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Infrared Cancellation and Measurement
Michael E. Miller*y

Quantum field theories containing massless particles are divergent not just in the ultra-
violet but also in the infrared. Infrared divergences are typically regarded as less concep-
tually problematic than ultraviolet divergences because there is a cancellation mechanism
that renders measurable physical observables such as decay rates and cross-sections infra-
red finite. In this article, I scrutinize the restriction to measurable physical observables that
is required to arrive at infrared finite results. I argue that the restriction does not necessitate a
retreat to operationalism about the meaning of the theory, but it does call attention to under-
appreciated features of the infrared regime.
1. Introduction. The structural core of nonrelativistic quantum mechanics
is reasonably well agreed on. It includes states defined on a Hilbert space,
operators on that space to represent observables, the Schrödinger dynamics,
and the Born rule for determining probabilities for the outcomes of experi-
ments.1 This structural core provides an algorithm for extracting empirical
predictions from the theory. Interpretive debates are concerned with whether
we should adopt an operationalist view of this algorithm or whether the struc-
tural core should be furnished with a realistic interpretation. And of course,
providing such a realistic interpretation requires that one provide a resolution
to the quantum measurement problem.

Giving a realistic interpretation of quantum field theory similarly requires
a solution to the quantum measurement problem, but the measurement prob-
lem is often conspicuously absent in foundational discussions of the theory.
*To contact the author, please write to: 170 St. George St., Fourth Floor, Toronto, ON
M5R 2M8, Canada; e-mail: mike.miller@utoronto.ca.

yI am thankful to David Albert, Sean Carroll, John Dougherty, Kerry McKenzie, Chip
Sebens, Porter Williams, and audiences at Columbia and Caltech for helpful discussion.
This research was supported by the Social Sciences and Humanities Research Council of
Canada.

1. Helpful critical discussion of what belongs to the structural core, and what does not,
can be found in Wallace (2019).
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One reason for this is that relativistic constraints raise difficulties for gener-
alizing some solutions to the measurement problem from quantum mechan-
ics to quantum field theory. Another reason is that quantum field theory is
often characterized as a theory of scattering.2 This can be seen from the fact
that the basic phenomenological object in the theory is often taken to be the S-
matrix, which encodes transition amplitudes between prepared incoming states
and measured outgoing states, both with determinate particle content. So one
might worry that, before we even get to the issue of the measurement problem,
the formalism for the theory is tinged with operationalism. The structure of the
theory is designed to capture the scattering experiments used to test the theory
from the outset.

Suppose we are interested in pressing on and attempting to give a realist
interpretation of the scattering phenomena that quantum field theory is able
to describe. We can use the scattering form of Born’s rule, Pr(woutjwin) ≔
j h woutjSjwin i j2, to determine the probability of a transition from the state
jwin i to the state jwout i. On first inspection, this seems to involve essentially
the same structural core as nonrelativistic quantum mechanics and to pro-
vide an algorithm for predicting the outcomes of experiments that we can
go about interpreting. However, the quantum field theoretic algorithm is be-
set with interpretive challenges of its own that arise before we confront the
measurement problem. As a result, much of the interpretive work dedicated
to quantum field theory has been concerned with the processes that are re-
quired to get the algorithm up and running and not the interpretation of the
algorithm itself.

