤ 1, u1 + u2 ≥ 1,
u2 + u3 − 1, for u3 ≤ u1 ≤ 1, 1 − u3 ≤ u2 ≤ 1,

0, otherwise.

Then

Q̄(u1, u2, u3) = 1 − C(1 − u1, 1 − u2, 1 − u3)

and

∂iQ̄(u1, u2, u3) = ∂iC(1 − u1, 1 − u2, 1 − u3)

for i = 1, 2, 3. Therefore, for (u1, u2, u3) ∈ D1 ∩ D2, we have

∂1Q̄(u1, u2, u3) =

⎧⎨
⎩

1, for 0 < u1 < u3, 1 − u3 < u2 < 1, u1 + u2 > 1,
0, for u3 < u1 < 1, 1 − u3 < u2 < 1,
0, otherwise.

and

∂2Q̄(u1, u2, u3) =

⎧⎨
⎩

1, for 0 < u1 < u3, 1 − u3 < u2 < 1, u1 + u2 > 1,
1, for u3 < u1 < 1, 1 − u3 < u2 < 1,
0, otherwise.

Hence 1 <mi 2, that is, the second component is strictly more important than the first.
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On the other hand, let us see that 1 �miar 2. First, we provide the explicit expression
of the distortion function associated to the system

Q̄(u1, u2, u3) =

⎧⎨
⎩

u1 + u2, for u3 ≤ u1, u2 + u3 ≤ 1, u1 + u2 ≤ 1,
u2 + u3, for u1 ≤ u3, u2 + u3 ≤ 1,

1, otherwise.

If we take, for example, u = (0.03, 0.01, 0.035) ∈ [0, 1]3, then we have

I
(1)
2:2 (u1, u2, u3) = Q̄(q̄2:2(u1), u2, u3) = q̄2:2(u1) + u2 = 0.0691

and
I
(2)
2:2 (u1, u2, u3) = Q̄(u1, q̄2:2(u2), u3) = q̄2:2(u2) + u3 = 0.0549.

Therefore 1 �miar 2. However, it is not difficult to prove that 1 ≤wmiar 2 holds. Note that
≤mi implies ≤wmi and, from Theorem 2.7, Q̄(q̄(u), u, u) ≤ Q̄(u, q̄(u), u) holds for all u ∈
[0, 1] and all distortion functions q̄.

The next example shows that, in mixed systems, a component can be more important
than another one for a wide family of copulas. This family includes the product copula
which represents the case of independent components.

Example 3.5: The mixed systems are mixtures of coherent systems. They might represent
situations in which a system has different structures (requirements) at different times.
Clearly, their reliability functions admit a representation similar to (2.1) for a distortion
function which is a linear combination of the distortion functions of the different coherent
systems in the mixture. Hence, all the results obtained in this paper can also be applied
to mixed systems. Let us see an example. Consider the mixed system with lifetime T and
two possibly dependent components with lifetimes X1 and X2, where T is equal to X1

with probability 1/2 and to min(X1,X2) with probability 1/2. This mixed system might
represent a service that half of the time works if the first unit works, while during the other
period both units are needed. Several real situations can be represented in this way. If K is
the survival copula of (X1,X2), then

Pr(X1 > t,X2 > t) = K(F̄1(t), F̄2(t)),

where F̄1 and F̄2 are the component reliability functions. Hence, the system reliability is

F̄T (t) =
1
2
F̄1(t) +

1
2
K(F̄1(t), F̄2(t)) = Q̄(F̄1(t), F̄2(t)),

where

Q̄(u1, u2) =
1
2
u1 +

1
2
K(u1, u2)

for u1, u2 ∈ [0, 1]. If the partial derivatives of K exist in (0, 1)2, then the importance of the
first component is

I1(u1, u2) = ∂1Q̄(u1, u2) =
1
2

+
1
2
∂1K(u1, u2)

and that of the second one is

I2(u1, u2) = ∂2Q̄(u1, u2) =
1
2
∂2K(u1, u2).

Since K is increasing, the partial derivatives are non-negative. Moreover, from Theorem 2.2.7
in p. 13 of Nelsen [20], we have ∂2K(u1, u2) ≤ 1. Therefore, I1(u1, u2) ≥ 1/2 ≥ I2(u1, u2) for
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all u1, u2 ∈ [0, 1]. Hence, from Theorem 2.4, if the components are ID∼F , then the system
obtained by applying any redundancy q̄ to the first component is ST – better (more reliable)
than that obtained doing the same with the second component for all K, q̄, F .

