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Ship generated mini-tsunamis
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Very long waves are generated when a ship moves across an appreciable depth change
1h comparable to the average and relatively shallow water depth h at the location,
with 1h/h ' 1. The phenomenon is new and the waves were recently observed in
the Oslofjord in Norway. The 0.5–1 km long waves, extending across the 2–3 km
wide fjord, are observed as run-ups and run-downs along the shore, with periods of
30–60 s, where a wave height up to 1.4 m has been measured. The waves travelling
with the shallow water speed, found ahead of the ships moving at subcritical depth
Froude number, behave like a mini-tsunami. A qualitative explanation of the linear
generation mechanism is provided by an asymptotic analysis, valid for 1h/h � 1
and long waves, expressing the generation in terms of a pressure impulse at the
depth change. Complementary fully dispersive calculations for 1h/h ' 1 document
symmetries of the waves at positive or negative 1h. The wave height grows with
the ship speed U according to Un with n in the range 3–4, for 1h/h' 1, while the
growth in U is only very weak for 1h/h� 1 (the asymptotics). Calculations show
good agreement with observations.

Key words: geophysical and geological flows, topographic effects, waves/free-surface flows

1. Introduction
Very long waves travelling upstream of ships are a recent observation in the

Oslofjord, an inlet in Norway extending southward from Oslo into the Skagerrak.
The phenomenon is new and the generation process is described here for the first
time. The waves are formed when the new very large and relatively fast cruise ferries,
which are conventional ships, travel across substantial depth changes, 1h, where 1h
typically is comparable to the average and relatively shallow water depth, h, at the
location, i.e. 1h/h∼1. The generation mechanism is linear. The waves running ahead
of the ships propagate with the shallow water speed. The periods in the range 30–60 s
are observed at the shore where shorter waves travel behind the main waves. The
wavelength is 0.5–1 km, and crests extend across the 2–3 km wide fjord. The ship
speed U is subcritical with a depth Froude number U/

√
gh in the range 0.4–0.7,

where g is the acceleration due to gravity. The Froude number based on the ship
length l is in the range Frl =U/

√
gl∼ 0.17− 0.24.

Documentation of observed wave heights, wave-induced currents and the conse-
quence regarding erosion is provided in appendix A.1. A wave height of 1 m at
specific locations along the shore is typical, and a wave height of up to 1.4 m
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Ship generated mini-tsunamis 143

has been measured. The wave-induced currents of up to approximately 1 m s−1,
particularly the long lasting run-outs of approximately 15–30 s (half-wave period),
contribute to a significant, new kind of erosion. This is according to reports from
a group of landlords in the village of Flaskebekk, at the Oslofjord, where small
traditional bath houses on the shore as well as piers – a cultural landscape dating
back to the 1890s – are built on unconsolidated sediments with some fractions of
rock. They are slowly sliding towards the sea because of the new wave phenomenon
and erosion. Marinas experience damaged as well. According to the landlords the
waves appeared in 2004 with the introduction of Fantasy, a cruise ferry of Color
Line, which together with Magic are the world’s largest of their kind. Their displaced
volume is 46 % larger than Perl Seaways of DFDS (Det Forenede Dampskibs-Selskab)
which started operating in the Oslofjord in 2001 and 78 % larger than Crown Seaways
of DFDS, introduced in 1994, where the ship characteristics are given in table 4 in
appendix A.1. The ships of Color Line are cruising at a higher speed (up to 23 knots
has been observed) compared to DFDS (16–17 knots), at the locations where the
waves are generated.

Studying a variant of the present problem, Sibul, Webster & Wehausen (1979)
performed force measurements in a towing tank of a ship moving over a rectangular
box, obtaining a force response localized in time and a subsequent slowly decaying
almost periodic signal. However, both the analysis and results were rather fragmented,
with no firm conclusions. Other descriptions of the upstream waves we study seem not
to exist. The mechanism investigated here differs fundamentally from the transcritical
upstream waves due to a ship in water of constant depth where the upstream waves
are caused by nonlinearity. Early experiments of the critical range by Constantine
(1960) showed that a quantity of fluid was continuously piled up ahead of the
ship in the form of a bore. Conversely, the flow conditions in the subcritical and
supercritical ranges were steady. Upstream, transcritical generation of solitons in two
and three dimensions have been much explored, see e.g. (Cole 1985; Ertekin, Webster
& Wehausen 1986; Wu 1987 and Pedersen 1988).

The downstream wave wake of fast ships with a speed in the range of 30–35
knots and Froude number based on the ship length exceeding Frl > 0.4 (e.g. Torsvik
2009) has received attention in a number of publications. A set of experimental
observations of an oblique solitary wave packet in the Kelvin wake of a fast ship, at
sea, at Frl=0.49, in deep water, was analysed by Brown et al. (1989). Combined with
the shallow water effect, the fast ships may produce destructive waves at the shore
where a wave height of up to 5 m has been reported (Hamer 1999). Measurements
of the wave wakes of the fast ships, in the Bay of Tallinn, show three distinct groups
of waves where the longest and fastest waves, of period in the range of 10–15 s
and height of 1 m, dominate over the wind waves, see Soomere (2005). Moreover,
unusually high hydrodynamic loads in the deeper parts of the near shore are caused
by the longer wake waves, see particularly § 4.4 in Soomere (2009). The dynamical
similarity of the leading 200 m long diverging wave in the wave wake of a fast
ship, at a water depth of 20 m, including the run-up at the beach, are compared
to seismic and slide generated tsunamis in Didenkulova, Pelinovsky & Soomere
(2011). The wave wake close to the critical depth Froude number, in a channel with
a deeper trench and shallower depth at the sides, analysed by Torsvik, Pedersen &
Dysthe (2009), exhibited a wave amplification due to the downstream wave packet.
Their nonlinear calculations obtained upstream solitary wave generation similar to
that described in the previous paragraph. The wave resistance in shallow water in
subcritical and supercritical conditions shows a variation due to a varying depth (Wu
& Chen 2003).
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144 J. Grue

Fantasy, 10.3 m s−1 Pearl Magic, U = 7.8 m s−1 Magic, U = 10 m s−1

Seaways, 8.6 m s−1

Position 1 Position 1 Position 2 Position 3
Wave In–in Out–out In–in Out–out In–in Out–out In–in Out–out
no.

1 34 s 36 s 26 s 34 s 58 s 57 s 35 s 30 s
2 32 s — 34 s — 49 s 40 s 29 s 34 s
3 13 s — — — 64 s — 46 s 36 s

TABLE 1. Wave periods between two consecutive inflows (in–in) and outflows (out–out)
in harbours or small bays due to three different ships observed at three different positions.

Although at a small length scale, the waves in consideration share many similarities
of tsunamis caused by tectonics (e.g. Glimsdal et al. 2006), submarine slides (e.g.
Harbitz 1992), underwater volcano eruptions or explosions, the latter with reported
wavelengths in the range 0.1–1 km (e.g. Pelinovksy 2006), the present waves are
generated in a manner localized in time and space, by a mechanism of impulsive type,
which is confirmed by the analysis and calculations in §§ 4 and 5 below. The long
waves in the Oslofjord propagating with the shallow water speed are hard to detect in
the middle of the fjord. Rather they are observed by the slow run-ups and run-downs
in the bays and harbours along the shore where people have been using the term
tsunami – harbour wave – which is of Japanese origin. We have found it tempting
to characterize the present upstream ship generated waves as a mini-tsunami.

We provide a mathematical and numerical analysis, as well as an explanation and
calculation of the new phenomenon, investigating of the upstream wave generation by
the ships moving at subcritical speed across the depth changes. The paper is organized
as follows. Observations are described in § 2. The mathematical formulation based on
linear potential theory, integral equations and Fourier transform for the solution of the
Laplace equation are given in § 3. An asymptotic analysis valid for small wavenumber
and 1h/h� 1 is provided in § 4. Fully dispersive calculations at a positive or negative
depth change with 1h/h∼ 1 in a relatively narrow channel are given in § 5. Results
for a wide channel are given in § 6. Conclusions are presented in § 7.