The interpretive difficulties facing the quantum field theoretic algorithm
are diverse. For one, jwin i and jwout i are not states in the physical state space
of the interacting quantum fields involved in the scattering. Rather, they are
states in the state space of free fields. Information about the interacting fields
must be gleaned from the perturbative evaluation of the S-matrix element for
a particular jwin i and jwout i. To do this we sum all of the Feynman diagrams
with the appropriate particle content and incoming and outgoing momenta.
This perturbative evaluation gives rise to additional obstacles to interpreta-
tion. The most widely discussed of these are the ultraviolet divergences that
arise from the short-distance and large-momentum regime of the theory. The
integrals corresponding to individual diagrams contributing to the probabili-
ties are infinite. These ultraviolet divergences necessitate the renormalization
of the theory in order to render predictions for the outcomes of experiments
finite. Some presentations of the theory give the impression that a properly
implemented renormalization procedure is sufficient to get an algorithm up
and running that gives probabilities that match the experimental results.
2. The historical reasons for this are discussed in Blum (2017).
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In fact, an additional step is required. There is an independent source of
infinities that need to be addressed before the algorithm yields finite proba-
bilities. These infrared divergences come from the long-distance and small-
momentum regime of the theory and have received comparatively little attention
in the literature. The infrared divergences result from the emission of very
low momentum massless particles and are typically regarded as less concep-
tually problematic than ultraviolet divergences because there is a reasonably
straightforward cancellation mechanism that renders physical observables
such as decay rates and cross-sections infrared finite. More precisely, the in-
frared divergences cancel whenwe restrict tomeasurable physical quantities.
My aim in this article is to scrutinize the restriction to measurable physical
observables that is required to make the cancellation mechanism applicable.
It is prima facie plausible that there are physical quantities that are not mea-
surable but about which there are still facts. For this reason, a restriction to
what is measurable is potentially problematic. If one adopts an operationalist
interpretation that only countenances those quantities that are measurable as
meaningful, such a restriction is unproblematic. However, if one ultimately
aspires to provide a realist interpretation, one needs the quantum field theo-
retic algorithm to be well defined for all of the physically meaningful quan-
tities, whichmay not just be themeasurable ones. So to ensure that the restric-
tion in question does not amount to a thumb on the operationalist’s side of the
scale, we need to make sure that we are not restricting beyond the physical
matters of fact.

In order to determine whether the restriction tomeasurable physical quan-
tities is an acceptable one, we must analyze the origin of the infrared diver-
gences and the infrared cancellationmechanism in detail. I turn to that task in
section 2. In section 3 I discuss the restriction to measurable physical quan-
tities, and I argue that it need not mark a problematic retreat to operational-
ism. In section 4 I argue that the infrared divergences frommassless particles
are an infrared problem conceptually distinct from the one raised by Haag’s
theorem. The infrared divergences discussed here are more directly relevant
for the prospects of providing a realist interpretation of the theory because
they bear on the nature of the physical state space of the theory. Section 5
is the conclusion.

2. Infrared Cancellation. Early in the development of quantum electro-
dynamics (QED) it was recognized that the infrared problems of classical
electrodynamics carried over to quantum field theory. In this latter context,
the problems stem from the presence of massless particles. If a massless par-
ticle is “soft” in the sense that it has very lowmomentum, then the emission of
such a particle requires very little energy. In the case of QED, for example, in
processes with outgoing electrons in the final state, the electron is never actu-
ally free as we are accustomed to thinking of it. In reality, outgoing electrons
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emit many soft photons that lead to infrared divergences in the S-matrix el-
ement for the process. Closely analogous problems arise in quantum chromo-
dynamics due to the massless gluons and in quantum theories of gravity
involving massless gravitons.

An approach to addressing the infrared divergences was discovered by
Bloch andNordsieck (1937) even before the development of covariant pertur-
bation theory for QED. What they realized was that the infrared divergences
from the emission of soft photons are perfectly canceled by infrared diver-
gences fromvirtual soft photons. This cancellationmechanismwas elaborated
in full detail for QED by Yennie, Frautschi, and Suura (1961), who showed
conclusively that QED can be rendered infrared finite to all orders of perturba-
tion theory. Weinberg (1965) produced a significant simplification of the ar-
gument, which also applies to theories with massless gravitons, shortly after.
Similar arguments, although more limited in their generality, have also been
provided for quantum chromodynamics.3 The central observation required to
induce the cancellation in each case is that any realistic particle detector has
some minimum energy threshold. Particles with energy below this threshold
will pass through the detector undetected. When S-matrix elements, transition
rates, and cross-sections are expressed in away that accounts for the presence of
such a threshold, the infrared divergences can be shown to cancel to all orders.

Suppose we are interested in a QED process with initial state a and final
state b containing a total of n incoming and outgoing electrons.4 The S-matrix
element for this process Sba requires corrections from the emission of soft
photons. Consider the simplest case in which a single soft photon is emitted
from one of the outgoing electron lines. This yields a correction given by the
product of an electron-photon vertex and an electron propagator with mo-
mentum p 1 q. In the limit where q→ 0, it is given by (epm)=( p � q 2 iε).
If the photon is emitted from an incoming line rather than an outgoing line,
then the momentum in the additional propagator is p 2 q, and in the limit
where q→ 0 the correction is given by (epm)=(2p � q 2 iε).

