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Intimate Connections: Symmetries and
Conservation Laws in Quantum
versus Classical Mechanics
Pablo Ruiz de Olano*y

In this article, I use a number of remarks made by Eugene Wigner to defend the claim
that the nature of the connection between symmetries and conservation laws is different
in quantum and in classical mechanics. In particular, I provide a list of three differences
that obtain between the Hilbert space formulation of quantum mechanics and the La-
grangian formulation of classical mechanics. I also show that these differences are due
to the fact that conservation laws are not the only consequence that symmetries have
in quantummechanics and to the fact that, in classical mechanics, the connection between
symmetries and conservation laws does not always obtain.
1. Introduction. Throughout his career, Eugene Wigner made a number
of remarks suggesting that the role of symmetries and conservation laws
is different in quantum and in classical mechanics. Although Wigner made
the same point on several occasions, he never went on to elaborate on what
these differences were and why they mattered. In this article, I take a close
look at Wigner’s remarks and try to elucidate their meaning. As I will argue,
the basic claim behind Wigner’s comments is that the nature of the connec-
tion between symmetries and conservation laws is different in quantum and
in classical mechanics.
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Although I take Wigner’s comments as my starting point, the article is
not merely of historical interest. My purpose in elucidating Wigner’s re-
marks, indeed, is to learn about the manner in which symmetries and con-
servation laws relate to each other. My goal in this article, in other words, is
not only to determine what Wigner said but also to determine whether what
he said is true and why.

My main conclusions will be as follows. First, I will argue that the nature
of the connection between symmetries and conservation laws is different
in quantum and in classical mechanics. I will provide, in particular, a list
of three specific differences that obtain for the Hilbert space formulation
of quantum mechanics and for the Lagrangian formulation of classical me-
chanics. Second, I provide an account of the reasons why these differences
obtain. These will be related to the following two facts. In quantummechan-
ics, on the one hand, symmetries have consequences different from the pres-
ence of a conservation law. In classical mechanics, on the other hand, there
are restrictions that limit the circumstances under which the connection be-
tween symmetries and conservation laws obtains.

The article is organized as follows. I start by introducing Wigner’s com-
ments about the different role that symmetries and conservation laws play in
quantum and in classical mechanics in section 2. I single out, in particular,
three differences whose importance was repeatedly emphasized by Wigner.
After that, I introduce the elements of quantum and classical mechanics nec-
essary for making sense ofWigner’s remarks. Section 3 thus accounts for the
manner in which symmetries and conservation laws relate to each other in
quantum mechanics, while section 4 examines the case of classical mechan-
ics. In section 5, I return to Wigner’s comments, and I use them to shed light
on the nature of the connection between symmetries and conservation laws.
Finally, in section 6, I summarize the contents of this article and state its
main conclusions.
2. Wigner’s Remarks. Over the course of his career, Wigner repeatedly
claimed that symmetries and conservation laws play different roles in quan-
tum and in classical mechanics. These kinds of claims can be found in most
of Wigner’s writings on symmetry, including his essays in the collection
Symmetries and Reflections and his talk and multiple interventions in a con-
ference on “Symmetries in Physics” held at the Universitat Autònoma de
Barcelona in 1983 (Wigner 1967; García Doncel et al. 1983). These mate-
rials were published over the course of more than 30 years, and, taken to-
gether, they virtually exhaust Wigner’s writings on the subject. I have exam-
ined these works and identified a number of basic claims that, with some
variations, are present in all of them.
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The basic structure of Wigner’s comments is as follows. Wigner often
started by mentioning some of the similarities between the role that symme-
try principles play in quantum and in classical mechanics. Thus, he some-
times said that invariance principles function as “touchstones” that the laws
of both theories have to satisfy (Wigner 1964a, 998). On some other occa-
sions, he pointed out that both in quantum and in classical mechanics, the
conservation laws for energy, linear and angular momentum, and the mo-
tion of the center of mass of a system can be derived from invariance under
translations, rotations, and Lorentz boosts (Wigner 1949, 523; 1964a, 998;
1964b, 959).