2. Observations
The wave periods are observed at the shore line. Waves of shorter period succeed

the main waves. The onsets of the inflows and outflows in a particular harbour in
Flaskebekk, on the eastern side of the Oslofjord, were recorded by the author on 17
February 2016 using a stop watch. The wave periods due to the two ships, DFDS
Pearl Seaways and Color Fantasy cruising by Flaskebekk, observation position 1,
marked by an asterisk in figure 2(c), the first right after 9 a.m., at a speed of
8.6 m s−1, the second right before 9:30 a.m., at a speed of 10.3 m s−1, were
approximately 34 s for both ships, see table 1. A corresponding wavelength of
approximately 830 m can be estimated by multiplying the period by the shallow
water speed in the fjord. Note that the first inflow-to-inflow period of 26 s due
the first slower and somewhat smaller ship may not be accurate, since the wave
amplitude was rather small. A third wave period of 13 s due to the second, faster
and larger ship was not generated by the slower one. A typical wave height of 1 m
is documented in this harbour and a record height of 1.4 m has been measured by
the owner, see the further documentation in appendix A.1.
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Ship generated mini-tsunamis 145

FIGURE 1. (Colour online) Outflow of tsunami in harbour at Flaskebekk, generated by
the ship Color Magic seen in the picture. The generation site in the fjord is next to the
lighthouse seen above the pier and to the right of the white bathhouse. The distance to
the ship is approximately 1.2 km. Photo. T. H. Larsen.

A photograph of the outflow in the harbour due to the dominant depression wave
is shown in figure 1. The ship Color Magic causing the harbour wave is seen to
the right in the picture. The wave is generated at a position in the fjord located
right behind Ildjernsflu lighthouse, which is seen in the picture above the pier, to
the right of the white bath house. The harbour shown in figure 1 (position 1) and
Ildjernsflu lighthouse are indicated on the sea chart shown in figure 2(a), available at
www.oslofjorden.com/map/.

The upstream ship waves extending across the 2–3 km wide fjord are observed
along both shores. In a small bay at Snarøya on the north-western shore of the fjord,
referred to as observation position 2, the wave periods recorded by the author were
close to a minute, where the observed ship, Color Magic, was cruising at a speed
of 7.8 m s−1, see table 1. The first period of T = 57 s corresponds to a wavelength
of approximately 900 m. (On the day of observation, 7 January 2016, the Norwegian
Coastal Administration performed blasting of 24 shallow rocks in the Inner Oslofjord,
and the ship travelled at a reduced speed.)

At Askholmene islands, located midway in the fjord north of the village of Drøbak,
observation position 3, the southward track is located west of the islands, see the sea
chart in figure 2(b). A video recording of the upstream waves at this position due
to Color Magic is available at https://www.youtube.com/watch?v=42Ctdk9kpyg. The
video shows that the very first motion in the bay is a weak outflow. This means that
the leading upstream wave caused by the ship moving along a depth that is reduced
is a weak wave of depression. Periods of the dominant wave train obtained from this
video show T = 32 ± 3 s for the leading two waves (table 1) and correspond to a
wavelength of approximately 550 m.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

67
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

http://www.oslofjorden.com/map/
https://www.youtube.com/watch?v=42Ctdk9kpyg
https://doi.org/10.1017/jfm.2017.67


146 J. Grue

Flaskebekk

(a)

Ildjernsflu lighthouse

Kavringen
Marina

X

+
*

(b)

(c)

FIGURE 2. (Colour online) (a) Section of sea chart of the Oslofjord at Ildjernsflu, with
marked position of the Ildjernsflu lighthouse (←) and the harbour at Flaskebekk, imaged
in figure 1 (↓). The ship track is to the left of the violet dashed line. (b) Sea chart at
Askholmene with position of video recording marked by X. The ship track crosses over
depths of 81 m, 39 m, 27 m. (c) Overview with positions of Ildjernsflu/Flaskebekk (∗),
Askholmene (←) and Snarøya (+) indicated. Panels (a,b) are minor sections of charts
available at www.oslofjorden.com/map/. The Oslofjord is 109 km long.

The waves are generated when the ships travel across pronounced depth changes.
Let hA denote the water depth along the ship’s track before the depth change, hB

the typical depth in the shallow region and hC depth after the shallow region. The
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Position Dsource Dtrack hA hB hC 1h/h

1 1.5 km 1.2 km 46 m 14 (11) m 60 m 1.067
2 2.6 km 1 km 46 m 14 (11) m 25 m 1.067
3 600 m 350 m 80 m 30 (20) m — 0.909

TABLE 2. Distance (Dsource) between the generation site and the observation position,
measured along the ship’s track, distance (Dtrack) from observation position to track, depth
before depth change (hA), depth of shallow region (hB), upstream depth (hC) and depth
change ratio 1h/h= 2(hA − hB)/(hA + hB) at observation positions 1–3.

wave generation is observed for a depth change 1h= hA − hB that is comparable to
the average depth h = (hA + hB)/2, i.e. 1h/h ' 1. The ratio 2(hC − hB)/(hC + hB)
determines the relative depth change from shallow to deep water.

The ship track at Ildjernsflu lighthouse is north/north-eastward, to the left of
the violet dashed line in figure 2(a). A ridge extends south/south-westward of the
lighthouse where depths in metres are marked by 11, 16 and 19 m. From the figure
we estimate: hA ≈ 46 m and hB ≈ 14 m, giving h= 30 m and 1h/h' 1.067. Further,
an extension of 700 m ≈ 23h of the shallow region along the ship’s track is estimated.
The average depth of the fjord further north is approximately 60 m on the eastern
side and approximately 25 m on the western side.

The south/south-eastward ship track at Askholmene, position 3, passes over the
depths marked by 81, 39, 27 m in figure 2(b). Note that the depth is shallower than
20 m next to the position marked by 39 m. The water is only a few metres deep at
each side of the track. The position of the video recording is marked by X. From
the figure we obtain: hA ≈ 80 m and hB ≈ 30 m giving h= 55 m and 1h/h= 0.909.
The distances between observation position and generation site, and the ship’s track,
are indicated in table 2. Figure 2(c) shows the positions in the Oslofjord.

The displaced volumes of Pearl Seaways and Crown Seaways are 69 % and 55 %,
respectively, of those of Color Line, see table 4 in appendix A.1 where also further
descriptions of the observations are given.

3. Mathematical formulation
The analysis is three-dimensional. We introduce horizontal coordinates x= (x1, x2),

vertical coordinate y, with y= 0 at the free surface at rest, and time t. The generation
by the ship is modelled by a moving pressure distribution (hovercraft) of similar
length, width, draught and displacement. The surface pressure is moving with constant
speed U along the x1-direction where a gentle ramp up of the motion is applied. The
linear potential theory accounts for the effect of the bottom variation. The waves are
obtained by integrating in time the linear kinematic and dynamic boundary conditions
at the free surface:

∂η/∂t= ∂φ/∂y, ∂φ/∂t+ gη=−p/ρ, y= 0, (3.1a,b)

where η denotes the elevation, φ velocity potential, p pressure distribution and ρ
density. The bottom variation is given by yB=−h+β(x) where h is an average depth
and β the depth variation. We introduce

φF(x)= φ(x, y= 0), φB(x)= φ(x, y= yB), V = ∂φ/∂y|y=0, (3.2a−c)

where φF denotes the potential evaluated at the free surface, φB potential along the
bottom and V the normal velocity at the free surface. The normal velocity at the
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bottom is zero. The functions φF, φB and V are connected through solution of the
Laplace equation and are expressed in the form of a set of integral equations. The
solution method is an extension of Clamond & Grue (2001, § 6), Grue (2002, § 6),
Fructus & Grue (2007, § 3) and Grue (2015). An evaluation point on the free surface
(y′ = 0) gives∫

F

(
1
r
+ 1

r1

)
∂φ

∂n
dS= 2πφ′F(x

′)+
∫

F+B
φ
∂

∂n

(
1
r
+ 1

r1

)
dS, (3.3)

where 1/r = (R2 + (y′ − y)2)−1/2 denotes a source function, R = |x′ − x| horizontal
distance, 1/r1= (R2+ (y′+ y+ 2h)2)−1/2 the image with respect to y′=−h, F the free
surface, B bottom of the fluid layer and dS integration element. The normal, n, points
out of the fluid. A prime indicates evaluation variable where φ′= φ(x′, y′) etc. For an
evaluation point at the bottom (y′ =−h+ β ′) we obtain

2πφ′B(x
′)=

∫
F

(
1
r
+ 1

r1B

)
∂φ

∂y
dS−

∫
B
φB
∂

∂n

(
1
r
+ 1

r1B

)
dS, (3.4)

where 1/r1B = (R2 + (y′ + y)2)−1/2. Solution of (3.3) and (3.4) is obtained expanding
1/r and its images in powers of the bottom excursion β. Consider the integral over
F in (3.4) where the function 1/r+ 1/r1B is expressed by

1
r
+ 1

r1B
= 2

(
1− β ′ ∂

∂h
+ 1

2!β
′2 ∂

2

∂h2
− 1

3!β
′3 ∂

3

∂h3
+ · · ·

)
1
R0
, R2

0 = R2 + h2.