To obtain the correction for the emission of a single soft photon from any
of the incoming or outgoing electron lines, we must sum over each way the
process can happen. If we adopt the convention that hn 5 11 if the emission
is from an outgoing line and hn 5 21 if it is from an incoming line, this sum
can be written compactly ason(hnep

m
n)( pn � q 2 ihnε). If two soft photons are

emitted, the correction is given by a product of factors like those we found
for single photon emission. More generally, one can show by induction (see
3. One important example is provided by the KLN theorem (Kinoshita 1962; Lee and
Nauenberg 1964). For helpful discussion, see Muta (1987, chap. 6).

4. The argument I present here is a simplified version of the one initially given in Wein-
berg (1965) and further elaborated in Weinberg (1995, chap. 13).
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Weinberg 1995, 538–39) that the correction for the emission of N soft pho-
tons is given by

YN
i51

o
n

ehnp
mi

n

pn � qi 2 ihnε

� �
: (1)

From this basic relation we can determine the effects of both virtual and real
soft photons on Sba.

To determine the correction from the contribution of soft virtual photons,
wemust introduce a scaleL that determineswhich virtual photonswewant to
count as soft. Different choices of L simply correspond to different choices of
what count as radiative corrections and what count as part of the uncorrected
matrix element.We will also bemanipulating infrared divergent expressions,
and so we will introduce an infrared cutoff l. This cutoff will eventually be
removed by taking the l→ 0 limit at the end of the calculation.

The correction from a single soft virtual photon can be determined by
taking the product of two emitted photon corrections, multiplied by a pho-
ton propagator (2igmn)=½(2p)4 � (q2 2 iε)�, summing over the polarization
indices, and integrating over the soft photon momentum. That is, we takeÐ
L

l d
4qA(q), where

A(q) 5
2i

(2p)4(q2 2 iε)
�o

n,m

e2hnhmðpn � pm)

ðpmn � q 2 ihnε)(2pm � q 2 ihmε)� : (2)

To obtain the correction from N virtual soft photons, we take the product of
N such factors, and divide by factors of N! to account for possible permuta-
tions of where the lines attach, and (2N) to account for interchanges of the two
ends of the line. This gives

1

N !

1

2

ð
L

l

d4qA(q)

� �N

, (3)

and thus when we sum over N and use the fact that exp(x) 5 oNxN=N !, we
find that

Sl
ba 5 SL

ba exp
1

2

ð
L

l

d4qA(q)

� �
, (4)

where SL
ba is the S-matrix element with no virtual photon exchange with mo-

mentum less than L included, and Sl
ba is the S-matrix element corrected to in-

clude virtual soft photon exchange with momentum greater than l but less
than L. The rate for the process is then given by the matrix element squared:

Gl
ba 5 Sl

baj2 5
�� ��SL

baj2 exp
ð
L

l

d4qA(q)

� �
5 GL

ba exp

ð
L

l

d4qA(q)

� �
: (5)
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Weinberg shows that the integral in the exponential yields 2A ln(L=l),
where

A 5
21

8p on,m
e2hnhm

bnm

ln
1 1 bnm

1 2 bnm

� �
 and bnm 5 1 2

m4
e

ðpn � pm)
2

� �1=2

: (6)

Inserting this result into equation (5) and using familiar properties of expo-
nentials and logarithms, we find that

Gl
ba 5 GL

ba exp 2Aln
L

l

� �� �
5 GL

ba exp ln
l

L

� �� �� �A

5 GL
ba

l

L

� �A

: (7)

This provides a complete statement of the correction to the rate from virtual
soft photons. In the limit where l→ 0, we see that the rate Gl

ba vanishes. This
is the result of exponentiating ln(L=l), which is divergent in the l→ 0 limit.

The virtual soft photon divergences leading to this unphysical vanishing
of the rate are canceled by divergences from real photon emission.More pre-
cisely, this cancellation can be seen to apply to all orders of perturbation the-
ory when the total rate, including all radiative corrections, is expressed in
terms of the resolution of the detector used to measure the real soft photons.
Weinberg explains the restriction as follows:
7 Publ
The resolution of the infrared divergence problem . . . is found in the ob-
servation that it is not really possible to measure the rate Gba for a reaction
a→ b involving definite numbers of photons and charged particles, be-
cause photons of very low energy can always escape undetected. What
can be measured is the rate Gba(E, ET ) for such a reaction to take place
with no unobserved photon having an energy greater than some small quan-
tity E, and with not more than some small total energy ET going into any
number of unobserved photons. (1995, 544–45, my emphasis)
This restriction to the measurable quantity Gba(E, ET) in order to render the
rate infrared finite requires careful analysis. I will turn to that task in sec-
tion 3. The remainder of this section completes the demonstration that if
one makes this restriction, then the infrared divergences cancel.

