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Abstract
This paper aims to evaluate the aggregate claims distribution under the collective risk model when the

number of claims follows a so-called generalised (a, b, 1) family distribution. The definition of the

generalised (a, b, 1) family of distributions is given first, then a simple matrix-form recursion for the

compound generalised (a, b, 1) distributions is derived to calculate the aggregate claims distribution

with discrete non-negative individual claims. Continuous individual claims are discussed as well and

an integral equation of the aggregate claims distribution is developed. Moreover, a recursive formula

for calculating the moments of aggregate claims is also obtained in this paper. With the recursive

calculation framework being established, members that belong to the generalised (a, b, 1) family are

discussed. As an illustration of potential applications of the proposed generalised (a, b, 1) distribution

family on modelling insurance claim numbers, two numerical examples are given. The first example

illustrates the calculation of the aggregate claims distribution using a matrix-form Poisson for claim

frequency with logarithmic claim sizes. The second example is based on real data and illustrates

maximum likelihood estimation for a set of distributions in the generalised (a, b, 1) family.
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1. Introduction

In the risk theory literature, how to evaluate the distribution of aggregate claims arising from a portfolio of

risks in a certain time period is one of the long-lasting interesting problems. The two models mostly used

in addressing the problem are the collective risk model and the individual risk model. In this paper, we will

only look at the former model, under which the aggregate claims amount, denoted by S, is defined as

S ¼
XN
i¼ 1

Xi:
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In the above expression, N is a random variable (r.v.) denoting the number of claims incurred over a

fixed time period and it is valued on the non-negative integers. It has probability function (p.f.)

pn 5 Pr(N 5 n), nZ0, and probability generating function (p.g.f.) p̂ðzÞ ¼ S1n¼ 0 znpn, z 2 C. fXig
1
i¼ 1 is

a sequence of independent and identically distributed (i.i.d.) non-negative r.v.’s, either discrete or

continuous, denoting the individual claim sizes. In addition, we assume that N is independent of fXg1i¼ 1.

In the following, we first consider the case of discrete individual claims Xi, with p.f. fx, x 5 0, 1, 2,y

To evaluate the probability function of the aggregate claims S, one can use the convolution method.

Let gx 5 Pr(S 5 x). A well-known result is, for xZ0,

gx ¼
X1
n¼ 0

pnf nn
x ; ð1:1Þ

where f nn is the n-fold convolution of f. Although the above formula provides us with a way of

calculating the p.f. of S, it is not computationally efficient in practice as it often involves high-order

convolutions of f.

To overcome this problem, Panjer (1981) developed a recursive formula to compute the aggregate

claims distribution when {pn}, the p.f. of N, belongs to the (a, b, 0) family of distributions and

Xi . 0 (i.e. f0 5 0) for all i 5 1, 2, y . In particular, he states that if there exist constants a and b such

that the p.f. pn can be written as, for nZ1,

pn ¼ pn� 1 a þ
b

n

� �
; ð1:2Þ

then {pn} is said to belong to the (a, b, 0) family and

gx ¼
Xx

j¼ 1

a þ
bj

x

� �
f jgx� j; x40: ð1:3Þ

The starting value for the recursion is given by g0 5 p0. As shown by Sundt & Jewell (1981), the only

counting distributions belonging to the (a, b, 0) family are the Poisson, negative binomial (with

geometric distribution as a special case) and binomial distributions. The (a, b, 0) family also contains the

distribution concentrated at zero. Moreover, for a general f0 Sundt & Jewell (1981) extended (1.3) to

gx ¼
1

1� af 0

Xx

j ¼1

a þ
bj

x

� �
f jgx� j; x4 0; ð1:4Þ

with the starting value g0 ¼ p̂ðf 0Þ. Sundt & Jewell (1981) further generalised the Panjer recursion (1.3)

to the family of (a, b, 1) distributions, sometimes known as the Sundt-Jewell class of distributions in the

literature. In particular, the recursive structure (1.2), initiates at p1 rather than p0. One of their main

results says that if N follows an (a, b, 1) family distribution, then

gx ¼
1

1� af 0

p1� ða þ bÞ p0

� �
f x þ

Xx

j¼ 1

a þ
bj

x

� �
f jgx� j

" #
; x40: ð1:5Þ

The starting value for the recursion is still g0 ¼ p̂ðf 0Þ. Willmot (1988) showed that the only non-

degenerate members of the (a, b, 1) family are the Poisson, negative binomial, binomial, logarithmic

series, the extended truncated negative binomial (ETNB) distributions and the zero-modified versions of

these distributions. This was also mentioned in Klugman et al. (1998, pp 229).
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Since then, a large amount of research has been undertaken to allow for cases where N has other types

of counting distributions. For example, Schröter (1990) derived a recursive formula for the

distribution of S when pn belongs to the Schröter family of distributions. A detailed review

on the development of recursive evaluation of aggregate claims distribution can be found in Sundt

(2002). Sundt (2003) studied how to calculate the higher moments of S recursively. A more recent

resource is the book written by Sundt & Vernic in 2009, which conducted a thorough review on

modelling the aggregate claims distribution as compound distributions and convolutions.

Wu & Li (2010) proposed the generalised (a, b, 0) family of distributions to model the claim

number N. Its definition is given as follows.