(3.5a,b)

Note that 1/R0=F−1[(2π/k)e−ik·x−kh] where F denotes Fourier transform, F−1 inverse
transform, k= (k1, k2) wavenumber vector in Fourier space and k= |k|. This gives for
the integral over F in (3.4)

1
2π

∫
F

(
1
r
+ 1

r1B

)
∂φ

∂y
dS = F−1

[
2V̂e1

k

]
+ 1

1!β
′F−1(2V̂e1)+ 1

2!β
′2F−1(2kV̂e1)

+ 1
3!β

′3F−1(2k2V̂e1)+ · · · , (3.6)

where e1 = e−kh. Similarly the integrals over B in (3.4) are expressed by:

−
∫

B
φB
∂

∂n
1
r

dS=
∫

B
∇1φB ·

([
(β − β ′)− 1

3!(β − β
′)3∇2

1 +
1
5!(β − β

′)5∇4
1 + · · ·

])
×∇1

1
R

dx, (3.7)

−
∫

B
φB
∂

∂n
1

r1B
dS=−

∫
B
φB

∂

∂(2h)
1
R1

dx

+
∫

B
∇1φB ·

(
1
1!(β + β

′)− 1
2!(β + β

′)2
∂

∂(2h)
+ 1

3!(β + β
′)3

∂2

∂(2h)2
− · · ·

)
×∇1

1
R1

dx, (3.8)
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where in the latter R2
1 = R2 + 4h2 and ∇ ′1 = (∂/∂x′1, ∂/∂x′2) denotes the horizontal

gradient. Using that 1/R = F−1[(2π/k)e−ik·x] and 1/R1 = F−1[(2π/k)e−ik·x−2kh] the
resulting set of equations for φB is obtained by (A 4), (A 5) in appendix A.3. By
similar procedures, the integral over B in the last term in (3.3) becomes

1
2π

F
(∫

B

∂

∂n

(
1
r
+ 1

r1

)
φB dS

)
= 2e−khik

k
·
[
F(β∇1φB)+ k2

3!F(β
3∇1φB)+ · · ·

]
,

(3.9)
while the surface integrals on the left-hand side and right-hand side of (3.3) become
2πV̂(1+ e2

1)/k and −2πφ̂Fe2
1, respectively, giving

V̂ = kT1φ̂F +
(

1
1! Â1 + k2

3! Â3 + · · ·
)

1
C1
, (3.10)

where T1 = tanh kh, C1 = cosh kh and Ân = ik · F(βn∇1φB). The resulting set of
equations expresses (V, φB) in terms of the surface potential φF and expansions of
the bottom variation ordered according to βn (n = 0, 1, 2, . . .) where the smallness
parameter is max(β/h)=O((1h/h)/2). The set of variables of the leading two orders
become

(kφ̂(0)B , V̂ (0))= (kφ̂F/C1, kT1φ̂F), (kφ̂(1)B , V̂ (1))= (−T1Â1, Â1/C1). (3.11a,b)

Regarding the vertical velocity we obtain that V̂ (2) = 0 and V̂ (3) = k2Â3/(6C1) where
T1, C1, Ân are defined below (3.10). The representations φ(0)B + φ(1)B + φ(2)B + φ(3)B and
V̂ (0)+ V̂ (1)+ V̂ (3) are obtained iteratively from (3.11) and (A 4)–(A 5) in appendix A.3.
We define the truncation level of the approximations of (φB, V) by

s(1) = (φ(0)B + φ(1)B , V (0) + V (1)), (3.12)

s(2) = (φ(0)B + φ(1)B + φ(2)B , V (0) + V (1)), (3.13)

s(3) = (φ(0)B + φ(1)B + φ(2)B + φ(3)B , V (0) + V (1) + V (3)), (3.14)

where convergence of the computations is illustrated using the approximations s(2) and
s(3), see § 5 below. The approximation s(2) is computationally less expensive than s(3).

The resulting equation system for the free surface variables η and φF is expressed
by Fourier transform

∂η̂

∂t
= kT1φ̂F + ĥ1,

∂φ̂F

∂t
+ gη̂= ĥ2, (3.15a,b)

where ĥ1= Â1/C1+ k2Â3/(6C1)+ · · · is obtained from (3.10) and ĥ2=−p̂/ρ is given
by the moving pressure distribution. Time integration of (3.15) is expressed in matrix
form: Ŷt + AŶ = Ĥ where Ŷ = [η̂, (ω/g)φ̂F]T , Ĥ = [ĥ1, ωĥ2/g]T , ω2 = gk tanh kh and
[ ]T denotes transpose. The matrix A and its variant eAs are obtained by

A=
[

0 −ω
ω 0

]
, eAs =

[
cosωs −sinωs
sinωs cosωs

]
. (3.16a,b)

Time integration of (eAtŶ)t = eAtĤ gives Ŷ = ∫ t
t0

eA(s−t)Ĥ ds where no elevation, motion
or pressure impulse for t0 < 0 are assumed. The elevation is obtained by

η̂=
∫ t

t0

cosω(s− t) ĥ1(s) ds+
∫ t

t0

sinω(s− t)
ω p̂
ρg

ds, (3.17)
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where the first term accounts for the effect of the bottom variation and the second
term the effect of the pressure distribution moving along a fluid layer of constant water
depth h. Equation (3.17) is used in the asymptotic analysis in § 4.

4. Asymptotic analysis for long waves
The very long upstream ship waves motivate an asymptotic analysis valid for kh�1.

The long wave analysis is complemented by fully dispersive calculations in § 5 below.
Wave generation due to a depth change at x1= 0 is considered, where the water depth
is assumed to be h for x1 < 0 and h − 1h for x1 > 0, with 1h/h� 1. This means
that β = 0 for x1 < 0 and β = 1h for x1 > 0. For small kh we have from (3.11)
φ̂B' φ̂(0)B ' φ̂F where cosh kh' 1 is used. Evaluating the Fourier transform we obtain
for ĥ1:

ĥ1' ik11h
∫ ∞

0

∫ ∞
−∞

∂φF

∂x1
e−ik·x dx+O(k2)'−ik11h

∫ ∞
−∞
φF(x1= 0) dx2+O(k2), (4.1)

where partial integration in the x1-direction has been used. This obtains the leading
contribution to the long wave formation by the wave potential integrated laterally
along the step. The result (4.1) may alternatively be obtained directly from the integral
equation formulation, see (A 3) in A.2. Time derivative of (4.1) gives:

∂ ĥ1

∂t
'−ik11h

∫ ∞
−∞

∂φF(x1 = 0)
∂t

dx2 ' ik11h
ρ

∫ ∞
−∞

p(x1 = 0) dx2, (4.2)

where the dynamic boundary condition at the free surface is used. By partial
integration in time the first term in (3.17), which we denote by η̂0, becomes,