After having established that there are similarities between the two cases,
Wigner always went on to make the point that the status of symmetry prin-
ciples remains different in quantum and in classical mechanics. There are,
in particular, three differences that Wigner kept mentioning in his writings
on symmetry. I list them in order here, so as to facilitate my discussion of
Wigner’s remarks later in the article:
86/6
1. Intimate connection: Wigner often claimed that the connection be-
tween symmetries and conservation laws is “more intimate” (Wigner
1949, 523) or “most evident” (Wigner 1964b, 959–60) in quantum
mechanics, the situation being “much more complex in classical the-
ory” (Garcia Doncel et al. 1983, 163).

2. Consequences of symmetry: Wigner sometimes said that invariance
principles permit “further-reaching conclusions” in quantum than in
classical mechanics (Wigner 1964a, 998).

3. Discrete symmetries: some other times, Wigner mentioned the fact
that discrete symmetries, which have “very little role in classical the-
ory,” play a much more significant role in quantum mechanics (Wig-
ner 1949, 524).
Wigner did not always articulate all of these points in detail or mention all
three differences in every single one of his writings. Still, the sequence
above constitutes a pattern that can be discerned in most of his philosoph-
ical writings on symmetry. Although he repeated the same basic claims sev-
eral times over the course of his career, he never went on to elaborate on the
meaning behind these remarks. He never specified, for instance, how is it
that the relation between symmetries and conservation laws is “more inti-
mate” in quantum than in classical mechanics or what the “further-reaching
conclusions” that symmetries have in this theory might be. My purpose in
this article consists of elucidating Wigner’s remarks by clarifying how ex-
actly differences 1–3 are to be understood and by accounting for the precise
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sense in which they are correct. In order to do this, I now turn to the relevant
elements of quantum and classical mechanics.
3. Symmetries and Conservation Laws in Quantum Mechanics

3.1. Wigner’s Definition of Symmetry. In this section, I account for the
manner in which symmetries and conservation laws relate to each other in
quantum mechanics. In order to do this, I will followWigner’s own writings
on the subject. My discussion will be based, in particular, on four journal
articles that Wigner published in 1927, on an additional paper that he pub-
lished the year after that, and on his 1931 classic Group Theory and Its Ap-
plication to the QuantumMechanics of Atomic Spectra (Wigner 1927a, 1927b,
1927c, 1927d, 1928, 1959).

Wigner’s first step in his work of the late 1920s and early 1930s was to
provide a notion of symmetry that was appropriate for the context of quan-
tum mechanics. Wigner drew from the familiar conception of symmetries
as transformations of the dynamical variables of a theory that leave the ex-
plicit form of its equations of motion unchanged. This requirement, as is well
known, also acts as a necessary and sufficient condition for a group of trans-
formations to map the set of solutions of the equations of motion of a theory
onto itself. Owing to this, the symmetries of the equations of motion of a
theory are sometimes known as “dynamical” symmetries (Brown and Hol-
land 2004).

In order to make use of the notion of a dynamical symmetry in his work
on quantum mechanics, Wigner had to refine this concept in the following
ways. First, he had to specify the symmetries of what equation he was going
to study.Wigner invariably turned to the time-independent Schrödinger equa-
tion

ĤwE 5 EwE, (1)

which tells us that the eigenfunctions wE of the Hamiltonian operator Ĥ are
energy eigenfunctions.

Second, Wigner had to clarify what was the space that symmetry trans-
formations were going to act on, in the case of quantum mechanics.
Wigner’s writings typically start with him considering transformations R
of the position coordinates on which the wave function depends. In quan-
tum mechanics, however, it is much more natural to think in terms of
operators acting on the wave function itself. In order to be able to formulate
his definition of symmetry in these terms, Wigner showed that for any trans-
formation R21 that acts on the arguments of the wave function we can al-
ways define an operator P̂R,
8 Published online by Cambridge University Press

https://doi.org/10.1086/694108


INTIMATE CONNECTIONS 1279

https://doi.org/10.10
P̂Rw ~r, tð Þ 5 w R21~r, tð Þ, (2)

that acts on the wave function w.
We thus have that in the context of quantum mechanics, dynamical sym-

metries can be understood as operators that act on the Hilbert space of wave
functions and map the set of solutions of the time-independent Schrödinger
equation onto itself. If the notion of a dynamical symmetry is understood in
this manner, it is easy to show that the necessary and sufficient condition for
an operator P̂R to implement a symmetry transformation is given by the con-
dition