Definition 1. Let fpng
1
n¼ 0 be the p.f. of the r.v. N. If pn can be written as

pn ¼ ~c Pn
~1
>
; n � 0;

where ~1 ¼ ð1; 1; . . . ; 1Þ1�m, ~c ¼ ðg1; g2; . . . ; gmÞ is a row vector with giZ0 and
Pm

i¼ 1 gi ¼ 1, and

Pn, n 5 0, 1,y, is a sequence of m 3 m matrices, satisfying the following recursion

Pn ¼ Pn� 1 A þ
B

n

� �
; n � 1; ð1:6Þ

where A and B are two m 3 m matrices, then fpng
1
n¼0 is said to belong to the generalised (a, b, 0)

family.

The p.g.f. of a generalised (a, b, 0) family distribution becomes

p̂ðzÞ ¼
X1
n¼ 0

znpn ¼
X1
n¼ 0

zn ~c Pn
~1
>

� �
¼ ~c

X1
n¼0

znPn

 !
~1
>
¼ ~c P̂ðzÞ~1

>
; ð1:7Þ

where P̂ðzÞ ¼
P1

n¼ 0 znPn. We note that when m 5 1, the recursion (1.6) reduces to recursion (1.2).

Wu & Li (2010) provided a matrix-form of Panjer’s recursive equation for the compound

generalised (a, b, 0) distributions. At the same time, the authors also considered matrix-form

recursion for the compound discrete phase-type (DPH) distributions as DPH distributions are

commonly used in modelling count data as well. Detailed discussions about the DPH distributions

can be found in Neuts (1981) and Latouche & Ramaswami (1999) and the references therein. An

interesting observation is that DPH distributions follow a similar recursive structure as (1.6) but

starting from one step later. Motivated by this observation, it is natural to introduce the generalised

(a, b, 1) family of distributions with matrix parameters.

Definition 2. Let fpng
1
n¼ 0 be the p.f. of the r.v. N. If pn can be written as

pn ¼ ~c Qn
~1
>
; n � 0; ð1:8Þ

where~c and ~1 are the same as defined in Definition 1 and Qn, n 5 1, 2,y, is a sequence of m 3 m

matrices, satisfying the following recursion:

Qn ¼ Qn� 1 A þ
B

n

� �
; n � 2; ð1:9Þ

where A and B are two m 3 m matrices, then fpng
1
n¼0 is said to belong to the generalised (a, b, 1)

family.
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Analogous to (1.7), the p.g.f. of fpng
1
n¼ 0, denoted by p̂ðzÞ, can be expressed as

p̂ðzÞ ¼
X1
n¼0

znpn ¼ ~c Q̂ðzÞ~1
>
;

where Q̂ðzÞ ¼
P1

n¼ 0 znQn. Again, we see that if m 5 1, the recursion (1.9) reduces to the (a, b, 1)

family case as mentioned before. Furthermore, it can be shown that all DPH distributions are

members of this family, including many others. Members other than DPH distributions that belong

to the generalised (a, b, 1) family will be discussed in Section 4 of this paper.

Motivated by the idea and based on the results obtained in Wu & Li (2010), we will develop a

recursive method to evaluate the distribution and moments of the aggregate claims S. Firstly, a

matrix-form recursion is developed in Section 2 to evaluate the aggregate claims distribution when

N belongs to the generalised (a, b, 1) family of distributions and individual claims take non-negative

integer values. An integral equation is also derived for the aggregate claims distribution with

continuous claim amounts. Section 3 demonstrates how to compute the moments of S recursively

based on the results from Section 2. Section 4 is devoted to discussion of some special members that

belong to the generalised (a, b, 1) family of distributions. Two numerical examples, one involving

real data, are presented in Section 5 to illustrate the use of the matrix-form recursion derived in

Section 2 and the estimation of parameters associated with a member of the generalised (a, b, 1)

family. And lastly, we provide a short summary of some technical issues regarding the generalised

(a, b, 1) family of distributions and some possible future investigations.

2. Compound Generalised (a, b, 1) Distributions

In this section, we will derive a recursive formula to calculate the distribution of aggregate claims S defined

at the beginning of this paper, given that the number of claims N follows a generalised (a, b, 1)

distribution. We first assume that the individual claim amounts are discrete random variables valued on

the non-negative integers. Secondly, continuous claim amounts will be considered using similar procedures

adopted for the discrete case. We will begin with a lemma that is useful in our subsequent derivations.

Lemma 1. For a generalised (a, b, 1) distribution, fpng
1
n¼0, as defined in Definition 2, Q̂ðzÞ satisfies

the following differential equation

Q̂
0

ðzÞ ¼ Q1�Q0ðA þ BÞ þ z Q̂
0

ðzÞA þ Q̂ðzÞðA þ BÞ: ð2:1Þ

Proof. We have

Q̂
0

ðzÞ ¼
X1
n¼ 1

nzn�1Qn

¼Q1 þ
X1
n¼ 2

nzn� 1Qn� 1ðA þ
B

n
Þ

¼Q1 þ
X1
n¼ 1

ðn þ 1ÞznQnA þ
X1
n¼ 1

znQnB

¼Q1 þ z Q̂
0

ðzÞ þ Q̂ðzÞ�Q0

h i
A þ Q̂ðzÞ�Q0

h i
B

¼Q1�Q0ðA þ BÞ þ z Q̂
0

ðzÞA þ Q̂ðzÞðA þ BÞ:

This completes the proof. &
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2.1. Discrete Claim Amounts Distribution

Using the notation defined in Section 1, let the individual claims be i.i.d. r.v.’s with p.f. f. Let

f̂ ðzÞ ¼
P1

x¼ 0 zxf x and ĝðzÞ ¼
P1

x¼ 0 zxgx be the p.g.f. of f and g respectively, where g is the p.f. of S.