Remark 3.6: Note that the results obtained in this paper can be applied (as in the preceding
example) to generalized distorted distributions, that is, to distribution functions F that can
be written as

F (t) = Q(F1(t), . . . , Fn(t))

for a distortion function Q (see Navarro et al. [19]). Hence, the associated reliability function
can be written as in (2.1) where

Q̄(u1, . . . , un) = 1 − Q(1 − u1, . . . , 1 − un)

for all u1, . . . , un ∈ [0, 1]. All the importance measures considered before for systems can
also be applied to distorted distributions. This general case includes the particular case of
a finite mixture with weights p1, . . . , pn ∈ (0, 1) such that p1 + · · · + pn = 1. In this case

Q(u1, . . . , un) = Q̄(u1, . . . , un) = p1u1 + · · · + pnun

and therefore the importance of the ith component is

Ii(u1, . . . , un) = ∂iQ̄(u1, . . . , un) = pi

for all u1, . . . , un ∈ [0, 1]. The importance indices can be ordered, just by the values of the
respective weights in the mixture, as expected. Note that this case can also be seen as a
mixed system.

The following example illustrates how to use Theorem 2.7 and Corollary 2.9 to determine
where the redundancy should be applied.

Example 3.7: Let us consider the system with lifetime T = min(X1,max(X2,X3)). If the
components are independent, then the system reliability is

F̄T (t) = F̄1(t)F̄2(t) + F̄1(t)F̄3(t) − F̄1(t)F̄2(t)F̄3(t) = Q̄(F1(t), F̄2(t), F̄3(t)),

where Q̄(u1, u2, u3) = u1u2 + u1u3 − u1u2u3. Therefore, the respective importance indices
of components 1 and 2 are

I1(u1, u2, u3) = ∂1Q̄(u1, u2, u3) = u2 + u3 − u2u3

and
I2(u1, u2, u3) = ∂2Q̄(u1, u2, u3) = u1 − u1u3.

Note that, from Proposition 2.5, both indices are not ordered. However, using
Corollary 2.9, it is not difficult to see that 1 ≥wmi 2 since

∂1Q̄(u, u, u) = 2u − u2 ≥ u − u2 = ∂2Q̄(u, u, u)

for all u ∈ [0, 1]. Observe that, by the structure of the system, the first component is also
weakly more important than the third component.

Therefore, from Theorem 2.7, if the components are IID∼F , the system obtained by
applying a redundancy q̄ to the first component is more reliable than that obtained by
applying the same redundancy to the second (or the third) component for all F and all q̄.
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Next, we include a counterexample which shows that conditions (2.2) and (2.3) are not
equivalent.

Example 3.8: Let us consider a parallel system with two dependent components having the
following copula

C(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u, for 0 ≤ u ≤ 1/3, 2/3 ≤ v ≤ 1, v − u ≥ 2/3,
v − 2/3, for 0 ≤ u ≤ 1/3, 2/3 ≤ v ≤ 1, v − u < 2/3,

v, for 1/3 < u ≤ 1, 0 ≤ v ≤ 2/3, u − v ≥ 1/3,
u − 1/3, for 1/3 < u ≤ 1, 0 ≤ v ≤ 2/3, u − v < 1/3,

0, for 0 ≤ u ≤ 1/3, 0 ≤ v ≤ 2/3,
u + v − 1, for 1/3 < u ≤ 1, 2/3 ≤ v ≤ 1.

Hence, the distortion function is

Q̄(u, v) = 1 − C(1 − u, 1 − v) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u, for 2/3 ≤ u ≤ 1, 0 ≤ v ≤ 1/3, u − v ≥ 2/3,
v + 2/3, for 2/3 ≤ u ≤ 1, 0 ≤ v ≤ 1/3, u − v < 2/3,

v, for 0 ≤ u < 2/3, 2/3 ≤ v ≤ 1, v − u ≥ 1/3,
u + 1/3, for 0 ≤ u < 2/3, 2/3 ≤ v ≤ 1, v − u < 1/3,

1, for 2/3 ≤ u ≤ 1, 1/3 ≤ v ≤ 1,
u + v, for 0 ≤ u < 2/3, 0 ≤ v ≤ 1/3.