η̂0 =−
∫ t

t0

sinω(s− t)
ω

∂ ĥ1

∂s
ds'− ik11h

ρ

∫ t

t0

sinω(s− t)
ω

∫ ∞
−∞

p(x1 = 0) dx2 ds, (4.3)

where (4.2) has been used. Equation (4.3) expresses η̂0 in terms of a pressure impulse
acting at the depth change caused by the moving pressure distribution. By assuming
that the pressure, moving with constant speed U along the x1-direction, is modelled
by the Dirac delta function in the two horizontal directions, i.e. p(x1 − Ut, x2, t) =
ρgV0δ(x1 −Ut)δ(x2), we obtain

η̂0 = ik11h V0

Uω/g
sinωt, (4.4)

where V0 is the volume of the pressure distribution. For a distributed pressure,
symmetrical in x1 and x2, the result (4.4) is multiplied by a function f (κ) =∫ l0/2
−l0/2

ds∗ cos(ωs∗/U) × ∫ −w(x1)/2
−w(x1)/2

dx2d̃(−s∗, x2) where κ = ωl0/(2U), l0 is the length,
w(x1) local width and d̃ the shape function of the pressure. Assuming, e.g.
d̃ = d0(1 − (2x1/l0)

2 − (2x2/w0)
2) we obtain f (κ) = f0(κ) = 8J2(κ)/κ

2 where J2
denotes the Bessel function of the first kind of order two, and is used for illustrative
purposes in figure 3.

We first investigate the motion along a narrow channel where the far field motion
can be considered as two-dimensional. (The two-dimensional analysis involves Fourier
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FIGURE 3. Asymptotic upstream wave train due to a delta function moving over a
bottom step with 1h > 0 for Fr = 0.5 and t∗ = t

√
g/h = 30, 90. (a,b) Two-dimensional

case obtained by (4.6) (——), leading part of elevation obtained by (4.7) (– – –), (4.6)
multiplied by f0(κ0) = 8J2(κ0)/κ

2
0 , κ0 = ω0l0/(2U), l0/h = 3.82, for Fr = 0.5 (· · · ·) and

Fr= 0.4 (— · —). (c,d) Three-dimensional case. Cut along the x1-axis with (4.11) (——)
and (4.12) (– – –).

transform in the x1-direction only, however, the result (4.4) is unchanged. The volume
V0 is two-dimensional.) Inverse transform of (4.4) gives

η0(x1, t) = − 1h V0

2π U/g

∫ ∞
0

k1

ω
cos(k1x1 −ωt) dk1

+ 1h V0

2π U/g

∫ ∞
0

k1

ω
cos(k1x1 +ωt) dk1. (4.5)

The upstream waves are obtained by the method of stationary phase for t→∞, giving,

η0(x1, t)=− k1,01h V0

(Uω0/g)(2π|ω′′|t)1/2 cos
(

k1,0x1 −ω0t+ π

4

)
+O(t−1). (4.6)
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Here, k1,0 is determined by ∂ω/∂k1 = x1/t <
√

gh = c0, ω0 = ω(k1,0) and a double
prime means double derivative. For x1/t → √gh both k1,0 → 0 and ω′′0 → 0, and
the asymptotic expression (4.6) diverges. For x1/t >∼ √gh the first term in (4.5) is
then expressed in terms of the Airy integral where the phase function for small k1
is expanded by k1x1 − ωt ' k1(x − c0t) − c0h2k3

1t/6 + · · · . Introducing the variables
Z = [2(x1 − c0t)3/c0h2t]1/3 and k1(x1 − c0t)= Zα, following Mei (1989), we obtain

η0(x1, t)∼− 1h V0

(Uc0/g)(4c0h2t)1/3
Ai(Z), (4.7)

where Ai(Z) denotes the Airy function.
Inverse transform of (4.4) in the three-dimensional case gives:

η0(x1, x2, t)= 1h V0

4π2 U/g
∂

∂x1

∫ ∞
0

∫ 2π

0
eikR cos(α−γ ) sinωt

ω
k dα dk, (4.8)

where (x1, x2)=R(cos γ , sin γ ) and (k1, k2)= k(cos α, sin α) are introduced. The inner
integral in (4.8) is J0(kR), the Bessel function of the first kind of order zero, giving

η0(x1, x2, t)= 1h V0

2π U/g
∂

∂x1

∫ ∞
0

sinωt
ω

J0(kR)k dk. (4.9)

Investigating the contribution for large kR where asymptotically J0(kR)∼ (2/(πkR))1/2
× cos(kR−π/4), we obtain

η0(R, t) ∼ 1h V0

4π U/g
∂

∂x1

∫ ∞
0

k
ω

(
2

πkR

)1/2 (
− sin

(
kR−ωt− π

4

)
+ sin

(
kR+ωt− π

4

))
dk. (4.10)

The asymptotic elevation, obtained by the method of stationary phase for large R and
t, becomes

η0(R, t)∼− 1h V0k0

2π Uω0/g
∂

∂x1

sin(k0R−ω0t)
(k0R|ω′′0 |t)1/2

, (4.11)

where k0 is determined by R/t= ∂ω/∂k<
√

gh, ω0=ω(k0) and a double prime means
double derivative.

Equation (4.11) is not valid ahead of the wave front. Clarisse, Newman & Ursell
(1995, equation (6.15)) have developed a second-order asymptotic expression for the
integral

∫∞
0 (1/ω) sinωtJ0(kR)k dk in (4.9) valid for R/t∼√gh, giving for the present

wave field

η0(x1, x2, t)∼ 1h V0/h2

2π U/
√

gh
∂

∂x1

21/3π

(R∗/t∗)1/2t∗2/3
[E0Ai2 − t∗−2/3C0Ai′2 + 2t∗−4/3A1AiAi′].

(4.12)

The argument of the Airy function Ai and its derivative Ai′ is specified below
(Clarisse et al. 1995, equation (6.15)) and R∗ = R/h and t∗ = t

√
g/h. The functions

E0 and C0 are obtained from saddle points 1 and 2 of the phase function of their
asymptotic integral, see Clarisse et al. (1995, equation (5.4)), and are evaluated here.

The asymptotic analysis provides in mathematical terms a qualitative explanation
of the upstream wave generation which by (4.3) is expressed in terms of a pressure
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impulse acting at the bottom step. The leading waves propagate with the shallow
water speed c0 = √gh where the wave amplitude is proportional to the depth
change 1h times the volume V0 of the ship. In the three-dimensional case, the
wave crests are circular. The amplitude is multiplied by the cosine of the wave
angle defined from direction of motion of the pressure and appears because of the
derivative ∂/∂x1 in (4.11). For a positive 1h, where the depth is reduced from h
to h−1h, the leading upstream wave is a depression, while the downstream waves
have a positive leading elevation, both in two and three dimensions. A leading
upstream wave of depression at a depth change from deep to shallow water is in
accordance with the video recording at the observation position 3 at Askholmene
(https://www.youtube.com/watch?v=42Ctdk9kpyg). The conclusion is opposite for a
negative step with 1h< 0. Upstream wave trains obtained by the asymptotics in two
and three dimensions are visualized in figure 3 (1h> 0).

While (4.4) and the subsequent derivations are based on a localized effect of the
pressure impulse in the form of a delta function, a distributed pressure modifies the
far field waves. Results multiplying the two-dimensional wave amplitude in (4.6) by
the function f0(κ0) = 8J2(κ0)/κ

2
0 , with κ0 = ω0l0/(2U), as obtained below (4.4), with

l0/h= 3.82, a length ratio fitting with the conditions discussed in § 5, are included in
figure 3(a,b), for Fr = 0.4 and 0.5. Apart from the leading trough, the amplitude of
the modified far field waves exhibit a weak increase with the Froude number.