Under the generalised (a, b, 1) framework, substituting equation (1.8) into equation (1.1) yields

gx ¼
X1
n¼ 0

f nn
x ~c Qn

~1
>

� �
¼ ~c

X1
n¼0

f nn
x Qn

 !
~1
>
¼ ~cGðxÞ~1

>
; ð2:2Þ

where GðxÞ ¼
P1

n¼ 0 f nn
x Qn. Therefore, ĝðzÞ can be expressed as

ĝðzÞ ¼
X1
x¼ 0

zxgx ¼
X1
x¼ 0

zx ~cGðxÞ~1
>

� �
¼ ~c

X1
x¼ 0

zxGðxÞ

 !
~1
>
:

On the other hand, we can rewrite ĝðzÞ as follows:

ĝðzÞ ¼ p̂ f̂ ðzÞ
� �

¼
X1
n¼0

pn f̂ ðzÞ
h in

¼ ~c
X1
n¼ 0

Qn f̂ ðzÞ
� �n

" #
~1
>
:

Let

fðzÞ ¼
X1
n¼ 0

Qn f̂ ðzÞ
� �n

¼ Q̂ f̂ ðzÞ
� �

: ð2:3Þ

So alternatively, we have fðzÞ ¼
P1

x¼ 0 zxGðxÞ.

The expression (2.2) shows us that in order to calculate the p.f. of gx, we need to find a method to

calculate G(x). If G(x) can be obtained for all x, then the calculation for gx is trivial. In what

follows, we will derive a recursive equation for G(x).

Theorem 1. If the distribution of the number of claims, N, belongs to the generalised (a, b, 1)

family of distributions and the individual claim amounts are non-negative integer valued i.i.d. r.v.’s,

then the matrix G(x) defined just after (2.2) satisfies the following recursive formula

GðxÞ ¼ Q1�Q0ðA þ BÞ
� �

f x þ
Xx

j¼ 1

f jGðx� jÞ A þ
j

x
B

� �" #
ðI� f 0AÞ�1

ð2:4Þ

for xZ1, and the starting value is Gð0Þ ¼ Q̂ðf 0Þ.

Proof. From (2.3) we know fðzÞ ¼ Q̂ðf̂ ðzÞÞ. Differentiating with respect to z on both sides of the

equation gives

f0ðzÞ ¼ Q̂
0

f̂ ðzÞ
� �

f̂ 0ðzÞ: ð2:5Þ

By insertion of (2.1), we obtain

f0ðzÞ ¼ Q1�Q0ðA þ BÞ þ f̂ ðzÞ Q̂
0

f̂ ðzÞ
� �

A þ Q̂ f̂ ðzÞ
� �

ðA þ BÞ
h i

f̂ 0ðzÞ

¼ Q1�Q0 A þ Bð Þ
� 	

f̂ 0ðzÞ þ f̂ ðzÞ Q̂
0

f̂ ðzÞ
� �

f̂ 0ðzÞ
h i

A þ Q̂ f̂ ðzÞ
� �

ðA þ BÞf̂ 0ðzÞ;
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which gives

f0ðzÞ ¼ Q1�Q0ðA þ BÞ
� 	

f̂ 0ðzÞ þ f̂ ðzÞf0ðzÞA þ fðzÞðA þ BÞf̂ 0ðzÞ: ð2:6Þ

Expanding both sides of (2.6) in power series and comparing the coefficients of zx 2 1 on both sides

yields, for x . 0,

xGðxÞ ¼
�
Q1�Q0ðA þ BÞ

	
xf x þ

Xx� 1

j¼ 0

ðx� jÞf jGðx� jÞA

þ
Xx

j¼ 1

jf jGðx� jÞðA þ BÞ

¼ Q1�Q0ðA þ BÞ
� 	

xf x þ
Xx

j¼0

xf jGðx� jÞA þ
Xx

j¼ 1

jf jGðx� jÞB

¼ Q1�Q0ðA þ BÞ
� 	

xf x þ xf 0GðxÞA þ
Xx

j¼1

f jGðx� jÞðxA þ jBÞ:

Solving for G(x) gives the recursion (2.4). The starting value G(0) of the recursion can be

determined as follows:

Gð0Þ ¼
X1
n¼ 0

f nn
0 Qn ¼

X1
n¼ 0

f 0

� �n
Qn ¼ Q̂ðf 0Þ:

This completes the proof. &

As commented by Wu & Li (2010), it is worthwhile to further obtain a vector version of recursive

equation for gx. We define ~Q0 ¼ ~c Q0, ~Q1 ¼ ~c Q1 and ~GðxÞ ¼ ~cGðxÞ to be 1 3 m row vectors. The

matrix-form recursive formula (2.4) has a version in terms of vectors

~GðxÞ ¼ ~Q1�
~Q0ðA þ BÞ

� �
f x þ

Xx

j¼ 1

f j
~Gðx� jÞ A þ

j

x
B

� �" #
I� f 0A
� ��1

; ð2:7Þ

for x . 0. The starting vector is ~Gð0Þ ¼ ~cQ̂ f 0

� �
.