Ĥ , P̂R

� �
5 0: (3)

In quantum mechanics, that is to say, an operator P̂R implements a symme-
try transformation if and only if it commutes with the Hamiltonian.
3.2. Conservation Laws. Equipped with this definition of symmetry,
Wigner could go on to explore the consequences that symmetries have in
quantum mechanics. To see that conservation laws are among these conse-
quences we need to introduce the time-dependent Schrödinger equation,

iℏ
∂
∂t
w ~r, tð Þ 5 Ĥw ~r, tð Þ, (4)

which describes the time evolution of an arbitrary wave function w(~r, t).
Second, and more important, it follows from (4) that symmetries and

conservation laws are related to each other in quantum mechanics. If a lin-
ear operator P̂R satisfies the commutation condition (3), its eigenstates
wR1

, :::, wRn
, with eigenvalues aR1

, :::, aRn
, will be stationary states. The fol-

lowing set of conservation laws will then obtain:

d

dt

���cRi
tð Þ
���2 5 0, for i 5 1, :::, n, (5)

for the coefficients cRi
that result from expressing an arbitrary wave function

w with respect to the basis provided by the eigenstates of P̂R as

w 5 o
n

i50

cRi
tð ÞwRi

: (6)

3.3. Further Consequences of Symmetry. The above shows that there
is a relation between symmetries and conservation laws in quantum me-
chanics. As it turns out, however, there is a second kind of consequence that
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symmetries have in this theory, which obtains whenever (3) is satisfied and
involves the transformation properties of the energy eigenfunctions.

To see how the presence of a symmetry affects the manner in which the
energy eigenstates transform, assume that a group G of operators P̂R satis-
fies (3). In this case, as we have seen, the operators of the group will imple-
ment dynamical symmetry transformations that map energy eigenstates onto
energy eigenstates. For a nondegenerate eigenvalue E with eigenstate wE and
an operator P̂R ∈ G, therefore, we have that

P̂RwE 5 aEwE, (7)

where aE is a complex number that will in general be different for different
energy eigenvalues.

The above is no longer true if the eigenvalue E is degenerate among l
different eigenfunctions fwE1

, :::, wEl
g. In this case, however, the linearity

of the Schrödinger equation gives us the following result. Since the time-
independent Schrödinger equation is linear, the eigenfunctions wEi

form a
vector space. It must therefore be the case that

P̂RwEi
5 o

l

j51

DR Gð ÞijwEj
, (8)

where the coefficients DR(G)ij will depend on the properties of the specific
operator P̂R under consideration and on the properties of the symmetry
group G more generally. As Wigner shows, indeed, the coefficients DR(G)ij
form a representation of G.

We thus have that, whenever (3) obtains, the energy eigenfunctions trans-
form as representations of the relevant symmetry group. This shows that,
as I advanced before, conservation laws are not the only kind of conse-
quence that symmetries have in quantum mechanics: there is a second kind
of consequence that concerns the transformation properties of the energy
eigenfunctions. This second kind of consequence, furthermore, was system-
atically deployed by Wigner and used for various practical purposes. In his
work of the late 1920s and early 1930s, for example, Wigner used result (8)
to substitute explicit calculations by qualitative considerations, thereby side-
stepping computational difficulties in atomic physics. This fact will turn out
to be important, as we will see, in interpreting Wigner’s comments in sec-
tion 5.

4. Symmetries and Conservation Laws in Classical Mechanics

4.1. Noether’s Theorems. After having described the manner in which
symmetries and conservation laws relate to each other in quantum mechan-
ics, we can now turn to the case of classical mechanics. My discussion will
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focus on the Lagrangian formalism, and it will follow the available litera-
ture on Noether’s theorems.1 I will follow, in particular, Katherine Brading’s
and Harvey Brown’s derivation of both of Noether’s theorems and Harvey
Brown’s and Peter Holland’s work on the first theorem (Brading and Brown
2003; Brown and Holland 2004). My treatment of the second theorem, addi-
tionally, is based on Katherine Brading’s work on this subject (Brading 2002,
2005).

Although Noether’s theorems provide us with a very general account of
the consequences that symmetries have in classical mechanics, seeing how
this is the case is not immediately obvious. Noether’s primary goal in prov-
ing her two theorems, in fact, was to settle a dispute about the status of the
conservation of energy in general relativity (Noether 1918; Brading 2005).