In order to calculate the correction from the emission of N real soft pho-
tons, with momenta q1, ... , qN, each term in equation (1) must be multiplied
by the appropriate coefficient function, ½ε*m (qi, hi)�=½(2p)3=2(2jqij)�1=2, where ε
is a polarization vector and h is the helicity. This yields the following expres-
sion for thematrix element Sl

ba(q1, q2, ::: , qN ), which includes the contributions
of both the virtual soft photons and the N real emitted soft photons:
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Sl
ba(q1, q2, ::: , qN ) 5 Sl

ba

YN
i51

1

(2p)3=2(2 qij j)1=2 �on
hneðpn � ε*(qi, hi))

ðpn � qi)
, (8)

where Sl
ba is as given in equation (4). The differential rate for the emission of

N soft photons into the volume of momentum space
Q

id3qi is given by
squaring equation (8), summing over the helicities, and multiplying byQ

id3qi. Integrating the resulting expression over the direction of photon
propagation yields the differential rate for the emission of N soft photons with
energies q1, ... , qN:

dGl
ba(q1, q2, ::: , qN ) 5 Gl

baA
N dq1

q1

dq2

q2

⋯
dqN

qN

, (9)

where the factor A is as defined in equation (6). Note that if we were to in-
tegrate equation (9) over the emitted energies of the photons, we would pro-
duce logarithmic divergences from the q→ 0 end of the integrations. How-
ever, the imposition of the infrared cutoff l ensures that the expressions are
regulated. If we were to remove the regulator at this stage of the calculation,
the cancellation mechanism would not do its job, and we would not arrive at
a sensible physical rate at the end of the calculation.

In order to arrive at a final expression for the rate, the integration over
photon energies must be done respecting the constraints described in the
quotation of Weinberg above. In particular, the unobserved photons must
each have energy below the detector threshold and above the infrared cutoff,
E ≥ qi ≥ l, and the total energy of all of the unobserved photons must not
be greater than ET, oiqi ≤ ET :

Gl
ba(E, ET ) 5 Gl

bao
∞

N50

AN

N !

ð
E≥qi≥l,o

i

qi ≤ ET

YN
i51

dqi

qi

: (10)

The integration subject to these restrictions gives Gl
ba(E, ET ) 5 (E=l)AGl

ba.5

The cancellation of the infrared divergences is achieved by inserting the ex-
pression in equation (7) for Gl

ba into this result. This combines all corrections
from real and virtual photons into an expression for Gl

ba(E, ET ):

Gl
ba(E, ET ) 5

E

l

� �A

Gl
ba 5

E

l

� �A
l

L

� �A

GL
ba 5

E

L

� �A

GL
ba: (11)

Note that the factors of l canceled each other, and so we can take l→ 0 to
obtain Gba(E, ET ) 5 (E=L)AGL

ba. Thus, when we account for both soft virtual
photon exchange and real soft photon emission, the rate becomes independent
5. I have omitted an overall factor resulting from the integration that is close to 1 in the
circumstances we are interested in analyzing.
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of l and is infrared finite. The procedure used to achieve this result does, how-
ever, introduce a dependence on the detector resolution, E.

The subsequent literature adopts a distinction between exclusive and in-
clusive quantities.6 Exclusive quantities stipulate the exact contents of the in-
coming and outgoing states. For example, in an exclusive cross-section one
might demand that there are exactly three electrons and no other particles,
even if the other particles are not detected. Inclusive quantities stipulate part
of the contents of the final state, but they also account for the possibility that
there are other particles in the final state. The rate we calculated above pro-
vides an example of an inclusive quantity. We have stipulated that there are a
total of n incoming and outgoing electron lines, but we have also accounted
for the emission of an arbitrary number of undetected soft photons each with
energy less than E and with total energy less than ET. At particle accelerators,
attention is often restricted to such inclusive quantities, and it is the justifica-
tion for this to which we now turn our attention.