Remarks:

1. Equation (2.7) can save computational time when calculating the distribution of S.

2. If we assume that the individual claim amounts, Xi, can only take positive integers, i.e. f0 5 0,

then equation (2.7) can be further simplified as

~GðxÞ ¼ ~Q1�
~Q0ðA þ BÞ

h i
f x þ

Xx

j¼ 1

f j
~Gðx� jÞ A þ

j

x
B

� �
;

with the initial vector given by ~Gð0Þ ¼ ~c Q0.

3. When m 5 1, we have A 5 a, B 5 b, ~c ¼ 1 and ~GðxÞ ¼ gx. Then equation (2.7)reduces to

recursive formula (1.5).

2.2. Continuous Claim Amounts Distribution

In this subsection, we consider continuous individual claim amounts. We still assume that Xi,

i 5 1, 2,y are i.i.d. r.v.’s with probability density function f(x), where x 2 ð0;1Þ. Let g(x) denote

K. K. Siaw et al.
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the probability density function of S, and ~GðxÞ be defined as before with f(x) replacing fx. Then we

have gðxÞ ¼ ~GðxÞ~1
>

. Further, we denote the moment generating functions of Xi and S by MX(z) and

MS(z) respectively, and we obtain

MSðzÞ ¼ p̂ MXðzÞð Þ ¼ ~c Q̂ MXðzÞð Þ~1
>
¼ ~gðzÞ~1

>
;

where ~gðzÞ ¼ ~c Q̂ MXðzÞð Þ.

As a counterpart of the discrete claims case, we derive the following integral equation of the

aggregate claims distribution.

Theorem 2. If the distribution of the number of claims, N, belongs to the generalised (a, b, 1)

family and the individual claim amounts are i.i.d. continuous non-negative random variables, then

for S, ~GðxÞ satisfies the following integral equation, for x . 0,

~GðxÞ ¼ ~Q1�
~Q0ðA þ BÞ

h i
f ðxÞ þ

Z x

0

~Gðx� yÞ A þ
y

x
B

h i
f ðyÞdy: ð2:8Þ

Proof. Differentiating ~gðzÞ with respect to z gives

~g0ðzÞ ¼ ~c Q̂
0

MXðzÞð ÞM0XðzÞ: ð2:9Þ

Applying Lemma 1 to the right hand side of (2.9) yields

~g0ðzÞ ¼ ~Q1�
~Q0ðA þ BÞ

h i
M0XðzÞ þ MXðzÞ~g

0ðzÞA þ M0XðzÞ~gðzÞðA þ BÞ: ð2:10Þ

Since ~gðzÞ ¼
R1

0 ezx~GðxÞdx and MXðzÞ ¼
R1

0 ezxf ðxÞdx, the above equation can be rewritten as

Z 1
0

xezx~GðxÞdx ¼ ~Q1�
~Q0ðA þ BÞ

h iZ 1
0

xezxf ðxÞdx þ

Z 1
0

ezyf ðyÞdy

Z 1
0

xezx~GðxÞ dx A

þ

Z 1
0

yezyf ðyÞdy

Z 1
0

ezx~GðxÞdx

� �
ðA þ BÞ

¼ ~Q1�
~Q0ðA þ BÞ

h iZ 1
0

xezxf ðxÞdx þ

Z 1
0

Z 1
y

ðx� yÞf ðyÞezx~Gðx� yÞ dxdy A

þ

Z 1
0

Z 1
y

yf ðyÞezx~Gðx� yÞdxdyðA þ BÞ: ð2:11Þ

Interchanging the order of integration on the right hand side of (2.11) gives

Z 1
0

xezx~GðxÞdx ¼ ~Q1�
~Q0ðA þ BÞ

h iZ 1
0

xezxf ðxÞdx

þ

Z 1
0

ezx

Z x

0

ðx� yÞf ðyÞ~Gðx� yÞdydxA

þ

Z 1
0

ezx

Z x

0

yf ðyÞ~Gðx� yÞdxdyðA þ BÞ: ð2:12Þ

By comparing the coefficients of ezx on both sides of equation (2.12), we obtain equation (2.8). &

Remark: Note that the result (2.8) is more of interest in theory. In practice, discretising the

continuous claim amounts would be an easier option for calculations.
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3. The Moments of the Aggregate Claims

Having discussed the recursive calculation for the p.f. of the aggregate claims S with a generalised

(a, b, 1) distributed number of claims, in this section we will consider how to evaluate the moments

of S. As shown in the following, the moments of S can also be calculated recursively.

Firstly we define the row vector ~HðrÞ ¼
P1

x¼ 0 xr~GðxÞ, such that, for r 5 0, 1, 2,y,

EðSr
Þ ¼

X1
x¼ 0

xrgx ¼
X1
x¼ 0

xr~GðxÞ

 !
~1
>
¼ ~HðrÞ~1

>
; ð3:1Þ

where ~Hð0Þ ¼
P1

x¼0
~GðxÞ. Formula (3.1) implies that if ~HðrÞ can be calculated, so can EðSr

Þ.

In what follows a method is developed to calculate ~HðrÞ recursively when the individual claim

amounts are discrete.

