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Turbulent flows in the presence of walls may be apprehended as a collection of
momentum- and energy-containing eddies (energy-eddies), whose sizes differ by many
orders of magnitude. These eddies follow a self-sustaining cycle, i.e. existing eddies
are seeds for the inception of new ones, and so forth. Understanding this process is
critical for the modelling and control of geophysical and industrial flows, in which
a non-negligible fraction of the energy is dissipated by turbulence in the immediate
vicinity of walls. In this study, we examine the causal interactions of energy-eddies
in wall-bounded turbulence by quantifying how the knowledge of the past states
of eddies reduces the uncertainty of their future states. The analysis is performed
via direct numerical simulation of turbulent channel flows in which time-resolved
energy-eddies are isolated at a prescribed scale. Our approach unveils, in a simple
manner, that causality of energy-eddies in the buffer and logarithmic layers is similar
and independent of the eddy size. We further show an example of how novel flow
control and modelling strategies can take advantage of such self-similar causality.
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1. Introduction

Since the first experiments by Klebanoff, Tidstrom & Sargent (1962) and Kline
et al. (1967), it was shortly realised that despite the conspicuous disorder of wall
turbulence, the flow is far from structureless. Instead, fluid motions in the vicinity
of walls can be apprehended as a collection of recurrent patterns usually referred
to as coherent structures or eddies (Richardson 1922). Particularly interesting are
those eddies carrying most of the kinetic energy and momentum, further categorised
as streaks (regions of high and low velocity aligned with the mean-flow direction)
and rolls/vortices (regions of rotating fluid). These eddies are considered the most
elementary structures capable of explaining the energetics of wall-bounded turbulence
as a whole, and are the cornerstone of modelling and controlling geophysical
and industrial flows (Sirovich & Karlsson 1997; Hof et al. 2010). The practical
implications of wall turbulence are evidenced by the fact that approximately 25 %
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FIGURE 1. (Colour online) Instantaneous turbulence kinetic energy, (u? + v? + w'?)/2,
where the prime denotes fluctuating quantities with respect to their mean values defined
by averaging in the homogeneous directions and time. The turbulence kinetic energy is
normalised in wall units and plotted for planes parallel to streamwise and wall-normal
directions. The data are from a direct numerical simulation (DNS) of a turbulent channel
flow at Re, ~#4200 in a non-minimal domain by Lozano-Durdan & Jiménez (2014a). The
red ovals highlight the location of energy-eddies of different sizes in the buffer and log
layers, respectively, while the white dashed lines indicate the local domain of each eddy.

of the energy used by the industry is spent in transporting fluids along pipes or in
propelling vehicles through air or water (Jiménez 2013). Hence, understanding the
dynamics of energy-eddies has attracted enormous interest within the fluid mechanics
community (see reviews by Robinson 1991; Kawahara, Uhlmann & van Veen 2012;
Haller 2015; McKeon 2017; Jiménez 2018). In spite of the substantial advancements
in the last decades, the causal interactions among coherent motions have been
overlooked in turbulence research. In the present work, we frame the causal analysis
of energy-eddies from an information-theoretic perspective.

The most celebrated conceptual model for wall-bounded turbulence was proposed
by Townsend (1976), who envisioned the flow as a multiscale population of
energy/momentum eddies starting from the wall and spanning a wide range of sizes
across the boundary layer thickness as highlighted in figure 1. The conceptualisation
of the flow as a superposition of energy-eddies of different sizes is usually referred
to as the wall-attached eddy model. The smallest energy-eddies are located closer to
the wall, in the buffer layer, and their sizes are dictated by the limiting effect of the
fluid viscosity. For example, the size of the buffer layer energy-eddies may be of
the order of millimetres for atmospheric flows (Marusic, Mathis & Hutchins 2010).
Further from the wall, in the so-called logarithmic layer (log layer), the flow is also
organised into energy-eddies that differ from those in the buffer layer by their larger
dimensions, e.g. of the order of hundreds of metres for atmospheric flows (Marusic
et al. 2010).

The existence of wall-attached energy-eddies as depicted above is endorsed by
a growing number of studies. The footprint of attached flow motions has been
observed experimentally and numerically in the spectra and correlations at relatively
modest Reynolds numbers in pipes (Morrison & Kronauer 1969; Perry & Abell
1975, 1977; Bullock, Cooper & Abernathy 1978; Kim 1999; McKeon et al. 2004;
Guala, Hommema & Adrian 2006; Bailey et al. 2008; Hultmark et al. 2012) and in
turbulent channels and flat-plate boundary layers (Tomkins & Adrian 2003; Del Alamo
et al. 2004; Hoyas & Jiménez 2006; Monty et al. 2007; Hoyas & Jiménez 2008;
Vallikivi, Ganapathisubramani & Smits 2015; Chandran et al. 2017). Other works
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have extended the attached-eddy model (Perry & Chong 1982; Perry, Henbest &
Chong 1986; Perry & Marusic 1995) or complemented the original picture proposed
by Townsend (Davidson, Nickels & Krogstad 2006; Mizuno & Jiménez 2011; Dong
et al. 2017; Lozano-Duran & Bae 2019). Reviews of Townsend’s model can be found
in Smits, McKeon & Marusic (2011), Jiménez (2012, 2013, 2018) and Marusic &
Monty (2019).