To see how Noether’s work relates to the topic of symmetry, consider the
manner in which her two theorems are proved. Noether took the action
functional of a classical field theory

S wi, ∂mwi, x
m½ � 5

ð
R

L wi, ∂mwi, x
mð Þ dx4, (9)

with Lagrangian density L, and she required that its numerical value re-
mains invariant under joint transformations of the xm and the wi:

xm → xm 1 dxm

wi → wi 1 dwi,
(10)

where the dwi and the dxm can be parametrized in terms of r continuous pa-
rameters qk as

dxm 5 h
m
kDq

k

d0wi 5 yikDq
k:

(11)

Note that the quantities Dqk above represent infinitesimal increments of the
group parameters and that d0 is the so-called Lie drag, which accounts for
the part of the variation in the wi that is not due to the variation of the inde-
pendent variables xm.

Noether first showed that the numerical value of the action remains in-
variant under transformations of the form of (10), if and only if the follow-
ing r identities are satisfied, one for each parameter qk in (11):

Eid0wi 5 jmk , for k 5 1, :::, r, (12)
1. For an overview of the manner in which symmetries and conservation laws relate to
each other in the Hamiltonian formalism, which includes a comparison with the La-
grangian formalism, the reader is refereed to Butterfield (2006).
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where the Ei above are the so-called Euler expressions, which vanish when-
ever the equations of motion of their associated fields are satisfied.2 The
quantities jmk are known as “Noether currents,” and they are given by the ex-
pression

jmk 5
∂L

∂ ∂mwið Þ yik 2 Lhm
k : (13)

Noether then derived two further sets of identities from (12), which corre-
spond to her two theorems. The case of a global symmetry group with con-
stant parameters qk gives us the first theorem, which consists of the follow-
ing r identities:

Eiyik 5 ∂m j
m
k , for k 5 1, :::, r: (14)

For the case of a local symmetry in which the qk depend on the xm one ob-
tains the second theorem, which consists of another set of r identities, and a
further result that is sometimes known as the “boundary theorem” (Brading
2005). Although these two results are important in their own right, I focus
on the first theorem in what follows, as it will turn out to be the most im-
portant for our purposes.

The relevance of the first theorem for the topic of symmetry derives from
the fact that the requirement of numerical invariance of the action functions
as a sufficient condition for a group of transformations to leave the equa-
tions of motion of the relevant theory invariant. A group of transformations
that leaves the numerical value of the action functional of a theory invariant,
that is to say, is a symmetry group of the theory in question, in the sense of a
dynamical symmetry that was introduced before. Expression (14), there-
fore, provides us with an account of the consequences that symmetries have
in classical mechanics. If a symmetry group leaves the numerical value of
the action invariant, that is to say, then the identities in (14) obtain.
4.2. Conservation Laws. To see how the above leads to the presence of
a conservation law, assume that the Euler-Lagrange equations for all the
fields involved in a symmetry transformation are satisfied. In this case,
the left-hand side of (14) vanishes and the first theorem gives us r continuity
equations for the Noether currents:
2. As it turns out, the requirement that the action remains numerically invariant under
transformations of the form of (10) can be relaxed to require that the action remains in-
variant up to the integral of a divergence term. This was shown by Bessel-Hagen for the
first time (Bessel-Hagen 1921; Brading and Brown 2003). I disregard this nuance in
what follows, however, as it is not strictly relevant for my purposes.
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∂m j
m
k 5 0, for k 5 1, :::, r: (15)

The case of a local symmetry introduces a few nuances, but one obtains a
set of continuity equations of the form of (15) also in this case (Brading
2002).