Theorem 3. The moment vectors ~HðrÞ, r � 1, defined above satisfy the following recursive

equation:

~HðrÞ ¼ ~Q1 �
~Q0ðAþ BÞ

� �
E Xrð Þ

h

þ
Xr�1

k¼ 0

E Xr�k
� �

~HðkÞ
r

k

 !
Aþ

r � 1

k

 !
B

 !#
I � A½ �

�1: ð3:2Þ

Proof. Based on the recursive formula (2.7) and the definition of ~HðrÞ, we have

~HðrÞ ¼
X1
x¼1

xr ~Q1�
~Q0ðAþ BÞ

� �
f x þ

Xx

j¼1

f j
~G ðx�jÞ Aþ

j

x
B

� �" #
I� f 0A
� 	�1

:

Using a similar approach as in Wu & Li (2010) gives

~HðrÞ I�f 0A
� 	

¼ ~Q1�
~Q0ðAþ BÞ

h i
EðXrÞ þ

X1
x¼1

xr
Xx

j¼1

f j
~Gðx�jÞAþ

X1
x¼1

xr�1
Xx

j¼1

j f j
~Gðx� jÞB

¼ ~Q1�
~Q0ðAþ BÞ

h i
EðXrÞ þ

X1
j¼1

f j

X1
x¼0

ðxþ jÞr ~GðxÞAþ
X1
j¼1

jf j

X1
x¼0

ðxþ jÞr�1~GðxÞB:

Applying the binomial expansion, we obtain

~HðrÞ I� f 0A
� 	

¼ ~Q1�
~Q0ðAþ BÞ

h i
EðXr
Þ þ
X1
j¼1

f j

X1
x¼0

Xr

k¼0

r

k

 !
xkjr�k

 !
~GðxÞA

þ
X1
j¼1

j f j

X1
x¼0

Xr�1

k¼0

r�1

k

 !
xkjr�1�k

 !
~GðxÞB

¼ ~Q1�
~Q0ðAþ BÞ

h i
EðXr
Þ þ
X1
j¼1

f j

Xr

k¼0

r

k

 !
jr�k

X1
x¼0

xk~GðxÞ

 !
A

þ
X1
j¼1

j f j

Xr�1

k¼0

r� 1

k

 !
jr�1�k

X1
x¼0

xk~GðxÞ

 !
B;
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which gives

~HðrÞ I� f 0 A
� 	

¼ ~Q1�
~Q0 ðAþ BÞ

h i
E Xr
ð Þ þ

Xr� 1

k¼0

r

k

 !
E Xr� k
� �

~HðkÞA

þ ð1� f 0Þ
~HðrÞAþ

Xr�1

k¼0

r� 1

k

 !
E Xr� k
� �

~HðkÞB:

Solving for ~HðrÞ gives the recursion (3.2). This completes the proof. &

4. Members of the Generalised (a, b, 1) Family

We will now turn our attention to discussing the members of the generalised (a, b, 1) family other

than the DPH distributions. They are the matrix versions of the zero-modified Poisson distribution,

the extended truncated negative binomial distributions with non-integer shape parameter and the

logarithmic series distributions.

To begin with, notice that based on Definition 2, the matrix Q0 can be chosen independently

from the subsequent matrices Qn for nZ1. This particular feature allows one to tackle the issue

of unusually high or low probability observed at N 5 0, which usually arises in insurance count

data as suggested by Klugman et al. (1998, pp. 225). This led us to consider the problem of

how to determine the starting value in recursive formula (1.9), i.e., the matrix Q1. If there is an

approach to determine Q1 (the obtained Q1 may not be unique), given ~c , A, B and Q0, then it is

equivalent to say that sequence fQng
1
n¼0 is fully determined. To address this problem, we propose

the following method.

Firstly, to make fpng
1
n¼0 a proper distribution, we require

X1
n¼0

pn ¼~c
X1
n¼0

Qn
~1
>
¼ 1;

or more specifically,

~c
X1
n¼1

Qn
~1
>
¼ 1� p0: ð4:1Þ

Applying the recursive property of Q to the left-hand side of equation (4.1) gives

~c Q1 Iþ
X1
n¼1

Yn

j¼1

Aþ
B

jþ 1

� �" #
~1
>
¼ 1� p0:

In general, there are an infinite number of solutions for Q1 in the above equation.

A special solution of Q1 is

Q1 ¼ ð1� p0Þ Iþ
X1
n¼1

Yn

j¼1

Aþ
B

jþ 1

� �" #�1

ð4:2Þ

given that the matrix D ¼ Iþ
P1

n¼1

Qn
j¼1 Aþ B

jþ1

� �
is invertible. Closed-form expressions can be

obtained under some special circumstances.
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Case 1: Let A ¼ H and B ¼ �H, where H is an m 3 m non-singular matrix. Then we have

D ¼ Iþ
X1
n¼1

Yn

j¼1

H�
H

jþ 1

� �
¼ Iþ

X1
n¼1

Hn

nþ 1
¼ H�1

X1
n¼1

Hn

n
:

We assume that I�H is invertible and each Jordan block belonging to a negative eigenvalue, which

is a matrix having the following form

�c 1 0 � � � 0 0

0 �c 1 . .
.

0 0

0 0 �c . .
.

0 0

0 0 0 . .
.

1 0

..

. . .
. . .

. . .
. . .