5. Fully dispersive calculations
Calculations of fully dispersive wave fields complement the asymptotic analysis in

§ 4 and are connected to the observations in § 2. The equation system (eAtŶ)t = eAtĤ
defined in the text above and below (3.16a,b) is integrated forward in time using
a fourth-order Runge–Kutta scheme (RK4) (with time step 1t

√
g/h = 0.025) where

the moving pressure distribution p(x1 − x1,0(t), x2) is specified below. The coordinate
x1,0(t) gives the forward motion where U = ẋ1,0(t). The numerical discretization is
obtained over horizontal rectangles of length and width of L1 and L2, respectively,
with N1 by N2 computational points in each respective direction and a resolution of
(1x1, 1x2)= (L1/N1, L2/N2). Use of Fourier transform implies that the computational
domain is periodic in both directions, where length L1 much greater than the
width L2 in practice models a long channel with straight walls. The finite length
L1 puts limits on the length of the time simulation where the calculations are
stopped before the motion interacts with itself. The wavenumber vectors in spectral
space read (0, 1k1, 21k1, . . . , (N1/2 − 1)1k1, −(N1/2)1k1, . . . , −1k1) and
(0, 1k2, 21k2, . . . , (N2/2 − 1)1k2) where symmetry in the k2-direction is assumed.
The number of operations of the method is governed by the fast Fourier transform
(FFT) operations which is O(N0 log N0), where N0=N1 ·N2, the number of calculation
nodes, and is up to N0 = 720× 720' 0.5× 106 using a Lenovo T430 thinkpad.

5.1. Bottom step in a moderately narrow channel
The bottom profile along the x1-direction is assumed to be given by the function

β =−1
2
1h+ 1

2
1h[tanh(α0(x1 − x1,a))− tanh(α0(x1 − x1,b))], (5.1)

where x1,a denotes the centre position of the depth change, x1,b the similar position
where the water becomes deep again and α0 is either 0.7 or 2.0, see figure 4.
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FIGURE 4. Bottom geometries, section at x2 = const.

A uniform depth in the lateral direction is assumed. The applied surface pressure,
given here by p(x1, x2)=p0 exp(−(2x1/l0)

6− (2x2/w0)
6), where l0 and w0 denote length

and width, respectively, is connected to the ship volume V0 by
∫ ∫

p dx1 dx2 = ρgV0.
The velocity ẋ1,0(t) of the moving pressure has a gentle ramp up phase generating
minimal upstream waves (ẋ1,0(t)=U sin(t/T0), T0

√
g/h= 150, x1,0(t= 0)= 6h).

With reference to the conditions at the observation position 3 (table 2) a reference
depth of h = 55 m and depth change ratio of 1h/h = 0.909 are used. The
non-dimensional volume and length of the largest among the ships in table 4 in
appendix A.1 become V ′0= V0/h3' 0.216 and l0/h' 3.82, respectively. Two different
computational rectangles are used, the first, for 1h > 0: (L1, L2) = (200h, 13h),
(N1, N2) = (1400, 200), x1,a = 60, x1,b = 180 and the second, for 1h < 0: (L1, L2) =
(320h, 13h), (N1, N2) = (1800, 200), x1,a = 80, x1,b = 300. Note that the width of
the numerical channel of L2 = 13h corresponds to twice the distance between the
observation position 3 and the ship’s track.

A typical ship speed of ẋ1,0 = U = 10 m s−1 gives Fr = U/
√

gh ' 0.43 where
simulations are carried out for Fr ∼ 0.26 − 0.51. The elevation ahead of the
ship, comparing the two approximations s(2) and s(3) given in (3.13) and (3.14),
is obtained for 1h > 0, Fr = 0.43 and t∗ = 281 in figure 5(a). Results for the case
with 1h < 0 are shown for Fr = 0.51, t∗ = 260 in figure 5(b). Both sets of results
are obtained with a bottom slope of α0 = 0.7, where the very small difference
between the two approximations illustrates the convergence of the method. Note
that the approximations s(2) and s(3) model short wave effects differently, e.g. the
bow wave of the pressure distribution, see figure 5(c,d). The entire computational
domain is shown in figure 5(e) for 1h < 0, t∗ = 293. The upstream wave due to a
slope factor of α0 = 2.0, obtained for Fr = 0.43, t∗ = 281, is somewhat ahead of the
wave produced with a slope factor of α0 = 0.7. The wave is also somewhat higher
(figure 5a). Otherwise differences are minor compared to the bottom profile with
α0 = 0.7.

The generation during the interaction with the depth change at x1,a = 60h is
visualized for Fr = 0.43 in figure 6 at times t∗ = 211, 223, 246 and in figure 5(c,d)
for t∗ = 281. The main wave quickly extends laterally across the channel. It is
basically characterized as a one-dimensional hump in straight forward motion. The
propagation speed is 0.994

√
g(h− (1h/2)), between t∗ = 246 and 281. Succeeding

shorter waves along the channel walls are observed (figure 5c,d). When the depth
changes from shallow to deep water, the similar wave is a depression. The speed is
0.96
√

g(h+ (1h/2)), right ahead of the ship, between t∗ = 281 and 293, where the
negative elevation (−η) is plotted in figure 7 for times t∗ between 251 and 293.

The main wave is always succeeded by a train of shorter waves of small amplitude.
A leading upstream elevation of small distinct amplitude precedes the main depression
wave in the case when the depth changes from shallow to deep water (1h < 0)
(figure 8c). This is in accordance with the asymptotics derived in § 4. However,
for positive 1h > 0, a corresponding leading depression is very small, where the
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FIGURE 5. Elevation η obtained by approximations s(2) and s(3) for 1h/h = 0.909 and
h = 55 m. V0/h3 = 0.216. (a) 1h > 0. η in the middle of the channel, as a function of
x1 − x1,0, for t∗ = 281 with s(2) (– · – · –), s(3) (——) and α0 = 0.7 in both cases, and s(2)
with α0 = 2.0 (· · · · · ·). (b) 1h < 0. η in the middle of the channel, as a function of
x1 − x1,0, for t∗ = 260 with s(2) (– · – · –), s(3) (——) and α0 = 0.7. (c) 1h > 0. η for
t∗ = 281 by s(3). (d) Same as (c) but s(2). (e) 1h < 0. Entire computational domain for
t∗ = 293.

computed surface for time t∗ = 281 in figure 8(a) is only slightly below the level at
the earlier times t∗ = 223, 246.

The main upstream elevation or depression clearly depend on the forward speed
(figure 8b,c). The maximum elevation, ηmax, for 1h> 0, and the minimum elevation,
ηmin, for 1h < 0, both grow according to Frn, with n ' 3.2 for ηmax and n ' 4 for
ηmin (figure 9a). We define the wave width at half-crest height, at y = (1/2)ηmax,
by λcr

1/2, when the bottom changes from deep to shallow water, and similarly, the
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FIGURE 6. Elevation η obtained by s(3) in grey scale. Ship moving from deep to shallow
water. Fr = 0.43. (a) t∗ = 211, (b) 223, (c) 246. Centre position of depth change at
x1 − x1,a = 0. 1h/h= 0.909.

wave width at half-trough height, at y= (1/2)ηmin, by λtr
1/2, when the bottom changes

from shallow to deep water. The wave widths in the range of 6.5h–12h decay with
increasing Fr (figure 9b). The symmetry between the dominant upstream wave for
positive and negative 1h is illustrated by forming the products ηmaxλ

cr
1/2 and −ηminλ

tr
1/2.

These become approximately equal and exhibit a common algebraic growth in the
Froude number, in these calculations (figure 9c).

The calculations are compared to the observations at position 3. A period of
approximately 32 s of the leading two main waves can be estimated from the video
recording of the flow in the bay at Askholmene. Multiplying by the shallow water
speed, this gives a wavelength of approximately 550 m corresponding to ∼10h. The
calculated wavelength for Fr∼ 0.43 at t∗ = 281 in figure 8(a) corresponds fairly well
to the observation. Calculated maximal non-dimensional wave elevations of ∼0.0013h
(Fr = 0.43) and ∼0.0021h (Fr = 0.49) in figure 8(a) correspond to amplitudes of
7 cm and 12 cm in the fjord, respectively, of the main wave ahead of the larger
among the ships, of displaced volume of 36 000 m3. The small elevations generate
run-ups and run-downs of the order of 1 m along the shores, as evidenced from the
movie. The calculations show one dominant elevation and succeeding minor shorter
waves along the channel wall, comparing rather well to the short wave train which
is typical for the observations at position 3.