A straightforward calculation shows that 1 ≥wmi 2, that is, (2.2) holds. However, (2.3) does
not hold for i = 1, j = 2, u = 0.1, and p = 0.7 since

∂1Q̄(0.7, 0.1) = 0 < 1 = ∂2Q̄(0.1, 0.7).

The following example shows how to apply Propositions 2.10 and 2.11. It also proves
that i ≥miar j and i ≥wmiar j are not equivalent.

Example 3.9: Let us consider the coherent system φ(x1, x2, x3) = max(x1,min(x2, x3)).
Its lifetime is T = max(X1,min(X2,X3)). Let us assume first that the components are
independent. Then the system reliability function is

F̄T (t) = F̄1(t) + F̄2(t)F̄3(t) − F̄1(t)F̄2(t)F̄3(t) = Q̄(F̄1(t), F̄2(t), F̄3(t)),

where F̄1, F̄2, F̄3 are the component reliability functions and Q̄(u, v, w) = u + vw − uvw is
its distortion function.

Also let us assume that we can apply an active redundancy to the first or the second
components with redundancy function q̄2:2(u) = 2u − u2. If the components are IID with a
common reliability F̄ , then the resulting reliability functions are that given in (2.5) with

q̄1(u) = Q̄(q̄2:2(u), u, u) = 2u − 2u3 + u4

and
q̄2(u) = Q̄(u, q̄2:2(u), u) = u + 2u2 − 3u3 + u4,

respectively. A straightforward calculation shows that q̄1 ≥ q̄2 in [0, 1] and so, from
Proposition 2.10, (i), T1 ≥ST T2 holds for all F̄ , that is, 1 ≥wmiar 2 holds, see (2.15). Even
more, as

∂1Q̄(u, u, u) = 1 − u2 ≥ u − u2 = ∂2Q̄(u, u, u)

for all u ∈ [0, 1], (2.4) holds and we have that 1 ≥wmi 2. Therefore T1 ≥ST T2 for all F̄ and
all q̄. However, if we want to obtain the hazard rate (HR) ordering, we need to assume
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Figure 1. Plots of the ratios r = q̄1/q̄2 for the system studied in Example 3.9 when the
components are IID (left) or DID with a Clayton copula (right).

again that we use active redundancy (i.e., q̄2:2) and to study the monotonicity of the ratio
r = q̄1/q̄2 on (0, 1). It is easy to prove analytically that it is decreasing in (0, 1) (see the
plot in Figure 1, left). Hence, from Proposition 2.10, (ii), we have T1 ≥HR T2 for all F̄ .
Analogously, to study the likelihood ratio (LR) order, we need to study the ratio of the
derivatives q̄′1/q̄′2. Since it is also decreasing we have from Proposition 2.10, (iv), T1 ≥LR T2

for all F̄ .
If we assume now that the components are independent, but not identically distributed

(ID), then the resulting reliability functions are those given in (2.6) with

Q̄1(u, v, w) = Q̄(q̄2:2(u), v, w)

and
Q̄2(u, v, w) = Q̄(u, q̄2:2(v), w).

Thus
Q̄1(0.1, 0.5, 0.5) = 0.3925 < 0.4375 = Q̄2(0.1, 0.5, 0.5)

and
Q̄1(0.5, 0.5, 0.5) = 0.8125 > 0.6875 = Q̄2(0.5, 0.5, 0.5).

Hence, from Proposition 2.11, T1 and T2 are not ST-ordered for all F̄1, F̄2, F̄3. That is to
say, 1 ≥miar 2 does not hold, see (2.14).

Let us assume now that the components are ID, that component 1 is independent from
components 2 and 3 and that these last two components are dependent with the following
Clayton survival copula

K(v, w) =
vw

v + w − vw

(see, e.g., Nelsen [20], p. 118). Then the distortion function of the system is

Q̄(u, v, w) = u + K(v, w) − uK(v, w) = u +
(1 − u)vw

v + w − vw
.

Hence, the resulting reliability functions are those given in (2.5) with

q̄1(u) = Q̄(q̄2:2(u), u, u) = 2u − u2 +
u − 2u2 + u3

2 − u

https://doi.org/10.1017/S0269964819000159 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964819000159


602 J. Navarro et al.

and

q̄2(u) = Q̄(u, q̄2:2(u), u) = u +
u(1 − u)(2 − u)

3 − 3u + u2
.