.
1

0 0 0 � � � 0 �c

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

where 2c is the negative eigenvalue, occurs an even number of times. According to Culver (1966)

we know that the above expression can be further simplified to �H�1 ln ðI�HÞ and here ln ðI�HÞ is
a real matrix. If in addition, the matrix ln ðI�HÞ is invertible, then we have found an explicit

solution for Q1:

Q1 ¼ �ð1� p0Þ ln ðI�HÞ½ �
�1H;

and it gives

Qn ¼ �
1

n

� �
ð1�p0Þ ln ðI�HÞ½ �

�1Hn; n � 1:

Therefore, on the other hand, if a given distribution fpng
1
n¼0 can be written in the form

p0 ¼~c Q0
~1
>
;

pn ¼ �
1

n
ð1� p0Þ~c ln ðI�HÞ½ �

�1Hn~1
>
; n � 1; ð4:3Þ

then fpng
1
n¼0 belongs to the generalised (a, b, 1) family with parameters A ¼ H and B ¼ �H. The

p.g.f. in this case is given by

p̂ðzÞ ¼~cQ̂ðzÞ~1
>
¼~c



Q0 þ

X1
n¼1

znQn

�
~1
>

¼~c Q0 þ ð1�p0Þ ln ðI�HÞ½ �
�1
�
X1
n¼1

ðzHÞn

n

 !" #
~1
>

¼ p0 þ ð1�p0Þ~c ln ðI�HÞ½ �
�1lnðI� zHÞ~1

>
:

For j . 0, the jth factorial moment of N can be obtained by differentiating p̂ðzÞ for j times and letting

z 5 1, shown as follows:

E NðN� 1Þ . . . ðN� jþ 1Þ½ � ¼ �ðj� 1Þ!ð1�p0Þ~c lnðI�HÞ½ �
�1
ðI�HÞ�jHj~1

>
:
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Case 2: Let A 5 0 and B 5 L, where L is an m 3 m invertible matrix. Then the expression for the

matrix D reduces to

Iþ
X1
n¼1

Yn

j¼1

K
jþ 1

¼ Iþ
X1
n¼1

Kn

ðnþ 1Þ!

¼K�1
X1
n¼0

Kn

n!
� I

 !
¼ K�1eK I� e�K

� �
:

If, in addition, I� e�K is invertible, then we have an explicit solution for Q1:

Q1 ¼ ð1� p0ÞðI� e�KÞ
�1e�KK;

and hence

Qn ¼ ð1� p0ÞðI�e�KÞ
�1e�K Kn

n!
; n � 1:

Thus, a distribution fpng
1
n¼0 with the following structure

p0 ¼~c Q0
~1
>
;

pn ¼ ð1� p0Þ~c ðI� e�KÞ
�1

e�K Kn

n!
~1
>
; n � 1;

ð4:4Þ

belongs to the generalised (a, b, 1) family with parameters A 5 0 and B 5 L. Its p.g.f. equals

p̂ðzÞ ¼ p0 þ ð1� p0Þ~c ðI� e�KÞ
�1

e�KðezK�IÞ~1
>
: ð4:5Þ

The jth factorial moment of N is

E NðN� 1Þ . . . ðN� jþ 1Þ½ � ¼ ð1� p0Þ~c ðI� e�KÞ
�1

Kj~1
>
; j40:

Case 3: Let k4�1, A 5 R and B 5 (k 2 1)R, where R is an m 3 m invertible matrix such that I2R is

invertible as well. The expression of the matrix D can be simplified as

Iþ
X1
n¼1

Yn
j¼1

Rþ
ðk� 1ÞR

jþ 1

� �

¼ Iþ
X1
n¼1

Rn
Yn

j¼1

jþ k

jþ 1
¼
X1
n¼0

ðnþ kÞ!

ðnþ 1Þ!k!
Rn

¼
1

k

X1
n¼1

nþ k�1

n

 !
Rn�1 ¼

1

k
R�1

X1
n¼0

nþ k�1

n

 !
Rn�I

" #
:

To simplify the above expression, we use the generalised binomial theorem for the function

(I2R)2k, which gives

ðI�RÞ�k
¼
X1
n¼0

kþ n�1

n

� �
Rn:

As a result, the expression of D simplifies to

1

k
R�1
ðI�RÞ�k

�I
h i

¼
1

k
R�1
ðI�RÞ�k I� ðI�RÞk

h i
:

Assume that I2 (I 2 R)k is invertible, then an explicit expression for Q1 is

Q1 ¼ kð1� p0Þ I� ðI�RÞk
h i�1

RðI�RÞk:
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Moreover, the distribution {pn} can be expressed as

p0 ¼~c Q0
~1
>
;

pn ¼ð1� p0Þ~c I� ðI�RÞk
h i�1 kþ n�1

n

 !
RnðI�RÞk~1

>
; n � 1:

ð4:6Þ

The p.g.f. of N is given by

p̂ðzÞ ¼ p0 þ ð1� p0Þ~c I� ðI�RÞk
h i�1

ðI� zRÞ�k
�I

h i
ðI�RÞk~1

>
:

The jth factorial moment of N can be found in the usual way. However, due to the complexity of the

results, only the expectation is shown below:

EðNÞ ¼ kð1�p0Þ~c I� ðI�RÞk
h i�1

ðI�RÞ�1R~1
>
:

Remarks:

1. If m 5 1, then:

(a) In Case 1, Q 5 y and ~c ¼ 1. Equation (4.3) will become

pn ¼ �
1

n

yn

lnð1�yÞ
; n � 1;

which is the usual logarithmic distribution.