Traditionally, wall-attached eddies have been interpreted as statistical entities
(Marusic et al. 2010; Smits et al. 2011), but recent works suggest that they can also
be identified as instantaneous features of the flow (see Jiménez 2018, and references
therein). The methodologies to identify instantaneous energy-eddies are diverse and
frequently complementary, ranging from the Fourier characterisation of the turbulent
kinetic energy (Jiménez 2013, 2015) to adaptive mode decomposition (Hellstrom,
Marusic & Smits 2016; Agostini & Leschziner 2019; Cheng et al. 2019), and
three-dimensional clustering techniques (e.g. Del Alamo e al. 2006; Lozano-Durén,
Flores & Jiménez 2012; Lozano-Durdn & Jiménez 2014b; Hwang & Sung 2018,
2019), to name a few. The detection and isolation of energy-eddies have deepened
our understanding of the spatial structure of turbulence. However, the most interesting
results are not the kinematic description of these eddies in individual flow realisations,
but rather the elucidation of how they relate to each other and, more importantly,
how they evolve in time.

In the buffer layer, the current consensus is that energy-eddies are involved in a
temporal self-sustaining cycle (Jiménez & Moin 1991; Hamilton, Kim & Waleffe
1995; Waleffe 1997; Schoppa & Hussain 2002; Farrell, Gayme & loannou 2017)
based on the emergence of streaks from wall-normal ejections of fluid (Landahl &
Landahlt 1975) followed by the meandering and breakdown of the new-born streaks
(Swearingen & Blackwelder 1987; Waleffe 1995, 1997; Kawahara et al. 2003). The
cycle is restarted by the generation of new vortices from the perturbations created by
the disrupted streaks. In this framework, it is hypothesised that streamwise vortices
collect the fluid from the inner region, where the flow is very slow, and organise
it into streaks (cf. Butler & Farrell 1993). Other works suggest that the generation
of streaks is due to the structure-forming properties of the linearised Navier—Stokes
operator, independently of any organised vortices (Chernyshenko & Baig 2005).
Conversely, the streaks are hypothesised to trigger the formation of vortices by losing
their stability (Waleffe 1997; Farrell & loannou 2012) or the collapse of vortex
sheets via streamwise stretching (Schoppa & Hussain 2002). The reader is referred
to Panton (2001) and Jiménez (2018) for reviews on self-sustaining processes in the
buffer layer.

A similar but more disorganised scenario is hypothesised to occur for the larger
wall-attached energy-eddies within the log layer (Flores & Jiménez 2010; Hwang
& Cossu 2011; Cossu & Hwang 2017). The existence of a self-similar streak/roll
structure in the log layer consistent with Townsend’s attached-eddy model has been
supported by the numerical studies by Del Alamo er al. (2006), Flores & Jiménez
(2010), Hwang & Cossu (2011), Lozano-Durdn et al. (2012) and Lozano-Duridn &
Jiménez (2014b), among others. A growing body of evidence also indicates that the
generation of the log-layer streaks has its origins in the linear lift-up effect (Kim &
Lim 2000; Del Alamo & Jiménez 2006; Pujals et al. 2009; Hwang & Cossu 2010;
Moarref et al. 2013; Alizard 2015) in conjunction with Orr’s mechanism (Orr 1907;
Jiménez 2012). Regarding roll formation, several works have speculated that they
are the consequence of a sinuous secondary instability of the streaks that collapses
through a rapid meander until breakdown (Andersson et al. 2001; Park, Hwang &
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Cossu 2011; Alizard 2015; Cassinelli, de Giovanetti & Hwang 2017), while others
advocate for a parametric instability of the streamwise-averaged mean flow as the
generating mechanism of the rolls (Farrell et al. 2016).

Although it is agreed that both the buffer-layer and log-layer energy-eddies are
involved in a self-sustaining cycle, their causal relationships have only been assessed
indirectly by altering the governing equations of fluid motion (Jiménez & Pinelli
1999; Hwang & Cossu 2010, 2011; Farrell et al. 2017). Moreover, the mechanisms
discussed above, each capable of leading to the observed turbulence structure, are
rooted in simplified theories or conceptual arguments. Whether the flow follows any
or a combination of these mechanisms is in fact unclear. Most interpretations stem
from linear stability theory, which has proved successful in providing a theoretical
framework to rationalise the length and time scales observed in the flow (Del Alamo
& Jiménez 2006; Pujals er al. 2009; Jiménez 2015). However, a base flow must be
selected a priori to enable the linearisation of the equations, which introduces an
important degree of arbitrariness, and quantitative results are known to be sensitive
to the details of the base state (Vaughan & Zaki 2011; Lozano-Durdn, Karp &
Constantinou 2018b). Another criticism for linear theories comes from the fact that
turbulence is a highly nonlinear phenomenon, and a complete self-sustaining cycle
cannot be anticipated from a single set of linearised equations.

The limitations above have hampered the comparison of the flow dynamics in the
buffer and log layers, and there is no conclusive evidence on whether the mechanisms
controlling the eddies at different scales are of similar nature. One major obstacle
arises from the lack of a tool in turbulence research that resolves the cause-and-effect
dilemma and unambiguously attributes a set of observed dynamics to well-defined
causes. This brings to attention the issue of causal inference, which is a central
theme in many scientific disciplines but has barely been discussed in turbulent
flows with the exception of a handful of works (Cerbus & Goldburg 2013; Tissot
et al. 2014; Liang & Lozano-Durdn 2017; Bae, Encinar & Lozano-Durdan 2018a).
Given that the events in question are usually known in the form of time series, the
quantification of causality among temporal signals has received the most attention.
Typically, causal inference is simplified in terms of time correlation between pairs of
signals. However, it is known that correlation lacks the directionality and asymmetry
required to guarantee causation (Beebee, Hitchcock & Menzies 2012). To overcome
the pitfalls of correlations, Granger (1969) introduced a widespread test for causality
assessment based on the statistical usefulness of a given time signal in forecasting
another. Nonetheless, there are ongoing concerns regarding the presumptions about the
joint statistical distribution of the data as well as the applicability of Granger causality
to strongly nonlinear systems (Stokes & Purdon 2017). In an attempt to remedy this
deficiency, recent works have centred their attention to information-theoretic measures
of causality such as transfer entropy (Schreiber 2000) and information flow (Liang
& Kleeman 2006; Liang 2014). The former is notoriously challenging to evaluate,
requiring long time series and high associated computation cost (Hlavackova-Schindler
et al. 2007), but recent advancements in entropy estimation from insufficient datasets
(Kozachenko & Leonenko 1987; Kraskov, Stogbauer & Grassberger 2004) and the
advent of longer time series from numerical simulations have made transfer entropy
a viable approach.