A straightforward calculation shows that q̄1 ≥ q̄2 in [0, 1], that is, 1 ≥wmiar 2 holds for this
copula. Therefore, from Proposition 2.10, (i), T1 ≥ST T2 holds for all F̄ . In order to get
the hazard rate (HR) ordering, we need to study the ratio r = q̄1/q̄2 in [0, 1]. This ratio is
plotted in Figure 1 (right). Since it is decreasing we have from Proposition 2.10, (ii), that
T1 ≥HR T2 for all F̄ .

We know from Theorem 2.7 that i ≥wmi j implies i ≥wmiar j. The last example shows
that the reverse property is not true.

Example 3.10: Let us consider a parallel system with lifetime T = max(X1,X2) and with
two dependent components having a copula C. Hence, the system reliability is

F̄T (t) = Pr(T > t) = 1 − Pr(X1 ≤ t,X2 ≤ t) = 1 − C(F1(t), F2(t)) = Q̄(F̄1(t), F̄2(t)),

where Q̄(u, v) = 1 − C(1 − u, 1 − v).
Therefore, 1 ≥wmi 2 holds, if and only if, Q̄(u + c, u) ≥ Q̄(u, u + c) for all u, c ∈ (0, 1),

that is, if and only if,

C(x, y) ≥ C(y, x) for all 0 ≤ y ≤ x ≤ 1. (3.2)

Analogously, 1 ≥wmiar 2 holds, if and only if, Q̄(2u − u2, u) ≥ Q̄(u, 2u − u2) for all u ∈
(0, 1), that is, if and only if,

C(x, x2) ≥ C(x2, x) for all 0 ≤ x ≤ 1. (3.3)

Clearly, (3.2) implies (3.3), that is, i ≥wmi j implies i ≥wmiar j. However, there exist copulas
such that (3.3) holds but (3.2) does not hold.

To construct one of these copulas, we are going to use the rectangular patchwork method
developed in Durante, Saminger-Platz, and Sarkoci [7]. We start with the product copula
Π(u, v) = uv, that is, with a uniform distribution over [0, 1]2. Then we modify this copula
just in the squares A and B in Figure 2. In these squares, Π is replaced by the Fréchet–
Hoeffding upper bound copula given by

M(u, v) = min(u, v)

for u, v ∈ [0, 1], that is, the mass in A and B is concentrated in the diagonals of these squares.
Doing so we obtain the copula D. If (u, v) ∈ [0, 1] − (A ∪ B), then D(u, v) = Π(u, v) = uv.

However, for (0.1, 0.9) ∈ A, we have,

D(0.9, 0.1) = 0.9 · 0.1 = 0.09 < D(0.1, 0.9) = 0.1 · 0.8 + 0.5 · 1
25

= 0.10.

Hence (3.2) does not hold, that is, component 1 is not weakly more important than com-
ponent 2 for this copula. The same happens for all the points in the interior part of A.
Analogously, for the points (u, v) in the interior part of B, we have D(u, v) > D(v, u).
Moreover, as the curve y = x2 used in (3.3) does not cut the region A, then (3.3) holds,
that is, 1 ≥wmiar 2. Even more, as the curve y = x2 cuts the region B, 1 ≤wmiar 2 does
not hold. To summarize, for the copula D, we have proved that 1 ≥wmiar 2 holds (with
1 �=wmiar 2) but that 1 ≥wmi 2 does not hold.
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Figure 2. Regions for the rectangular patchwork copula considered in Example 3.10.

4. CONCLUSIONS

We have provided several results connecting importance measures in coherent systems with
the performance of the systems obtained by adding redundancy in some components. These
connections can be applied to decide where the redundant components should be placed.
Our results hold for systems with both dependent and independent components and for
different redundancy mechanisms, including the most usual ones. To this purpose, we have
used known importance measures and we have also defined new ones for specific redundancy
options.

The main disadvantage of our results is that, in many of them, we need to assume
that the system has identically distributed components. However, it is a usual assumption
in engineering systems. In fact, a simple way to get a lower bound for the reliability of
a system is to consider as a common reliability function F̄ = min(F̄1, . . . , F̄n), where F̄i

represents the reliability function of the ith component for i = 1, . . . , n.
An important task for future research is to extend the present results to systems with

non-identically distributed components. Another interesting problem is to apply the pre-
ceding results to specific dependence structures (copulas) and/or systems. Also numerical
techniques should be developed for complex systems.
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