(b) In Case 2, L 5 l and ~c ¼ 1. Equation (4.4) will become

pn ¼
1� p0

1� e�l
e�lln

n!
; n � 1;

which is the zero-modified Poisson distribution.

(c) In Case 3, R 5 r and ~c ¼ 1. If k . 0, Equation (4.6) will become

pn ¼
1� p0

1� ð1� rÞk
kþ n�1

n

� �
rnð1� rÞk n � 1;

which is the zero-modified negative binomial distribution. However, if 21 , k , 0 and

p0 5 0, Equation (4.6) will become

pn ¼
kþ n�1

n

� �
rn

ð1� rÞ�k
�1
¼
�k

n

� �
ð�rÞn

ð1� rÞ�k
�1

which is the extended truncated negative binomial distribution.

2. We do not extend the parameter of the binomial distribution and its variations into matrix-form

as we did for others. This is because the binomial distribution is actually a special case in the

DPH family, as according to Latouche & Ramaswami (1999, pp. 54), every finite-support non-

negative integer distribution can be written as a DPH distribution.

3. As shown by Wu & Li (2010), mixtures and linear combinations (less restrictions apply to the

linear coefficients, i.e., some of them can be negative numbers as long as the total of coefficients

equals 1) of (a, b, 0) family distributions can be obtained by imposing certain restrictions on the

matrix parameters of the generalised (a, b, 0) distributions. For the generalised (a, b, 1) family,

the same restrictions on the matrix parameters will generate mixtures and linear combinations of
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(a, b, 1) family distributions. To avoid repetition in the current paper, we refer interested readers

to Wu & Li (2010)for those special cases of the matrix parameters.

4. For the special cases mentioned in point 3, the matrix-form recursion derived in Section 2.1 will

not make the computation of the aggregate claims distribution more efficient. It would be easier

to simply compute the aggregate distribution using the ordinary (a, b, 1) recursion for each of

the components, and then combine the results later.

To end this section, we suggest an alternative approach to determine Q1 under some special

conditions. It can be observed that both the generalised (a, b, 0) family and the generalised (a, b, 1)

family of distributions share the same recursive structure for n . 1. Therefore, it is a plausible

assumption that there exists an m 3 m constant matrix C such that

Qn ¼ CPn; n � 1; ð4:7Þ

where P and Q form part of a generalised (a, b, 0) and a generalised (a, b, 1) distribution, with the

same initial vector, respectively. A special solution for C, assuming that
P1

n¼0 Pn ¼ I and I2P0 is

invertible, is

C ¼ ð1�p0ÞðI� P0Þ
�1;

or equivalently,

Qn ¼ ð1� p0ÞðI� P0Þ
�1Pn; n � 1: ð4:8Þ

This method is useful when one intends to extend a generalised (a, b, 0) distribution into the generalised

(a, b, 1) one. As a result, Cases 2–3 above can all be obtained alternatively using this method.

5. Numerical Examples

In this section, we will present two examples. The first example shows how one can apply the recursive

formulae (2.7) and (3.2) to calculate the distribution and moments of S using hypothetical claim

number and claim size distributions. The second example compares the fit of various members of the

matrix-form Poisson distribution which is a member of the generalised (a, b, 1) family discussed in

Case 2 from Section 4 of the paper. This example uses real motor insurance claim frequency data.

Example 1. This example corresponds to Case 2 that is discussed in Section 4. Let ~c ¼

ð0:1; 0:15; 0:25; 0:45; 0:05Þ and N follow a generalised (a, b, 1) distribution with parameters A 5 0

and B 5 L where L is an invertible matrix given as follows

K ¼

0:4 0:1 0:2 0:0 0:2

0:1 0:35 0:0 0:25 0:2

0:2 0:0 0:3 0:1 0:2

0:2 0:2 0:1 0:55 0:05

0:2 0:1 0:1 0:15 0:3

0
BBBBBB@

1
CCCCCCA
:

Also, we assume

Q0 ¼

0:3 0:0 0:25 0:0 0:0

0:0 0:3 0:0 0:3 0:0

0:1 0:0 0:3 0:0 0:2

0:0 0:6 0:0 0:3 0:0

0:0 0:5 0:0 0:0 0:4

0
BBBBBB@

1
CCCCCCA
:
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The individual claims follow a Logarithmic distribution with parameter y5 0.95, i.e., having a p.f.

with the form

f x ¼ �
1

x

� �
0:95x

lnð0:05Þ
; x40:

Since fx is only defined for x . 0, the initial vector ~Gð0Þ can be determined using the reduced

formula

~Gð0Þ ¼ ~cQ0:

Table 1 includes values of the vector ~GðxÞ and g(x) for some x values from 0 to 100. The total tail

probability for S . 100 is 0.000265. The first four moments of S are presented in Table 2. Vector

results provided in these two tables are purely for illustration purposes.

Example 2. In this example, the data set that we employed is from a major Spanish insurance

company. In particular, we are going to analyse the claim frequency experience for a portfolio of

motor vehicle insurance policies for privately used cars. These data were also used in Boucher et al.

(2009), Brouhns et al. (2003) and Pinquet et al. (2001). Bermúdez & Karlis (2011) and Bermúdez

(2009) used these data to test new multivariate models for insurance claim counts based on the

Poisson model with zero-inflation.