Although the continuity equations in (15) are sometimes referred to as
“local conservation laws,” I reserve the term “conservation law” for expres-
sions that explicitly assert the invariance in time of some quantity. In order
to obtain these kinds conservation laws, one may simply integrate the con-
tinuity equations in (15) over a three-dimensional volume V to obtain

ð
V

~∇ � jk!1
d

dt
j 0k

� �
dx3 5 0, for k 5 1, :::, r: (16)

The first term in the left-hand side of (16) can be turned into a surface in-
tegral bymaking use of Gauss’s theorem. If the j jk!j satisfy appropriate bound-
ary conditions, then the surface term can be made arbitrarily small for a suf-
ficiently large volume, and we obtain r conservation laws

dQk

dt
5 0, for k 5 1, :::, r, (17)

for the “Noether charges” given by

Qk 5

ð
V

j 0k dx
3: (18)

4.3. Restrictions. The above shows that, just like in the case of quan-
tum mechanics, there is a relation between symmetries and conservation
laws in classical mechanics. This relation, however, is mediated by Noether’s
theorems, and it will only obtain as long as the two theorems are valid. As it
turns out, there are limitations to the domain of applicability of Noether’s the-
orems, and these impose restrictions on the circumstances under which sym-
metries and conservation laws are related to each other in classical mechanics.
The derivation of Noether’s theorems that I provided in section 4.1 will prove
useful in making sense of these restrictions.

First, keep in mind that Noether’s proof was cast in the framework of the
Lagrangian formalism. Her starting point, as we saw above, was the action
functional of a Lagrangian field theory. Because of this, Noether’s theorems
apply to Lagrangian theories only. And since not all classical theories can
be written in Lagrangian form, Noether’s use of the Lagrangian formalism
constrains the domain of applicability of the two theorems. As an example,
consider the case of theories with velocity-dependent forces, which are in
86/694108 Published online by Cambridge University Press
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general not amenable to a Lagrangian treatment. In these kinds of theories,
as Wigner (1954) pointed out, one cannot derive a conservation law from a
symmetry.

Second, recall that Noether’s derivation of the two theorems proceeded
by requiring that the action functional remains invariant under infinitesimal
transformations of both the dependent and the independent variables of a
classical field theory. Noether’s focus on infinitesimal transformations is
not coincidental, however, as this is necessary for her proof to go through.
Her derivation, indeed, proceeded by deploying the calculus of variations,
which can only be used for transformations that can be written in infinites-
imal form. Since only continuous symmetries can be expressed in thismanner,
discrete symmetries fall outside of the domain of applicability of Noether’s
theorems. Both theorems, that is to say, remain silent about the consequences
that follow from invariance of the action under discrete symmetries such as
reflections.

Finally, note that the relevance of Noether’s work for the topic of sym-
metry derived from the fact that the requirement of invariance of the action
functions as a sufficient condition for a group of transformations to count as
dynamical symmetries. This condition, however, turns out to be sufficient
but not necessary, and we thus have that there are symmetries that leave
the equations of motion of a theory invariant but fail to leave the numerical
value of its action functional unchanged. The first theorem does not apply
to these kinds of symmetries, which have no conservation law attached to
them. Brown and Holland (2004) have given examples of these kinds of
symmetries, which include “rescaling” transformations that leave the equa-
tions of motion unchanged but introduce a multiplicative constant in the ac-
tion.

The point is sometimes made by appealing to a difference between var-
iational and dynamical symmetries (Olver 1986; Brown and Holland 2004).
Variational symmetries are defined as transformations that leave the numer-
ical value of the action invariant, while the definition of a dynamical sym-
metry remains as in section 3. While all variational symmetries are dynam-
ical symmetries, the converse is not true. Using this terminology, therefore,
we may say that Noether’s theorems tell us about the consequences of some
but not all dynamical symmetries. They only tell us, that is to say, about the
consequences of those dynamical symmetries that are variational symme-
tries too.

We thus see that, although there is a relation between symmetries and
conservation laws in classical mechanics, this relation does not obtain for
all classical theories and all symmetry transformations. It only obtains, as we
have just seen, for Lagrangian theories and for continuous, variational sym-
metries. This supports my previous claim that, in classical mechanics, a num-
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ber of restrictions exist, which limit the circumstances under which symme-
tries and conservation laws relate to each other.

5. Wigner Explained. In the previous two sections, I described the man-
ner in which symmetries and conservation laws relate to each other in quan-
tum and in classical mechanics. We are now in a position to use these ma-
terials to shed light onWigner’s remarks. My goal in this section will consist
of showing that Wigner’s remarks can be construed as comments about the
relation between symmetries and conservation laws and that, when so inter-
preted,Wigner’s claims are correct. This will allowme to achieve my goal of
getting clear on the specific ways in which the nature of the connection be-
tween symmetries and conservation laws is different in quantum and in clas-
sical mechanics and on the reasons why these differences obtain.