In this study, we use transfer entropy from information theory to quantify
the causality among energy-eddies. Our goal is to compare the fully nonlinear
self-sustaining processes in the buffer layer and log layer with minimum intrusion. We
show that eddies in both layers follow comparable self-sustaining processes despite
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FIGURE 2. (Colour online) Minimal simulations of wall-bounded turbulence to isolate
energy-eddies in (a) the buffer layer, and (b) the log layer. The quantity represented is the
turbulence kinetic energy at different planes. Only half of the channel domain is shown
in the y-direction. The wall is located at y* =0, quantities are scaled in + units and the
arrows indicate the mean-flow direction. Panel (a) also includes the computational domain
for the buffer-layer simulation, shown at scale with respect to the log-layer simulation in
panel (b). See also Movie 1.

their vastly different sizes. Our findings are also used to inspect the implications
of self-similar causality of energy-eddies for the control and modelling of wall
turbulence.

The paper is organised as follows. The numerical experiments and methods are
introduced in §2. In §2.1, we describe two numerical simulations to isolate the
energy-eddies in the buffer layer and log layer, respectively. The characterisation
of energy-eddies as time signals is discussed in §2.2, and the methodology for
quantifying causal interactions among the signals is offered in §2.3. The results are
presented in § 3. We first investigate the relevant time scales for causal inference in
§ 3.1, then the causal links among energy-eddies in § 3.2 and finally some applications
to flow modelling in § 3.3. We conclude our study in §4.

2. Numerical experiments and methods
2.1. Isolating energy-eddies at different scales

To investigate the self-sustaining process of the energy-eddies at different scales,
we examine data from two temporally resolved DNS of an incompressible turbulent
channel flow. Each simulation is performed within a computational domain tailored to
isolate just a few of the most energetic eddies in either the buffer layer (Jiménez &
Moin 1991) or log layer (Flores & Jiménez 2010), respectively, and can be considered
as the simplest numerical set-up to study wall-bounded energy-eddies of a given size.
The configuration of the two simulations is illustrated in figure 2(a,b) (see also
movie 1 available at https://doi.org/10.1017/jtm.2019.801).

Hereafter, the streamwise, wall-normal and spanwise directions are denoted by x, y
and z, respectively, and the corresponding flow velocity components by u, v and w.
Each DNS is characterised by its friction Reynolds number Re, =4/§,, where § is the
channel half-height and §, is the viscous length scale defined in terms of the kinematic
viscosity of the fluid, v, and the friction velocity at the wall, u,. Our friction Reynolds
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numbers are Re, = 180 for the buffer-layer simulation and Re, 22000 for the log-layer
case, which yield a scale separation of roughly a decade between the energy-eddies in
each simulation. The disparity in sizes between the buffer- and log-layer DNS domains
is remarked in figure 2. Lengths and velocities normalised by 4, and u., respectively,
are denoted by the superscript +.

For the buffer-layer simulation, the streamwise, wall-normal and spanwise domain
sizes are LT ~ 337, L} ~ 368 and L] ~ 168, respectively. Jiménez & Moin (1991)
showed that simulations in this domain constitute an elemental structural unit
containing a single streamwise streak and a pair of staggered quasi-streamwise
vortices, which reproduce reasonably well the statistics of the flow in larger domains.
For the log-layer simulation, the length, height and width of the computational domain
are LT ~ 3148, L;’ ~ 4008 and LI ~ 1574, respectively. These dimensions correspond
to a minimal box simulation for the log layer and are considered to be sufficient to
isolate the relevant dynamical structures involved in the bursting process (Flores &
Jiménez 2010). Minimal log-layer simulations have also demonstrated their ability
to reproduce statistics of full-size turbulence computed in larger domains (Jiménez
2012).

The flow is simulated for more than 800§ /u, after transients. This period of time is
orders of magnitude longer than the typical lifetime of the individual energy-eddies in
the flow, whose lifespans are statistically shorter than §/u, (Lozano-Durdn & Jiménez
2014b). During the simulation, snapshots of the flow were stored frequently in time
every 0.036/u, (=56,/u,) and 0.056/u, (=906,/u,) for the buffer and log layers,
respectively. It is also convenient to normalise the values above with the time scale
introduced by mean shear S—', defined by averaging in the homogeneous directions,
time and a prescribed band along the wall-normal direction. Selecting as representative
bands y* € [40, 80] and y* € [500, 700] for the buffer layer and log layer, respectively
(more details in § 2.2), our simulations span a period longer than 10°S~!, with a time
lag between stored snapshots smaller than 0.55~!. The long yet temporally resolved
datasets of the current study enable the statistical characterisation of many eddies
throughout their entire life cycle.