The data include the claims experience for 80,994 policyholders that stay in the company for seven

complete yearly periods (1991 to 1997). For each policyholder we have information including age,

Table 1. Vector ~G values and the p.f. of S in Example 1.

x ~GðxÞ g(x)

0 (0.055000, 0.340000, 0.100000, 0.180000, 0.070000) 0.745000

1 (0.003588, 20.057945, 0.036393, 0.069502, 20.006710) 0.044826

2 (0.004158, 20.028585, 0.020126, 0.037195, 20.003525) 0.029369

3 (0.003645, 20.018369, 0.013829, 0.025121, 20.002239) 0.021987

4 (0.003149, 20.013188, 0.010421, 0.018713, 20.001563) 0.017532

5 (0.002739, 20.010068, 0.008267, 0.014717, 20.001153) 0.014501

10 (0.001528, 20.003920, 0.003649, 0.006332, 20.000369) 0.007220

20 (0.000627, 20.001166, 0.001247, 0.002112, 20.000068) 0.002752

30 (0.000296, 20.000460, 0.000538, 0.000900, 20.000013) 0.001261

40 (0.000149, 20.000204, 0.000256, 0.000424, 0.000000) 0.000624

50 (0.000078, 20.000097, 0.000128, 0.000211, 0.000002) 0.000322

100 (0.000004, 20.000004, 0.000006, 0.000009, 0.000000) 0.000016

Table 2. Vector ~H values and EðSr
Þ in Example 1.

r ~HðrÞ EðSr
Þ

1 (0.572807, 21.222330, 1.228880, 2.106730, 20.080291) 2.60578

2 (16.26330, 224.17530, 29.92750, 48.24820, 20.355619) 68.9081

3 (762.4480, 2924.9410, 1238.570, 2035.780, 28.66220) 7983.54

4 (50319.90, 253039.40, 77236.10, 125741.0, 3804.560) 204062
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gender and vehicle power at the beginning of each period as well as the total number of claims

incurred in each period.

As discussed in Section 1, the collective risk model is used to evaluate the distribution of aggregate

claims arising from a portfolio of risks in a certain time period. We begin by forming individual

portfolios each of 200 policyholders. To ensure homogeneity in each individual portfolio, the

policyholders are grouped in such a way that they share identical features based on their age, gender,

vehicle power, etc. We end up having 294 portfolios. We aggregate the total number of claims

incurred in each portfolio across seven years. An important assumption that we made is that the

characteristics of each policyholder do not change over time and hence the policyholders in a

particular portfolio will continue to be in the portfolio for all years.

Firstly, we need to determine a counting distribution for the number of claims. Popular choices of

distribution are the Poisson distribution and the mixed Poisson distribution, which are special cases

of the matrix-form Poisson distribution we introduced in Section 4 Case 2. The matrix-form Poisson

corresponds to the most general case of the distribution derived in Section 4 Case 2. We demonstrate

the flexibility and versatility of the generalised (a, b, 1) family in modelling count events. Using

maximum likelihood estimation, we obtained the parameter estimates given in Table 3. In order

to compare the models we have also included Akaike’s Information Criterion (AIC) and the

Table 3. Parameters estimation for the Poisson, mixed-Poisson and the matrix-form Poisson distribution.

Distribution g1 l11 l12 l21 l22 AIC BIC

Poisson 1 94.88 0 0 0 3097.68 3101.36

Mixed Poisson 0.67 84.25 0 0 116.79 2679.92 2690.97

Matrix-form Poisson 0.83 83.72 5.52 5.35 115.69 2685.18 2703.60

Figure 1. Comparison between Poisson, Mixed Poisson and Matrix-form Poisson distribution.
The black solid line represents the empirical distribution.
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Bayesian Information Criterion (BIC) for each of the three models. Note that a low value of each of

these information criteria indicates a better model in terms of adherence to data and overall model

simplicity. Based on the AIC and BIC values given in the table, we see that the mixed Poisson is the

optimal model here.

It is also of interest to compare graphically the fit of the Poisson, mixed Poisson and matrix-form

Poisson. The figure 1 gives the fitted probabilities for each model along with the empirical

probabilities based on the data. It is clear that the generalised (a, b, 1) family members, being the

mixed and matrix-form Poisson models, outperform the Poisson distribution. The matrix-form

Poisson provides a less smooth fit than the mixed Poisson. There are sections of the distribution

where the matrix-form Poisson provides a superior fit to the mixed Poisson in this example. Given a

fitted distribution from the generalised (a, b, 1) family, the next stage is to estimate parameters for a

distribution for claim sizes. These two distributions can then be used together to calculate the

aggregate claims distribution using the same technique as presented in Example 1.

6. Conclusions

In this paper, we proposed a generalised (a, b, 1) family of distributions that is a broad class of

counting distributions, which employ matrices as parameters and satisfy a matrix version of

recursive structure of the (a, b, 1) family. On the one hand, one can benefit from the great flexibility

embedded in setting up matrix parameters. On the other hand, it makes it very difficult to propose

appropriate conditions upon how to select proper matrices to build up claim number distributions

under the structure. Also, the issue of identifying all members within the family remains unsolved.

As a result, only some very special members of the generalised (a, b, 1) family are examined in this

paper. It leaves a number of open problems for interested readers to explore.
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