The elevation ratio η′ = ηL2/(1hV0/h2) and wave width λ1/2 are compared to the
asymptotics in § 4. The dispersive calculation in figure 8(b) for Fr = 0.51, t∗ = 280
corresponds to a time t∗− t∗a' 88.5 upstream of the bottom transition at x1,a. Similarly,
the calculation in figure 8(c) for Fr=0.51, t∗=260 corresponds to a time t∗− t∗a'29.3
upstream of x1,a. Table 3 compares the wave height η′max − η′min, measured as the
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FIGURE 7. The negative elevation −η obtained by s(2) in grey scale. Fr = 0.43. Ship
moving from shallow to deep water. Times: (a) t∗= 251, (b) 265, (c) 281, (d) 293. Depth
change at x1 − x1,a = 0. 1h/h= 0.909.

height from the first elevation to the second trough, for 1h> 0, and the height from
the first trough to the second crest, for 1h < 0. The table also compares λ1/2 of
the leading main wave in figure 8(b,c) to those obtained by the asymptotics in the
two-dimensional case, in figure 3(a,b), where the latter is measured at y = 0. Apart
from some differences in the wavelength for 1h< 0, the comparison is rather good.
Both the crest, trough and wave height increase with Fr, where the growth is weak for
1h/h� 1 (the asymptotics), and very strong for 1h/h' 1. The leading trough (crest)
for 1h> 0 (1h< 0), pronounced for 1h/h� 1 but either weak or almost absent for
1h/h' 1, is another difference.

6. Upstream waves in a wide channel
A channel of width of 2.4 km corresponds to twice the distance from the

observation position 1 to the ship’s track. The depth changes from moderately
deep to shallow to moderately deep water, with h = (hA + hB)/2 = 30 m and
1h/h= 1.067, where the depth just north of the shallow region is h+1h/2, while
still further north average depths of the fjord are given in table 1. The shallow region
extends approximately 23h along the track. The positions x1,a = 60h and x1,b = 83h
define its extension in the numerical calculations. The computational domain is
(L1, L2)= (300h, 80h) with (N1,N2)= (1200, 432) computational points. A ship speed
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FIGURE 8. Upstream elevation ηL2/(1hV0/h2) ahead of ship. 1h/h= 0.909. (a) Deep to
shallow water; Fr=0.43, t∗=223,246,281 calculated by s(3). (b) Fr=0.43 at t∗=281 and
0.51 at t∗= 280 by s(3) (solid lines); Fr= 0.26 at t∗= 340, 0.34 at t∗= 320 by s(2) (dashed
lines). (c) Ship moving from shallow to deep water. Fr = 0.34, 0.385, 0.43, 0.47, 0.51.
Calculations by s(2).

Asymptotic Dispersive

t∗ − t∗a 30 90 29.3 88.5
1h/h � 1 � 1 0.909 0.909

η′max − η′min 0.19 0.18 0.17 0.17
λ1/2/h 3.8 5.9 8.2 6.8

TABLE 3. Wave height η′max − η′min, where η′ = ηL2/(1hV0/h2), and wavelength at half-
height λ1/2, of the first main wave, obtained by asymptotic model (in two dimensions)
(1h/h� 1, Fr = 0.5) and dispersive calculation (1h/h = 0.909, Fr = 0.51). Time t∗ − t∗a
after passage of the depth change at x1,a.

of 10 m s−1 corresponds to Fr= 0.58 where the range Fr∼ 0.3–0.7 is explored. Note
that U/

√
g(h−1h/2) becomes critical in the shallow region for the largest speed

(Fr = 0.7). However, nonlinear effects, known to propagate laterally in the wide
channel (Pedersen 1988), are assumed to be small over the relatively short extension
of the shallow region (of length 23h).

The ship volume V0 = 36 000 m3 is made dimensionless by the reference depth
h= 30 m, giving V0/h3 = 1.33. This is used in the calculations shown in figures 10
and 11. Note that this non-dimensional ship volume is approximately 6 times larger
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FIGURE 9. (a) Maximum upstream elevation ηmax (u) for ship moving from deep to
shallow water, and maximum upstream depression ηmin (@) for ship moving from shallow
to deep water versus Fr. 1h/h= 0.909. Fitted curves: dotted and dashed lines. (b) λcr,tr

1/2 /h
versus Fr. (c) ηmaxL2λ

cr
1/2/V0 (u) and −ηminL2λ

tr
1/2/V0 (@) versus Fr. Fitted curve (dotted

line).

than the non-dimensional ship volume at Askholmene, where the reference depth is
h=55 m. The upstream waves calculated using the approximation s(2) in (3.13) exhibit
a curved pattern where the dominant feature is a leading, large wave trough, preceded
and succeeded by less dominant crests. A train of shorter waves of smaller amplitude

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

67
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.67


160 J. Grue

0 10 20 30 40 50 60 70 80 90 100

–40

(a)

–35

–30

–25

–20

–15

–10

–5

0
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0 10 20 30 40 50 60 70 80 90 100

–40
–35
–30
–25
–20
–15
–10
–5
0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

50 60 70 80 90 100 110 120 130 140 150

–40
–35
–30
–25
–20
–15
–10
–5
0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

(b)

(c)

FIGURE 10. Upstream elevation pattern obtained by s(2) for times (a) t∗=261.7, (b) 275.5,
(c) 311.4. Ship with Fr= 0.58 passing from deep to shallow to deep water with x1,a= 60h,
x1,b = 83h and 1h/h= 1.067. Horizontal coordinate (x1 − x1,b)/h with end of topography
located in x1 − x1,b = 0. L1 = 300h, L2 = 80h,N1 = 1200,N2 = 432. Depth h= 30 m.

follows behind the leading wave motion. The leading waves ahead of the ship in the
wide channel are similar to the upstream waves generated at the depth change from
shallow to deep water. More precisely, the calculated elevation in the narrow channel
is in the range −0.13<ηL2/(1hV0/h2)< 0.04, see figure 8(c). The latter corresponds
to a wave height ahead of the ship of H/h ' 0.003 in the wide channel. A simple
doubling gives 2H/h' 0.6× 10−2, fitting fairly well with the results in figure 11(b),
for the ship passing over the two depth changes in the wide channel, for the similar
Fr= 0.51.

Wave reflections at the side walls, where the propagation speed is enhanced (results
not shown), produce a complex wave pattern in the channel. The leading curved crests
eventually straighten up. Note that the wave interaction with the channel walls is not
related to the Mach reflection, since the waves in consideration are linear. Snapshots of
the wave elevation at the side wall illustrate further the dominant trough and preceding
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FIGURE 11. (a) Upstream wave elevation along channel wall obtained by s(2) as function
of (x1 − x1,b)/h for Fr = 0.7, t∗ = 252.8 (– · – · –), Fr = 0.58, t∗ = 287.4 (——) and
Fr= 0.46, t∗= 311 (– – –). (b) Maximum wave height at channel wall at x2= 0, x1− x1,b=
50h (u) and ahead of ship at x2=40h, x1− x1,b∼60h (6). Fitted curves (dotted and dashed
lines). 1h/h= 1.067, h= 30 m. Same discretization as in figure 10.

and succeeding crests (figure 11a). The dominant wave trough corresponds to the
strong outflow observed in the harbour at observation position 1, see figure 1. The
observation position 1 is located 50h upstream of the generation site (x1,b) where the
maximum wave height H grows according to Frn where n' 3.7 at the channel wall
and n ' 3.5 ahead of the ship. The height is approximately 45 %–55 % higher at
the walls than ahead of the ship, at the similar x1-position (figure 11b). We obtain
H/h ' 0.025 at the channel wall, for Fr = 0.7, giving H ' 0.75 m (with h = 30 m)
and is in the range of the observations in the harbour.