The simulations are performed by discretising the incompressible Navier—Stokes
equations with a staggered, second-order accurate, central finite difference method in
space (Orlandi 2000), and a explicit third-order accurate Runge—Kutta method (Wray
1990) for time advancement. The system of equations is solved via an operator
splitting approach (Chorin 1968). Periodic boundary conditions are imposed in the
streamwise and spanwise directions, and the no-slip condition is applied at the
walls. The flow is driven by a constant mean pressure gradient in the streamwise
direction. For both the buffer and log layers, the streamwise and spanwise grid
resolutions are uniform and equal to Ax™ ~ 6, and Az" ~ 3, respectively. The
wall-normal grid resolution, Ay, is stretched in the wall-normal direction following
an hyperbolic tangent with Ay, ~ 0.3 and Ay! = 10. The time step is such that
the Courant-Friedrichs-Lewy condition is always below 0.5 during the run. The
code has been validated in turbulent channel flows (Bae et al. 2018b,c) and flat-plate
boundary layers (Lozano-Durdn, Hack & Moin 2018a). Details on the parameters of
the numerical set-up are included in table 1.

2.2. Characterisation of energy-eddies as time signals

The next step is to quantify the kinetic energy carried by the streaks and rolls as a
function of time. To do that, we use the Fourier decomposition, (-), of each velocity
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Simulation ~ Re, L% LT Ax"™ Azt Ayt Ayh. No N, N, Tu;/§ 1/ST

Buffer layer 184 337 168 53 2.6 0.2 72 32 129 32 830 24
Log layer 2004 3148 1574 6.1 3.1 03 13.1 512 769 512 801 212

TABLE 1. Geometry and parameters of the simulations: Re, is the friction Reynolds
number; L} and L are the streamwise and spanwise dimensions of the numerical box in
wall units, respectively; Axt and Az are the spatial grid resolutions for the streamwise
and spanwise direction, respectively; Ay, and Ay! are the finer (closer to the wall) and
coarser (further from the wall) grid resolutions in the wall-normal direction. Here, Ny, Ny,
and N, are the number of streamwise, wall-normal and spanwise grid points, respectively.
The simulations are integrated for a time 7Tu,/8, where u, is the friction velocity and §
is the channel half-height; S is the mean shear within the wall-normal bands y* € [40, 80]
and y* € [500, 700] for the buffer layer and log layer, respectively, and 1/S* defines a
characteristic time scale for each layer.

component in the streamwise and spanwise directions (Onsager 1949), i.e. i, ,(y, 1),
Upm(, 1) and w,,(y, ), where the streamwise (1) and spanwise (m) wavenumbers are
normalised such that n =1 (m = 1) represents one streamwise (spanwise) period of
the domain. The velocities are first averaged in bands along the wall-normal direction
to produce Fourier components (or modes) that do not depend on y, e.g.

/YI Uy (y, 1) dy, (2.1)

Y1 —Yo Jy

Uy, (1) =

and similarly for ¥,,,(f) and W, (). The bands selected are (y;, y{) = (40, 80) for
the buffer layer and (y§, y;) = (500, 700) for the log layer. These bands are chosen
consistently with the regions of realistic turbulence reported for minimal boxes in the
buffer layer (Jiménez & Moin 1991) and the log layer (Flores & Jiménez 2010). It
was tested that the results presented here are qualitatively similar for y§ and y{ within
the range [20, 100] and [300, 900] for the buffer and log layers, respectively.

The process of decomposing u (similarly for v and w) into time signals for the
log layer (similarly for the buffer layer) is schematically summarised in figure 3:
the instantaneous u (figure 3a) is transformed into the wall-normal-averaged Fourier
modes i, and i;;, whose spatial structure is shown in figures 3(b) and 3(c),
respectively. Then, the kinetic energy associated with each mode, namely, |i|* and
|it; 1|%, is obtained as a function of time as shown in figure 3(d,e). In this manner,
|ftg.1|> characterises the evolution of the kinetic energy of straight streaks, while
meandering or broken streaks are represented by |ii; ;|*. Analogously, rolls identified
by [0,.|* and |W,,,|* are divided into long motions (|7o,|> and |W;¢|*) and short
motions (|0;]*> and |W;|?). The resulting set of signals can be arranged into a
six-component vector (one per layer) defined by

V() = Vi Vel = [litoa s [Boa s [Wiol®, i P 100 P o Pl 22)
The vector V(f) characterises the spatial and temporal evolution of energy-eddies, and

all together account for approximately 50 % of the total kinetic energy of the flow
within the wall-normal band considered in both layers.
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FIGURE 3. (Colour online) Characterisation of energy-eddies as time signals.
(a) Isosurface of the instantaneous streamwise velocity in the log layer. The value
of the isosurface is 0.7 of the maximum streamwise velocity, coloured by the distance to
the wall from dark blue (close to the wall) to light yellow (far from the wall). The red
lines delimit the wall-normal region where u is averaged. Panels (b,c) show the spatial
structure of the Fourier modes associated with iip; and i, respectively. Panels (d,e)
are the time evolution of i |> and &, ;| in the log layer. Time is normalised with the
mean shear across the band considered for extracting the time signals, and the velocities
are scaled in + units.