3. Measurement. The apparent need to restrict tomeasurable physical quan-
tities has arisen in other contexts during the development of quantum field the-
ory. Early in the development of the theory, Bohr and Rosenfeld (1933, 1950)
argued that the value of the field at a point was not a measurable quantity but
that the average value of the field over a small space-time region was measur-
able. It was later realized that field operators could not be mathematically de-
fined at points of space-time and that instead they had to be represented as
operator-valued distributions that arewell defined only as integrations against test
functions of compact support on small regions of space-time.7 When it was re-
alized that the mathematical definition of the theory became ill defined for as-
sociations of operators with points, a number of figures suggested that this
should be interpreted as resulting from the fact that such quantitieswere unmea-
surable (Friedrichs 1951; Cook 1953). If one adopts the additional assump-
tion that unmeasurable quantities are not meaningful, then the ill-definedness
offield operators at points becomes unproblematic: there is no physicallymean-
ingful quantity for the ill-defined field operators to correspond to.

Similar reasoning has been employed to address other ill-defined quanti-
ties from the ultraviolet regime. Empirically interesting field theories are ul-
traviolet divergent and require renormalization. This process involves rec-
ognizing that some parameters in the Lagrangian such as the bare mass and
the bare charge are infinite and introducing counterterms to cancel the infin-
ities and reexpress the theory in terms of measurable parameters such as the
dressedmass and charge. In response to this situation, one frequently encounters
6. As far as I have been able to determine, this distinction originates from Feynman (1969).

7. This came to be understood in stages, with the conclusive theorem provided in Wight-
man (1964).
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the claim that bare parameters in the Lagrangian are unmeasurable. To take just
one example, Srednicki explains that “it may be disturbing to have a parameter
in the Lagrangian that is formally infinite. However, such parameters are not di-
rectly measurable, and so need not obey our preconceptions about their magni-
tudes” (2007, 67).8 Once again, we encounter the view that only those quantities
that are measurable are required to be meaningful.

Compare this to the reasoning Weinberg offered in the previous section.
The rate Gl

ba is infrared divergent in the limit where l→ 0, but it is unmea-
surable. The measurable rate Gl

ba(E, ET ) is infrared finite to all orders of per-
turbation theory in the l→ 0 limit. The justification for the need tomake this
restriction in order to arrive at infrared finite quantities, when one is explic-
itly articulated, is that any real physical detector has some finite energy res-
olution, and particles with energy below that threshold will not be registered
in the detector. Thus, Weinberg’s demonstration establishes that quantum
field theory provides well-defined values for all of those observables that are
physically measurable, and most discussions of this issue leave off here.9

Absent additional argumentation, I think that this amounts to a problem-
atic retreat to operationalism. My concern is not with operationalism as an
account of meaning in general. I am open to the possibility that operational-
ism provides a compelling account of meaning in at least some cases. What
is problematic in this case is that the justification for the restriction to mea-
surable quantities relies on the stronger claim that only those quantities that
are measurable are physically meaningful. Suppose this stronger claim were
true. Then the demonstration that the field theoretic expressions for the mea-
surable observables are well-defined amounts to a demonstration that the
field theoretic expressions for every physically meaningful quantity is well
defined. If however there are physically meaningful quantities that are not
measurable, then the demonstration that the measurable quantities are well
defined does not go far enough to establish that the theory adequately ac-
counts for all of the meaningful quantities.

To determine whether the restriction to measurable quantities in the infra-
red case is problematic, we need to know whether failures of measurability
stand in direct correspondence with failures of meaningfulness. For this rea-
son, each proposed restriction tomeasurable quantities requires its own anal-
ysis, as each involves distinct physical limitations on what is measurable.
While I believe that both of the ultraviolet cases introduced abovemerit further
8. Similar claims can be found in Peskin and Schroeder (1995, 315) and Itzykson and Zu-
ber (2012, 319) and in many other accounts of the rationale underlying renormalization.

9. Essentially the same justification can be found throughout the physics literature. See,
e.g., Brown (1992, 490–91), Peskin and Schroeder (1995, 200–202), Srednicki (2007,
157–58), Schweber (2011, 549), Duncan (2012, 719, 723, 728), and Itzykson and Zuber
(2012, 173, 354).
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attention of their own, here I will restrict attention to the infrared case as that is
my central concern in this article.