The calculated leading trough-to-trough period at x1 − x1,b = 50h becomes
T = 21.8

√
h/g ' 38 s for Fr = 0.58, and T = 24.2

√
h/g ' 41 s for the smaller

Fr = 0.52. A calculated third crest to crest period becomes 15 s for Fr = 0.58.
The periods of the idealized calculations are rather close to the observed periods
at position 1, see table 2. Similar calculations at the channel wall at an upstream
position of x1 − x1,b = 83h for the still smaller Fr = 0.46 give a wave period of
T = 26.2

√
h/g' 45 s. This upstream position corresponds to observation position 2 in

table 2, where the numerical period is somewhat smaller compared to the observed
period of 57 s, for the similar ship speed, where, however, the fjord is much shallower
(∼25 m) than in the calculation. In summary, despite the rather ideal conditions of
the numerical channel, with a constant water depth of 46 m outside the shallow
region, the calculated wave height and periods agree fairly well to the observations at
positions 1 and 2 in the Oslofjord. Note that effects due to local bathymetry, bottom
slope or shape of the shoreline, not accounted for in the computations, contribute to
the actual run-ups, run-downs as well as the wave period.
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The results in figure 11(b) are used to calculate the wave height produced by the
two different ships at position 1, cruising with speeds of 8.6 m s−1 and 10.3 m s−1,
respectively, see table 1. The corresponding wave heights become H/h' 0.70× 10−2

and 1.36 × 10−2. Multiplying the former by the volume of Pearl Seaways, which is
69 % of Magic/Fantasy (table 4), we obtain that the faster and larger ship makes a
wave height of approximately three times higher compared to the slower and smaller
ship. The wave height ratio becomes four times, for a sailing speed of 11.5 m s−1 of
Fantasy/Magic which has been observed by the people living in Flaskebekk.

7. Conclusions
Ship generated very long upstream waves of appreciable amplitude is a new

phenomenon and have been recently observed in the Oslofjord in Norway. The
waves are generated locally in time and space, at positions where the water depth
along the ship’s track changes by an appreciable amount 1h that is comparable to
a relatively shallow average depth h at the position, which means that 1h/h ' 1.
The change 1h may be positive or negative. The waves, propagating with a speed
close to the shallow water speed, ahead of the ships, observed as slow run-ups and
run-downs in harbours and bays along the shore with periods in the range 30–60 s,
bear many similarities with tsunamis, although at a smaller length scale. We have
found it tempting to denote the waves as a mini-tsunami. The waves, 0.5–1 km
long, are generated by conventional ships moving with a depth Froude number in
the range Fr=U/

√
gh∼ 0.4–0.7 and a Froude number based on the ship length l of

Frl =U/
√

gl∼ 0.17–0.24.
The linear generation mechanism is mathematically explored by an asymptotic

analysis valid for small 1h/h and long waves. This shows that the pressure due
to the moving ship acts as an impulsive force at the depth change and provides a
qualitative explanation of the phenomenon, see (4.3). The analysis gives a leading
upstream wave of depression when the water depth reduces, in accordance with
observations. Conversely, an upstream leading wave of elevation is formed when the
depth increases. A train of shorter and slower waves is subsequently formed.

A fully dispersive linear analysis valid for 1h/h' 1 complements the asymptotics
where the depth variation is similar to the conditions in the observations. Computations
in a moderately narrow channel show that one dominant upstream wave of elevation
is generated when the depth undergoes a reduction. A leading depression, which,
however, is very tiny in the numerical computations, may be observed ahead of
the dominant wave. A train of shorter waves of small amplitude travels behind the
main elevation. In the case when the depth increases, a dominant upstream wave
of depression is generated. This is preceded by a long wave of elevation, of small,
however, distinct amplitude. A train of short waves of small amplitude is succeeding.
The wave generation shows minor sensitivity to the bottom slope at the depth change.
The symmetry for positive and negative 1h is pointed out.

Computations for a wide channel show curved crests. Reflections at the channel
walls enhance the elevation as well as the propagation speed, straightening up the
curved crests. Computed and observed wave periods fit fairly well. The leading
wavelength is in the range 10h–25h.

The forward speed has a pronounced effect on the wave height, for a large depth
change of 1h/h∼ 1, where H/h grows according to Frn with n in the range 3–4. This
growth with Fr is only very weak when 1h/h� 1 (the asymptotics). A computed
wave height of up to 0.75 m (Fr= 0.7) compares to a measured wave height of 1 m
(figure 12).
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(a)

(b)

FIGURE 12. (Colour online) (a) Maximum and (b) minimum elevation in harbour at
Flaskebekk. Photo. T. H. Larsen.
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Appendix A.
A.1. Further elaboration of the observations

Flaskebekk. A wave height of 1.4 m was measured in the harbour at Flaskebekk by
the owner, E. Staff, using a folding rule. The harbour appears on the photographs in
figures 1 and 12. A wave height of approximately 1 m is documented in figure 12
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Tonnage (GT) V0 (m3) l (m) w0 (m) d0 (m) U (knots) Year

Magic (Color Line) 75 100 36 000 224 35 6.8 22 2007
Fantasy (Color Line) 75 027 36 000 224 35 6.8 22 2004
Pearl Seaways (DFDS) 40 039 24 700 178 34 6.2 21 2001
Crown Seaways (DFDS) 35 498 20 200 171 28 6.4 21.5 1994
Stena Saga (Stena Line) 33 575 20 500 166 28 6.7 22 1994

TABLE 4. Ship characteristics and history. Tonnage (GT), displaced volume V0 (m3),
total length (l), width (w0), draught (d0), maximum speed (U), year in service (Year).

as the difference between the maximum and minimum elevation, corresponding to
approximately 6 steps, each 17 cm high, of the staircase shown in the figure. The
photos in figures 1 and 12 are in the same sequence, taken on the same day.

Regarding erosion, the chain of bath houses and piers along the shore line at
Flaskebekk are built on unconsolidated sediments with some fractions of rock.
Particularly the long run-outs lasting for approximately 15–20 s (half-wave period)
contribute to a seaward transport of the sediments, an erosion that started with
the introduction of the large cruise ferries of Color Line in 2004, where the ship
characteristics are given in table 4. This information is according to a group of
landlords at Flaskebekk (J. Bjerke, T. H. Larsen, T. Scavenius, E. Staff). The group
has told the author how they each year have to supply a significant volume of stones
to the sea bottom ahead of their own bath houses to compensate for the erosion
caused by the new wave environment. Those owners not making such measures
experience their bath houses steadily tilting towards the sea. The group of landlords
report that the long periodic wave run-up/run-down contribute much more to the
erosion compared to the shorter wash waves of the ship wake. The pier shown in
figures 1, 12 is in a steady, slow seaward motion due to the erosion. The owner
of Kavringen Nesodden Marina south of Flaskebekk, P. Støp, has reported to the
author that the long waves contribute to a slow oscillating current in the shallow
marina where the entire system of floating docks and moored boats are exposed to
large excursions. This has become a new wear and tear, where the particular damage
is caused by the long-lasting run-out. Wave heights in the marina have not been
measured.

Askholmene. In the bay at Askholmene, estimates of the wave periods, run-up and
run-down are obtained from the amateur video available at https://www.youtube.com/
watch?v=42Ctdk9kpyg, where the waves caused by Color Magic are recorded. The
usual ship speed at the position is 20 knots. The run-up/run-down elevation is
approximately ±0.75 m. The horizontal current velocity in the bay estimated from
the video is up to 1 m s−1. The author visited the position on 19 June 2013, at the
time of the day when Color Magic was cruising by. No elevation measurements were
taken.