2.3. Causality among time signals as transfer entropy

We use the framework provided by information theory (Shannon 1948) to quantify
causality among time signals. The central quantity for causal assessment is the
Shannon entropy (or uncertainty) of the signals, which is intimately related to
the arrow of time (Eddington 1929). The connection between the entropy and the
arrow of time is argued by the fact that the laws of physics are time symmetric
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at the microscopic level, and it is only from the macroscopic viewpoint that time
asymmetries arise in the system. Such asymmetries can be statistically measured using
information-theoretic metrics based on the Shannon entropy. Within this framework,
causality from a V; to V; is defined as the decrease in uncertainty of V; by knowing
the past state of V;. The method exploits the principle of time asymmetry of causation
(causes precede the effects) and is mathematically formulated through the transfer
entropy (Schreiber 2000). Considering the vector V() as defined in (2.2), the transfer
entropy (or causality) from V; to V; is defined as (Schreiber 2000; Duan et al. 2013)

T (A = HYV, (0| Vit — An) — HV(0)[V( — AD), (2.3)

where T;_,; is the causality from V; to V,, At is the time lag to evaluate causality,
H(V;|V) is the conditional Shannon entropy (Shannon 1948) (i.e. the uncertainty in a

variable V; given V) and Vi s equivalent to V but excluding the component j. The
conditional Shannon entropy of a variable V; given V is defined as

HWi|V) = Ellog(f(Vi, V)] — Ellog(f(V))], 2.4)

where f(-) is the probability density function, and E[-] signifies the expected value.
We are concerned with the cross-induced causalities 7;_,;, with j#1, hence, T;_,; are

set to zero. Moreover, our goal is to evaluate the causal effect of 7,_,; relative to the

total causality from V) to all the variables. Thus, we define the normalised causality

as

Tii(AD — TP (A1)

J—i

Tie....)(AD =T )

Ti(A) = : 2.5)

such that the value of Tj_”- is bounded between O and 1. The term 77%/" aims to
remove spurious contributions due to statistical errors, and it is the transfer entropy
computed from the variables Vi, --- , Vioy, V)", Vi, ..., Vs, where V" is
V; randomly permuted in time in order to preserve the one-point statistics of the
signal while breaking time-delayed causal links. The calculation of (2.5) is numerical
performed by estimating the probability density functions and their corresponding
entropy using the binning method. More details about the computation of 7j_,; are
given in appendix A.

There is a growing recognition that information-theoretic metrics such as transfer
entropy are fundamental physical quantities enabling causal inference from observa-
tional data (Prokopenko & Lizier 2014; Spinney, Lizier & Prokopenko 2016).
Moreover, causality measured by (2.5) is advantageous compared to classic time
correlations employed in previous studies of wall turbulence (Jiménez 2013). One
desirable property is the asymmetry of the measurement, i.e. if a variable V; is
causal to Vj, it does not imply that V; is causal to V;. Another attractive feature of
transfer entropy is that it is based on probability density functions and, hence, is
invariant under shifting, rescaling and, in general, under nonlinear transformations of
the signals (Kaiser & Schreiber 2002). Additionally, 7;_,; accounts for direct causality
excluding intermediate variables: if V; is only caused by V; and V; is only caused
by V,, there is no causality from V; to V; provided that the three components are
contained in V (Duan et al. 2013).

Finally, we close the section noting that the quest of identifying cause—effect
relationships among events or variables remains an open challenge in scientific
research. Formally, the transfer entropy in (2.3) determines the statistical direction
of information transfer between time signals by measuring asymmetries in their


https://doi.org/10.1017/jfm.2019.801

https://doi.org/10.1017/jfm.2019.801 Published online by Cambridge University Press

882 A2-10 A. Lozano-Durdan, H. J. Bae and M. P Encinar

L 1 1 1
0 0.5 1.0 1.5

AtS

FIGURE 4. (Colour online) Summation of causalities ZJ i as a function of the time
horizon for causal influence, At, for the buffer layer (black circles) and log layer (red
squares); Ar is scaled by the average shear of each layer, and causalities in the vertical
axis are normalised by the maximum value among all At.

interactions. We have adopted this metric as an indication of causality, but the
definition of causation is subject to ongoing debate and controversy. Although transfer
entropy entails a quantitative improvement with respect to other methodologies for
causal inference, it is not flawless. Previous works have reported that transfer entropy
obtained from poor time-resolved datasets or short time sequences are prone to
yield biased estimates (Hahs & Pethel 2011). More importantly, if some variables
in the system are unavailable or neglected, or if the time lag in consideration does
not account for the actual causal time lag of the signals, this could have profound
consequences in the observed causality due to intermediate or confounding hidden
variables. The reader is referred to Hlavackova-Schindler et al. (2007) for an in-depth
discussion on information theory in causal inference.

3. Results
3.1. Time scales for causal inference

Assessing causality in (2.5) requires the identification of a characteristic time lag, At.
In the present study, we seek Ar for maximum causal inference, At,,,. The behaviour
of Tjﬂ-(At) can differ for each (j, i) pair, but a sensible choice to estimate Af,,,, is
obtained by defining a global measure based on the summation of all causalities for
each Ar, ie. Z Tﬁ, The results are shown in figure 4, where At is scaled by the
average shear within the bands considered for each layer.

Interestingly, causalities for both the buffer layer and log layer peak at Af,, =~
0.85~!, which is the time lag selected for the remainder of the study. Note that
from table 1, the ratio Sppr/Sie is roughly 10, and there is a non-trivial time-scale
separation between both layers. The value of At,,, is comparable to the characteristic
lifespan of coherence structures and the duration of bursting events in turbulent
channel flows (Flores & Jiménez 2010; Lozano-Durdn & Jiménez 2014b; Jiménez
2018). Moreover, the collapse in figure 4 of the causal time horizon for both layers
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(a) Buffer-layer energy-eddies (b) log-layer energy-eddies
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FIGURE 5. (Colour online) Causal maps for (a) buffer layer and (b) log layer. Grey-scale
colours denote normalised causality magnitude. The variables |itn,,,,|2, |f),w,,|2 and |vAv,,,,,,|2
represent the magnitudes of the streamwise, wall-normal and spanwise velocity modes,
respectively. Red and blue squares enclose intra-scale causalities and inter-scale causalities,
respectively. The statistical convergence of the causal maps is assessed in appendix B.

in shear times points at S~' as the physically relevant time scale controlling the
energy-eddies (Mizuno & Jiménez 2011; Lozano-Durdn & Bae 2019). The result is
also consistent with previous works on self-sustaining processes, which have shown
that shear turbulence behaves quasi-periodically with time cycles proportional to S~
(Sekimoto, Dong & Jiménez 2016).