Let me start by going back to Wigner’s claims 1–3, which I introduced in
section 2, and showing the precise sense in which they are correct:

1*. Intimate connection: Wigner’s first claim was that the connection be-
tween symmetries and conservation laws is “more intimate” in quan-
tum mechanics than in the “much more complex case” of classical
mechanics. Our discussion of Noether’s theorems will help us under-
stand the sense in which this is the case. As we saw in section 4,
Noether’s theorems introduce a number of restrictions on the kinds
of theories and the kinds of transformations for which the connection
between symmetries and conservation laws obtains. In particular, we
saw that the connection only obtains for Lagrangian theories and for
continuous, variational symmetries. What theories can be written in
Lagrangian form and what dynamical symmetries are variational sym-
metries too, however, turn out to be difficult questions to give a gen-
eral answer to, due to the subtleties behind the Lagrangian formalism.
As we saw in section 3, however, none of these restrictions apply in
quantummechanics. In this sense, the connection between symmetries
and conservation laws is “more intimate” and “less complex” in quan-
tum than in classical mechanics.

2*. Consequences of symmetry: Wigner’s second point was that symme-
try principles allow for “further-reaching consequences” in quantum
than in classical mechanics. Our discussion in section 3 makes clear
the sense in which this is true. As we saw there, conservation laws
are but one of the consequences that follow from the presence of a
symmetry in quantum mechanics. In this theory, symmetries have a
further kind of consequence that concerns the transformation prop-
erties of the energy eigenfunctions and was used by Wigner for
various practical purposes. These are, if my analysis is correct, the
86/694108 Published online by Cambridge University Press
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“further-reaching consequences” that he made reference to in his
writings. As we saw in section 4, no such consequences obtain in clas-
sical mechanics, and it is in this sense that Wigner’s second claim is
also correct.

3*. Discrete symmetries: Finally, Wigner claimed that discrete symme-
tries play “very little role” in classical mechanics and are much more
important in quantum mechanics. This is true in the following sense.
We have already seen how, in classical mechanics, discrete symmetries
do not have conservation laws attached to them. In quantum mechan-
ics, by contrast, discrete symmetries are not only related to conserva-
tion laws, but they also give rise to the second kind of consequence that
was discussed above. As Wigner emphasized multiple times, further-
more, discrete symmetries such as reflections play a particularly prom-
inent role in atomic physics, via the associated notion of parity.

Items 1*–3* above account for the manner in which Wigner’s remarks need
to be interpreted in order to be correct. When construed this way, however,
Wigner’s remarks become claims about the different nature that the connec-
tion between symmetries and conservation laws takes in quantum and in
classical mechanics. Item 1* becomes a difference about the kinds of sym-
metry transformations that are related to conservation laws in each case.
Item 2* becomes a difference about the kinds of consequences that accom-
pany, or fail to accompany, conservation laws. Finally, item 3* involves
both kinds of differences. Because Wigner’s comments can be interpreted
as claims about the different nature that the connection between symmetries
and conservation laws has in quantum and in classical mechanics, and be-
cause when so interpreted Wigner’s comments are correct, we have that the
nature of this connection is in fact different in the two theories.

As for the reasons why these differences obtain, they boil down to the
two main facts that I mentioned in section 1. As we saw in section 4, there
are restrictions in classical mechanics, which limit the kinds of circum-
stances under which the connection between symmetries and conservation
laws obtains. These restrictions account for difference 1*. In quantum me-
chanics, additionally, symmetries have further consequences, which are dif-
ferent from the presence of a conservation law. Section 3 was devoted to in-
troducing these kinds of further consequences, which are responsible for
difference 2*. Finally, difference 3* is a result of both the restrictions that
limit the circumstances under which the connection between symmetries
and conservation laws obtains in classical mechanics and the further conse-
quences that accompany symmetry principles in quantum mechanics. Taken
together, therefore, these two considerations account for all three of the dif-
ferences 1*–3* above.
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6. Conclusion. My starting point in this article was a number of remarks
that Eugene Wigner made at different times over the course of his career,
which I labeled as 1–3. In order to make sense of Wigner’s remarks, I in-
troduced some elements of quantum and classical mechanics in sections 3
and 4. This allowed me to construe Wigner’s remarks as three claims 1*–
3* about the different ways in which symmetries and conservation laws relate
to each other in quantum and in classical mechanics.