Characteristics of the five largest cruise ferries and starting year of operation in the
Oslofjord are listed in table 4. The information is acquired from what is available
on the internet/Wikipedia. The displaced volume, V0, column three in the table, is
calculated using an estimated ship length between perpendiculars (l0), width, draught
and a block coefficient of CB = 0.7 (see e.g. Newman 1977, p. 350), obtaining
V0 = l0 ·w · d · 0.7, where l0 is put to 94 % of the total length l.
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A.2. Integral equation for a small bottom step
We consider the integral equation (3.3) in the special case when the bottom has a
small step of height 1h� h at x1= 0 such that yB=−h for x1 < 0 and yB=−h+1h
for x1 > 0. Then ∂/∂n′ = ∂/∂x′1 at the step and ∂/∂n′ = −∂/∂y′ otherwise along the
bottom. Using that ∂φ/∂n= 0 along the bottom, the integral equation (3.3) becomes∫ ∫ (

1
R
+ 1
(R2 + (2h)2)1/2

)
V ′ dx′ = 2πφF(x)+

∫ ∫
φ′F

∂

∂(2h)
1

(R2 + (2h)2)1/2
dx′

+
∫ 1h

0

∫ ∞
−∞

φ′B|x1=0
∂

∂x′1

(
1

(R2 + (h− y′)2)1/2
+ 1
(R2 + (h+ y′)2)1/2

)
dx′2 dy′

+
∫ ∞

0

∫ ∞
−∞

φ′B
∂

∂h

(
1

(R2 + (h+1h)2)1/2
− 1
(R2 + (h−1h)2)1/2

)
dx′1 dx′2, (A 1)

where the two former integrals are integrated over the horizontal plane. Symbols are
defined in the text above and below equation (3.3). We obtain the Fourier transform
of (A 1), giving

(
1+ e−2kh

) V̂
k
= (1− e−2kh

)
φ̂F − 2ik1e−kh

k

∫ 1h

0

∫ ∞
−∞

φB|x1=0 cosh(ky′)e−ik2x′2 dx′2 dy′

− 2 sinh(k1h)e−kh
∫ ∞

0

∫ ∞
−∞

φ′B e−ik·x′ dx′2 dx′1. (A 2)

In the long wave regime (kh� 1) the leading-order contribution to (A 2), due to the
bottom, becomes

V̂ − k tanh(kh)φ̂F =−ik11h
∫ ∞
−∞

φB(x1 = 0, x2) dx2 +O(k2), (A 3)

where φ̂B may be replaced by φ̂F for kh� 1. Equation (A 3) expresses the dominant
contribution to the vertical velocity at the free surface, for long waves, in terms
of the bottom potential at the step. If the bottom transition has a finite slope the
contributions from the normal derivative of the Green function become, at the slope,
1S(∂/∂n′)(1/r+ 1/r1)=1h(∂/∂x′)(1/r+ 1/r1)−

√
(1S)2 − (1h)2(∂/∂y′)(1/r+ 1/r1),

giving (A 3) as the result still.

A.3. Calculation of φB

The potential φB along the bottom is obtained from (3.4–3.8) giving

0= Ψ̂ +F(βF−1(kΨ̂ + Â1 + 1
2(1− e2

1)kÂ2))+ 1
2F(β

2F−1(k2Ψ̂ + k2φ̂B))− 1
2 e2

1Â2

+ 1
6F(β

3F−1(k3Ψ̂ + k2(1+ e2
1)Â1))+ · · · , (A 4)

where the variable Ψ is defined by

kΨ̂ =−kφ̂B + 2V̂e1 − (1+ e2
1)Â1 − 1

6(1+ e2
1)k

2Â3, (A 5)

and where T1, C1 and Ân are defined below (3.10), and e1= e−kh. Note that the leading
two approximands of Ψ in (A 5) are zero, i.e. Ψ̂ (0)= Ψ̂ (1)= 0 where the order n refers
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to terms proportional to βn. The functions Ψ̂ (2) and φ̂(2)B are obtained iteratively from
(A 4) to (A 5) keeping terms proportional β2, while Ψ̂ (2) + Ψ̂ (3) and φ̂

(2)
B + φ̂(3)B are

obtained iteratively from (A 4) to (A 5) keeping terms proportional to both β2 and β3.

REFERENCES

BROWN, E. D., BUCKSBAUM, S. B., HALL, R. E., PENHUNE, J. P., SCHMITT, K. F., WATSON,
K. M. & WYATT, D. C. 1989 Observation of a nonlinear solitary wave packet in the Kelvin
wake of a ship. J. Fluid Mech. 204, 263–293.

CLAMOND, D. & GRUE, J. 2001 A fast method for fully nonlinear water wave computations. J. Fluid
Mech. 447, 337–355.

CLARISSE, J.-M., NEWMAN, J. N. & URSELL, F. 1995 Integrals with a large parameter: water
waves on finite depth due to an impulse. Proc. R. Soc. Lond. A 450, 67–87.

COLE, S. L. 1985 Transient waves produced by flow past a bump. Wave Motion 7, 579–587.
CONSTANTINE, T. 1960 On the movement of ships in restricted waterways. J. Fluid Mech. 9,

247–256.
DIDENKULOVA, I., PELINOVSKY, E. & SOOMERE, T. 2011 Can the waves generated by fast ferries

be a physical model of tsunami? Pure Appl. Geophys. 168, 2071–2082.
ERTEKIN, R. C., WEBSTER, W. C. & WEHAUSEN, J. V. 1986 Waves caused by a moving disturbance

in a shallow channel of finite width. J. Fluid Mech. 169, 275–292.
FRUCTUS, D. & GRUE, J. 2007 An explicit method for the nonlinear interaction between water

waves and variable and moving bottom topography. J. Comput. Phys. 222, 720–739.
GLIMSDAL, S., PEDERSEN, G. K., ATAKAN, K., HARBITZ, C. B., LANGTANGEN, H. P. &

LOVHOLT, F. 2006 Propagation of the Dec. 26, 2004, Indian ocean tsunami. Effects of
dispersion and source characteristics. Intl J. Fluid Mech. Res. 33, 15–43.

GRUE, J. 2002 On four highly nonlinear phenomena in wave theory and marine hydrodynamics.
Appl. Ocean Res. 24, 261–274.

GRUE, J. 2015 Nonlinear interfacial wave formation in three dimensions. J. Fluid Mech. 767, 735–762.
HAMER, M. 1999 Solitary killers. New Sci. 163 (2291), 18–19.
HARBITZ, C. B. 1992 Model simulations of tsunamis generated by the Storegga slides. Mar. Geol.

105, 1–21.
MEI, C. C. 1989 The Applied Dynamics of Ocean Surface Waves. World Scientific.
NEWMAN, J. N. 1977 Marine Hydrodynamics. MIT Press.
PEDERSEN, G. 1988 Three-dimensional wave patterns generated by moving disturbances at transcritical

speeds. J. Fluid Mech. 196, 39–63.
PELINOVKSY, E. 2006 Hydrodynamics of tsunami waves. In Waves in Geophysical Fluids

(ed. J. Grue & K. Trulsen), CISM Courses and Lectures No. 489, pp. 1–48. Springer.
SIBUL, O. J., WEBSTER, W. C. & WEHAUSEN, J. V. 1979 A phenomenon observed in transient

testing. Schiffstechnik 26, 179–200.
SOOMERE, T. 2005 Fast ferry traffic as a qualitatively new forcing factor of environmental processes

in non-tidal sea areas: a case study in Tallinn Bay, Baltic sea. Environ. Fluid Mech. 5,
293–323.

SOOMERE, T. 2009 Long ship waves in shallow water bodies. In Applied Waves Mathematics
(ed. E. Quak & T. Soomere), pp. 193–228. Springer.

TORSVIK, T. 2009 Modelling of ship waves from high-speed vessels. In Applied Waves Mathematics
(ed. E. Quak & T. Soomere), pp. 229–263. Springer.

TORSVIK, T., PEDERSEN, G. & DYSTHE, K. 2009 Waves generated by a pressure disturbance moving
in a channel with a variable cross-sectional topography. ASCE J. Waterway Port Coastal Ocean
Engng 135 (5), 120–123.

WU, J. & CHEN, B. 2003 Unsteady ship waves in shallow water of varying depth based on Green-
Naghdi equation. Ocean Engng 30, 1899–1913.

WU, T. Y. 1987 Generation of upstream advancing solitons by moving disturbances. J. Fluid Mech.
184, 75–99.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

67
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.67

	Ship generated mini-tsunamis
	Introduction
	Observations
	Mathematical formulation
	Asymptotic analysis for long waves
	Fully dispersive calculations
	Bottom step in a moderately narrow channel

	Upstream waves in a wide channel
	Conclusions
	Acknowledgements
	Appendix A. 
	Further elaboration of the observations
	Integral equation for a small bottom step
	Calculation of φB

	References