3.2. Causal structure of wall-bounded energy-eddies

The key result of this work is shown in figure 5, which contains the causal relations
7}_>,~ among the six flow components. Figure 5 is divided into two causal maps, one
for each layer. The maps should be read as causative variables in the horizontal axis
versus the corresponding effects in the vertical axis. The resemblance between the
maps reveals that, despite the complex nonlinear dynamics and the sizeable length-
and time-scale difference between buffer-layer and log-layer energy-eddies, there is a
strikingly similar causal pattern shared among energy signals in both layers.

The causal maps in figure 5 also unify several well-known flow mechanisms
in a single visual. If we separate the maps into two subsets, namely, intra-scale
causalities (red squares in figure 5), and inter-scale causalities (black squares in
figure 5), the strongest causalities occur among velocity signals at the same scale.
The causal connections |9;|> — |&;1]* and |Do,|> — |l |> are consistent with the
wall-normal momentum transport by v, which intensifies the streak amplitude through
the Orr/lift-up mechanism (Orr 1907; Landahl & Landahlt 1975). During this process,
the causality |0;,|*> — |W;,|* is anticipated by the formation of streamwise rolls
enforced by the incompressibility of the flow. The most notable inter-scale causal
links arise from |it; |> — |Wi /%, and |[W;¢|*> — |0;.1|*>. The former is reminiscent
of the spanwise flow motions induced by the loss of stability of the streaks, while
the latter is consistent with the subsequent meander and breakdown (Swearingen
& Blackwelder 1987; Waleffe 1995, 1997; Kawahara et al. 2003; Park et al. 2011;
Alizard 2015; Cassinelli et al. 2017). In contrast with previous studies, our results
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FIGURE 6. (Colour online) Temporal cross-correlation of |itg|> — [0o.11%, O; |io.1]* —
Wiol% O it > = 100113 Vs a1 = Dol Ay 19141 — bl ----. The vertical
dashed line is At=0S"". (a) Buffer layer; (b) log layer. The notation used is such that
C; represents V; — V,. Lines in black are used for weakly skewed C;. Time is scaled with
the shear averaged over the respective bands.

stem directly from the non-intrusive analysis of the fully nonlinear signals and do
not rely on a particular linearisation of the equations of motion. Yet, linear theories
and causal analysis do not oppose to each other and they should be perceived as
complementary approaches; the former as a reduced system to investigate different
flow mechanisms, and the latter as a mean to assess whether those processes are
consistent with the time evolution of the actual nonlinear flow.

For completeness, we also discuss the time cross-correlation between fluctuating
signals V) =V; — (V;), calculated as

Vi@Vt + An),
VEON (VR0

Ci(Ar) = (3.1)

where the average (-), is taken over the whole time history. The results are displayed
in figure 6, which includes correlations whose maxima are above 0.4. Both the buffer
and log layers exhibit similar trends in the correlations, consistent with the self-similar
causality shown above. Here, we wish to make qualitative comparisons of C; with the
maps in figure 5, and the reader is referred to Jiménez (2013) for a further discussion
on time correlations in minimal channel flows.

An immediate consequence of causality is the emergence of some degree of
correlation between variables, although the converse is not necessarily true. Despite
this footprint of causality onto the correlations, fair comparisons of C; and 7, are
hindered by the intrinsic differences of each methodology. As discussed in §2.3,
the temporal symmetry of the correlations, C;(Af) = C;(—Af), does not enable
the unidirectional assessment of interactions between variables. To overcome this
limitation and only for the sake of qualitative comparisons, we assume that the
amount of ‘causality’ from V; to V; can be inferred from the skewness of C; towards
later times. Adopting this convention, the prevailing directionalities in the correlations
are identified as |i;;|* — (|0;;]%, |W;;|*) and |0;|* — Wy 1|?, which are also recognised
in the causal maps in figure 5. The picture provided above is that the correlations are
mostly dominated by strong events associated with the redistribution of energy from
the streamwise velocity component to the cross-flow (Mansour, Kim & Moin 1988).
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FIGURE 7. (Colour online) Schematics of the nonlinear autoregressive exogenous neural
network. The input layer comprises the variables V at past the times t — AT, t — 2AT,
t —3AT and t — 4AT. The five hidden layers consist of weights (w) and bias (b). The
output layer returns an estimation at time ¢ of the variable of interest Vi = [0} |*.

However, C; fails to account for key mechanisms required for sustaining wall
turbulence, such as the lift-up/Orr effect (Kim & Lim 2000), which is vividly captured
by the causal maps. Regarding the time scales, the peaks of the time correlations are
attained within the range At~ 0S~' to At~ 3S~!. The range encloses the averaged
time horizon for maximum causal inference At~ S~! (§3.1), and both approaches
appear as valid to extract the representative time scales of the flow. Overall, the
inference of causality based on the skewness of Cj; is obscured by the often mild
asymmetries in C; and the bias towards strong events, whereas the causal maps in
figure 5 convey a richer vision of the flow mechanisms easing the limitations of Cj.