Construed as 1*–3*, Wigner’s remarks tell us about the specific ways in
which the nature of the connection between symmetries and conservation
laws is different in quantum and in classical mechanics. The upshot is that,
on the one hand, the connection between symmetries and conservation laws
does not always obtain in classical mechanics. This is only the case, as we
saw, for Lagrangian theories and for continuous, variational symmetries.
On the other hand, symmetries have additional consequences in quantum
mechanics, which are different from the presence of a conservation law.
These consequences concern the transformation properties of the energy
eigenfunctions, and they sometimes allow for various practical applications.
REFERENCES

Bessel-Hagen, E. 1921. “Über die erhaltungssätze der elektrodynamik.” Mathematische Annalen
84:258–76.

Brading, K. 2002. “Which Symmetry? Noether, Weyl, and Conservation of Electric Charge.” Stud-
ies in History and Philosophy of Modern Physics 33:3–22.

———. 2005. “A Note on General Relativity, Energy Conservation, and Noether’s Theorems.” In
The Universe of General Relativity, ed. Anne J. Kox and Jean Eisenstaedt, 125–35. Boston:
Birkhauser.

Brading, K., and H. Brown. 2003. “Symmetries and Noether’s Theorems.” In Symmetries in Phys-
ics: Philosophical Reflections, ed. Katherine Brading and Elena Castellani, 89–109. New
York: Cambridge University Press.

Brown, H., and P. Holland. 2004. “Dynamical versus Variational Symmetries: Understanding
Noether’s First Theorem.” Molecular Physics 102:1133–39.

Butterfield, J. 2006. “On Symmetry and Conserved Quantities in Classical Mechanics.” In Physical
Theory and Its Interpretation: Essays in Honor of Jeffrey Bub, ed. William Demopoulos and
Itamar Pitowsky, 89–109. Dordrecht: Springer.

García Doncel, M., A. Hermann, L. Michel, and A. Pais. 1983. Symmetries in Physics, 1600–1980:
Proceedings of the 1st International Meeting on the History of Scientific Ideas. Barcelona:
Servei de publicacions de la Universitat Autónoma de Barcelona.

Noether, E. 1918. “Invariante variationsprobleme.” Nachrichten von der Gesellschaft der Wis-
senschaften zu Göttingen, Mathematisch-Physikalische Klasse, 235–57.

Olver, P. 1986. Applications of Lie Groups to Differential Equations. New York: Springer.
Wigner, E. 1927a. “Berichtigung zu der arbeit: Einige folgerungen aus der Schrödingerchen theorie

für die termstrukturen.” Zeitschrift f ür Physik 45:601–2.
———. 1927b. “Einige folgerungen aus der schrödingerchen theorie für die termstrukturen.”

Zeitschrift für Physik 43:624–52.
———. 1927c. “Über nichtkombinierende terme in der neueren quantentheorie. erster teil.”

Zeitschrift für Physik 40:492–500.
86/694108 Published online by Cambridge University Press

https://doi.org/10.1086/694108


1288 PABLO RUIZ DE OLANO

https://doi.org/10.1086/69410
———. 1927d. “Über nichtkombinierende terme in der neueren quantentheorie. ii. teil.” Zeitschrift
für Physik 40:883–92.

———. 1928. “Über die erhaltungssätze in der quantenmechanik.” Nachrichten der Gesellschaft
de Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 375–81.

———. 1949. “Invariance in Physical Theory.” Proceedings of the American Philosophical Soci-
ety 93:521–26.

———. 1954. “Conservation Laws in Classical and Quantum Physics.” Progress of Theoretical
Physics 11:437–40.

———. 1959. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra.
Trans. J. Griffin. Rev ed. New York: Academic Press.

———. 1964a. “Events, Laws of Nature, and Invariance Principles.” Science 145:995–99.
———. 1964b. “Symmetry and Conservation Laws.” Proceedings of the National Academy of Sci-

ences of the USA 51:956–65.
———. 1967. Symmetries and Reflections: Scientific Essays of Eugene P. Wigner. Bloomington:

Indiana University Press.
8 Published online by Cambridge University Press

https://doi.org/10.1086/694108