Suppose we simply grant that every physical detector will have some
threshold E such that particles with energy less than E will not be detected.
Note that quantities like cross-sections and rates are defined with respect to a
particular collection of incoming particles and a particular collection of de-
tected outgoing particles. However, for a given incoming state, a, the dy-
namics of the theory will yield an outgoing state that is a superposition with
indeterminate particle content, including an indeterminate number of elec-
trons, hard photons, and soft photons with energy below the detection thresh-
old. It is only uponmeasurement that the outgoing state becomes one with the
determinate particle content as we assumed b to have. And, of course, how
one conceives of this process of becoming a state with determinate particle
content depends on how one prefers to resolve the quantum measurement
problem.

In computing the rate Gba(E, ET) we assumed that this measurement pro-
cess yields a specific number of electrons and no hard photons in the final
state. If there were hard photons, or a different number of electrons, wewould
need to compute the rate for a different process. Given that there are outgoing
electrons in the final state, there are also soft photons that were not detected.
So the justification relied on here is not that there is no photon detector that
can detect arbitrarily soft photons and hence quantities involving them
are meaningless. Rather, every measurement that is done has some energy
resolution, and we need to account for the fact that given the particular
measurement that has been executed, there can be soft photons below that
resolution.

This shows why it necessary to express the physical quantities in terms of
the detector resolution, E. For a given incoming state, there are distinct pos-
sible outgoing states. By selecting a specific b, we have not done quite
enough to specify which part of the state space the measurement is a projec-
tion onto. By specifying E, we condition on which kinds of soft radiation can
be undetected in the final state. For a different detector energy resolution E0,
different kinds of unobserved soft radiation states are possible, as are differ-
ent alternatives to b. The need to restrict to what is measurable is not a retreat
to operationalism. Rather, the presence of the energy resolution is an artic-
ulation of the precise nature of the question we are asking about the outgoing
state by executing the particular measuring process that we chose to execute.

4. The Connection to Haag’s Theorem. In their appraisal of the philo-
sophical significance of Haag’s theorem, Earman and Fraser (2006) make sev-
eral references to infrared divergences. They claim, for example, that “in the
physicists’ lingo, the move from one inequivalent representation to another is
marked by divergences. Haag’s theorem is concernedwith infrared divergences
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that are associated with Euclidean invariance and the infinite volume of space”
(319). They also note that the infrared divergences can be tamed by imposing
some form of infrared regulator. The imposition of an infrared regulator can
cure more than one kind of infrared pathology, and caution is required here
in order not to run together two conceptually distinct issues.

The interaction picture is a formal intermediary between the Schrödinger
picture and the Heisenberg picture that is often employed as a calculational
tool to facilitate the perturbative evaluation of observables. It postulates the
existence of a global unitary transformation connecting the free and interact-
ing Hilbert spaces. Haag’s theorem shows that this transformation does not
exist and that these spaces are unitarily inequivalent. Thus, the interaction
picture is predicated on an inconsistent set of assumptions. Elsewhere I have
provided an account of how perturbative calculations that employ the inter-
action picture can be empirically successful despite this apparent inconsis-
tency (Miller 2016). The imposition of an infrared regulator renders some
of the assumptions of the theorem false. This undercuts the threat to the em-
pirical success of the theory from Haag’s theorem, but it leaves questions
about the well-definedness of the interaction picture in the limit where the
regulator is removed.

Infrared divergences from soft massless particles raise a more serious
worry about the infrared regime of quantum field theory than the one impli-
cated in Haag’s theorem. The infrared cancellation results are sufficient to
assuage worries about how it can be that theories with infrared divergences
are still empirically successful. However, because of the presence of the soft
massless particles, free electron states with distinct momenta are unitarily
inequivalent to one another.10 As such, this class of infrared divergences
calls into question the well-definedness of the physical state spaces of theo-
ries like QED. For this reason, I think they are rightly regarded as a symptom
ofmore serious conceptual problem thanHaag’s theorem, which only under-
mines a method for extracting predictions from the theory.

5. Conclusion. I have argued that the need to express physical quantities
in terms of the energy resolution of a detector does not mark a problematic
retreat to operationalism. As in the case of the ultraviolet divergences, the in-
frared divergences can be understood physically. With a properly implemented
renormalization scheme and infrared cancellation mechanism in place, the
algorithm of quantum field theory provides finite expressions for physical
observables. Thus, the infrared divergences, like the ultraviolet divergences,
are not ultimately an obstacle to realist interpretations of the theory. The in-
frared regime of the theory is fraught with conceptual issues that bear directly
10. For discussion, see Buchholz (1982) or Duncan (2012, 722–23).
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on how one might go about producing such an interpretation and very much
warrants further attention from a foundational perspective.
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