3.3. Application to flow modelling: burst prediction in the log layer

The observation of similar causality of energy-eddies at different scales in wall
turbulence has striking implications for control and modelling. Our goal in this
section is to provide a simple demonstration of how new models can be conceived
for the computationally affordable smaller eddies in the buffer layer, to later model
eddies at larger scales. This is shown by constructing a model to predict |0y |
in the log layer using information from buffer-layer simulations. Other quantities
in V are equally amenable to modelling, and the choice of |0, |> constitutes just
one possibility. The selection of |9, ,|> can be motivated as a marker of the bursting
phenomena observed in intense wind gusts relevant for buildings and aircraft structural
loads (Fujita 1981).

We model Vs = |0, ]> at time ¢ using a nonlinear autoregressive exogenous neural
network (NN) (McCulloch & Pitts 1943). The modelling approach is justified by the
suitability of NN for time-signal forecasting in nonlinear systems, but the remainder of
the section could have been formulated using traditional linear models without altering
our conclusions. Our NN model relates the current value of a time series (Vs) to both
past values of the same series and current and past values of the driving (exogenous)
series (V;, i=1,...,6, i#5). Figure 7 shows an schematic of the NN set-up. The
input of the network is the known past states of the log-layer signals V at times ¢ —
At, ..., t—4At, with Ar=0.85"". In present model, Vs = |l71,1|2 at time ¢ is estimated
as

Vi) =FV(t— AT), V(t —2AT), V(t —3AT), V(t —4AT)) +€(1), (3.2)

where the function F is a five-layer recursive neural network as detailed in figure 7,
Vi(t) is a prediction of Vs(f), AT is the time lag and € is the model error. The
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FIGURE 8. (Colour online) Burst prediction, |0 |, in the log layer by a neural network
trained with (a) log-layer data, (b) buffer-layer data and (c) buffer-layer data with signals
randomly permuted in time. Solid red lines are actual data to be predicted, and dashed
blue lines are one-step predictions by the neural network with step size equal to Ar=
0.857! starting from the known solution. Time is normalised with the average shear within
the band considered for extracting the time signals in the buffer or log layer, respectively.
The velocities are normalised in + units.

activation function selected for the hidden layers is the hyperbolic tangent sigmoid
transfer function. The NN is trained using Bayesian regularisation backpropagation
with five hidden layers. The training data are divided randomly into two groups,
the training (80 %) and validation (20 %) sets. The training is terminated when the
damping factor of the Levenberg—-Marquardt algorithm exceeds 10'°. Additional details
about the NN can be found in Lin ef al. (1996) and Gao & Er (2005).

Three datasets are considered to train the NN prior to performing the predictions
shown in figure 8:

(i) In the first case, the NN is trained using signals from the log layer that are
independent of the dataset we aim to predict. Next, the NN is used to make
one-step predictions of unseen log-layer data as shown in figure 8(a). Under these
conditions, the NN model provides satisfactory predictions of |0, ;]> in the log
layer. Given that the NN was trained using log-layer data, the high performance
demonstrated in figure 8(a) is unsurprising.

(i1) In the second case, the NN is trained exclusively with signals from the buffer
layer and then used to predict |0, ;|*> in the log layer. The accuracy of the
forecast (figure 8b) is comparable to the first case, consistent with the causal
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similarity argued in § 3.2. The outcome is remarkable, as the buffer-layer training
set is thousands of times computationally more economical than the log-layer
set used in (i). The result illustrates how the causal resemblance between
the energy-eddies in the buffer and log layers can be advantageous for flow
modelling.

(iii) The third training set is a control case, in which the NN is fed with signals
from the buffer layer randomly permuted in time in order to destroy time-delayed
causal links between the signals while maintaining their non-temporal properties.
Unsurprisingly, the third case yields completely erroneous predictions of the
bursts (figure 8c). Other control cases can be defined by training the NN with
time-reversed signals or signals randomly shifted in time for long periods. In
both cases, the performance of the NN degrades, yielding inferior predictions
with respect to (i) and (ii).

The primary goal of this section has been to furnish some advantages of causal
inference for flow modelling using a simple example. The interdependence between
model performance and transfer entropy is not coincidental, and both are bonded by
the fact that transfer entropy can be formally expressed in terms of relative errors in
autoregressive models when the variables are Gaussian distributed (Barnett, Barrett
& Seth 2009). Therefore, even if the correlation between predictee and predictor
variables, rather than causality, is the main requirement to strengthen the predictive
capabilities of models, the understanding of the causal structure of the system can still
inform the model design. Furthermore, the knowledge of the system causal network
could be even more beneficial for the development of control strategies, in which the
flow must be modified according to a set of prescribed rules. In those cases, actual
causation between variables might be preferred to attain an effective control.

4. Conclusions and further discussion

Despite the extensive data provided by simulations of turbulent flows, the causality
of coherent flow motions has often been overlooked in turbulence research. In
the present work, we have investigated the causal interactions of energy-eddies of
different size in wall-bounded turbulence using a novel, non-intrusive technique from
information theory that does not rely on direct modification of the equations of
motion (see Movie 1).

Our interest is on quantifying the similarities in the dynamics of the energy-eddies
in the buffer layer and log layer. To that end, we have performed two time-resolved
DNS of minimal turbulent channels, one for each layer. These simple set-ups allow
us to isolate the energy-eddies in the buffer and log layers, respectively, without
the complications of tracking the flow motions in space, scale and time. We have
characterised the energy-eddies in terms of the time signals obtained from the
most energetic spatial Fourier coefficients of the velocity. Within a given layer, the
causality among energy-eddies is quantified from an information-theoretic perspective
by measuring how the knowledge of the past states of eddies reduces the uncertainty
of their future states, i.e. by the asymmetric transfer of information between signals.
Our analysis establishes that the causal interactions of energy-eddies in the buffer
and log layers are similar and essentially independent of the eddy size. In virtue
of this similarity, we have further shown that the bursting events in the log layer
can be predicted using a model trained exclusively with information from the buffer
layer, which is accompanied by significant computational savings. This modest but
revealing example illustrates how the self-similar causality between the energy-eddies
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of various sizes can aid the development of new strategies for turbulence control and
modelling.

The causal analysis of time signals presented here emerges as an uncharted
approach for turbulence research, and future opportunities include the causal
investigation of eddies of distinct nature (temperature, density,...), and the study
of key processes in turbulent flows, such as the cascade of energy from large to
smaller scales (Cerbus & Goldburg 2013; Cardesa, Vela-Martin & Jiménez 2017),
transition from laminar to turbulent flow (Hof et al. 2010; Wu et al. 2017; Kiihnen
et al. 2018) or the interaction of near-wall turbulence with large-scale motions in the
outer boundary layer region (Marusic et al. 2010), to name a few.

We conclude this work by discussing some limitations of the approach. First, our
conclusions refer to the dynamics of a few Fourier modes in minimal channels,
chosen as simplified representations of the energy-containing eddies. The results
remain to be confirmed in simulations with larger domains in which unconstrained
energy-eddies are localised in space, scale and time. In that case, the Fourier analysis
employed here to extract time signals might be unsuited. The extension of the
methodology to arbitrary flow configurations comprises the identification and time
tracking of energy-eddies at different scales, which poses a non-trivial task. More
importantly, the answer to the question of what is the most natural characterisation
of energy-eddies to provide a comprehensive view of the flow dynamics, if any, is
itself unclear. Finally, the notion of causality adopted here has its origins in the
statistical Shannon entropy and, as such, should be interpreted as a probabilistic
measure of causality rather than as the quantification of causality of individual
events. Although the two descriptions are intimately related, instantiated causality is
only unambiguously identified by intrusively perturbing the system and observing
the consequences (Pearl 2009). The latter definition coincides with our intuition of
causality, and it might be preferred for control and prediction of isolated events. This
alternative, but complementary, viewpoint of causality is already the focus of ongoing
investigations and will be discussed in future studies.
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Appendix A. Numerical computation of transfer entropy

Various techniques have been developed to efficiently estimate transfer entropy
(Gencaga, Knuth & Rossow 2015). Most approaches rely on decomposing the transfer
entropy into a sum of mutual information components, which are the actual quantities
to estimate. Here, we follow a direct method to compute probability densities by
discretising the continuous valued signals in bins. The binning is performed by
adaptive partitioning (Darbellay & Vajda 1999) with the number of bins in each
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spatial dimension equal to ten according to the rule by Palu§ (1995). It was tested
that doubling the number of bins did not altered the conclusions presented above.

The transfer entropy can also be estimated using kernel density estimators (Wand
& Jones 1994) and kth-nearest-neighbour estimators (Kozachenko & Leonenko 1987;
Kraskov et al. 2004). Both methodologies alleviate the computational cost associated
with the estimation of transfer entropies and offer improvements for high-dimensional
datasets (Kraskov et al. 2004). However, the majority of these approaches depend
on parameters that must be selected a priori, and there are no definite prescriptions
available for selecting these ad hoc values, which may differ according to the specific
application. For those reasons, the binning approach above was preferred. Nevertheless,
we verified that similar conclusions are drawn by computing the values of T;_,; using
the Kozachenko-Leonenko estimator (Kozachenko & Leonenko 1987; Kraskov et al.
2004).

Appendix B. Assessment of statistical significance

To provide a visual impression of the statistical convergence of the causal maps in
§ 3.2, we display in figure 9 the values of 7;_,; using the complete dataset (figure 9a,b,
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FIGURE 9. (Colour online) Causal maps computed using the complete temporal dataset
(a,b), and half of the time history of the dataset (c,d). Results are for the buffer layer in
(a,c), and log layer in (b,d).
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FIGURE 10. (Colour online) Statistical significance: p-values of T,_,; for (a) the buffer
layer and (b) the log layer. The values covered by the colour bar ranges from o =0.00
to o =0.02.

equivalent to §3.2 in the manuscript), and a reduced dataset by shortening the time
signals by half (figures 9c,d). The results indicate that variations in the most intense
transfer entropies are below 10 %.

More quantitatively, the statistical significance of the values of 7;_,; associated with

T;.,; > 0.3 are evaluated under null hypothesis (HO) of no transfer entropy among

variables. A new transfer entropy TJ.I'LO[. is estimated replacing V; by a surrogate signal

VjHO synthetically generated from the transitional probability distribution of the actual
sample. The methodology utilised is block bootstrapping preserving the dependencies
within each time series (Kreiss & Lahiri 2012). The procedure is repeated thousand
times for each j=1, ..., 6 to produce multiple V', which yield a distribution of
transfer entropies under the null hypothesis of no causality. The p-value (or probability
value) associated with the null hypothesis is then computed by the probability of Tfﬁ’l
being larger than the probability of the actual estimated value of 7,_; The details
of the procedure are documented in Thomas & Julia (2013). The p-values, reported
in figure 10, are below the level of significance o = 0.05 and the null hypothesis is
rejected.
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