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Abstract

Regeneration from seed affects species assembly in plant communities, and temperature is the
most important environmental factor controlling the germination process. Thermal depend-
ence of seed germination is thus associated with species occurrence in an ecosystem. Hence,
we aimed to investigate the role of temperature on seed germination of ten tree species from
the western Brazilian Amazon. Seeds were collected in the state of Rondônia, Brazil, and set to
germinate under constant temperatures ranging from 10 to 40°C in germination chambers.
We calculated germination capacity (G%), germination rate (GR50, reciprocal of germination
time), and thermal parameters, such as cardinal temperatures and thermal time requirements.
Most species had a large range of temperatures showing G% ≥80%, with optimal temperature
varying from 20 to 40°C. Base temperature ranged from 6 to 12°C and ceiling temperatures
were mainly >40°C. Astronium lecointei and Parkia nitida showed high germination capacity
under temperatures of 35–40°C, while germination of Theobroma cacao dropped from 100%
to zero under temperatures between 37 and 40°C. The climax species Cedrela fissilis had the
slowest germination time (10 days) and highest thermal time requirement, while seeds of
Enterolobium schomburgkii (a late-successional species) germinated within the first day of
the experiment. Rapid recruitment of Amazon species could be favoured with treefall disturb-
ance, which increases temperatures in the understory, but sharp limits might be found in the
supra-optimal range of temperatures. Such patterns might indicate different regeneration
strategies in the tropical rainforest, providing important information regarding seed germin-
ation among Amazon species.

Introduction

Seed germination is a critical part of the regeneration niche, which affects species assembly in
plant communities (Grubb, 1977; Poschlod et al., 2013). Temperature is the most important
environmental factor governing the capacity and speed of the germination process in the pres-
ence of water (Probert, 2000; Bewley et al., 2013). Therefore, thermal niche breadth of germin-
ation seems to be related to species occurrence across different ecosystems (e.g. Ranieri et al.,
2012; Marques et al., 2014; Rosbakh and Poschlod, 2015; Tudela-Isanta et al., 2018; Picciau
et al., 2019). Such ‘temperature window’ describes seed germination of a given species or popu-
lation (Labouriau, 1978; Alvarado and Bradford, 2002), thus bounding the limits of the regen-
eration niche (Thompson et al., 1999; Porceddu et al., 2013).

Temperatures which combine maximal germination capacity (G%) and higher germination
rate (GR, reciprocal of germination time) comprise an optimal range, splitting the temperature
window into sub- and supra-optimal ranges (Bradford, 2002; Bewley et al., 2013). Hence, the
base temperature (Tb) is the sub-optimal limit under which there is no growth, while the ceil-
ing temperature (Tc) marks the supra-optimal limit in which germination ceases because tem-
peratures are too high (Garcia-Huidobro et al., 1982). Within this context, it is mandatory to
better understand the thermal limits of germination, especially as seed and germination traits
are still under-studied in most plant communities (Jiménez-Alfaro et al., 2016). In Brazil, there
is a large knowledge gap regarding seed ecology and germination traits, mainly among
Amazon species (Ribeiro et al., 2016).

Thermal limits of seed germination seem to vary between 10 and 40°C in tropical forest
species throughout the world (Larcher, 2000; Dürr et al., 2015). Nevertheless, few studies
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have investigated such limits using controlled temperatures with
seeds of Amazon species (Ferraz and Varela, 2003; Bastos et al.,
2017; Amoêdo and Ferraz, 2019), although some have addressed
this issue under greenhouse uncontrolled conditions (Silva et al.,
1988; Moreira and Moreira, 1996). There are many factors
limiting seed collection in the region, including the difficult
access to native populations and technical restrictions to reach
fresh-dispersing propagules in the forest canopy. Moreover,
botanical identification can be challenging in such a diverse eco-
system, thus limiting ecophysiological research, including seed
germination studies. Despite the generalized difficulties, light
requirements have been studied in Amazon seeds (Aud and
Ferraz, 2012) as well as morphology of seed and seedlings
(Camargo et al., 2008; Ramos and Ferraz, 2008; Ferraz et al.,
2012).

Thermal time (θ) requirements for seed germination, which
can be defined as the amount of ‘thermal energy’ a seed popula-
tion requires to reach a certain percentage of germination (usually
50%; see Trudgill et al., 2005), has never been investigated in
Brazilian Amazon species. Theoretically, the environmental tem-
perature is accumulated over time, reaching temperatures above
the base temperature threshold (Tb) which is intrinsic to each spe-
cies. Hence, θ requirements can be used to establish comparisons
among species and/or populations (e.g. Covell et al., 1986; Daibes
and Cardoso, 2018), as well as modelling seedling emergence and
seed dormancy alleviation (Forcella et al., 2000; Bradford, 2005;
Orrù et al., 2012).

We aimed to investigate the role of temperature on seed ger-
mination of ten tree species occurring in the western Brazilian
Amazon. To do so, we carried out germination trials with non-
dormant seeds (scarifying them if necessary) under a range of
constant temperatures. Specifically, we assessed (1) seed germin-
ation (G% and germination rate) under different constant tem-
peratures and (2) parameters of seed germination (cardinal
temperatures and thermal time requirement), which allows com-
parisons among species. We hypothesized that germination would
show a high percentage and a rapid rate, favouring seedling
recruitment in the moist understory. We also expected that ther-
mal parameters would differ among species, which could further
explain their coexistence in the Amazon forest.

Materials and methods

Seed collection

Seeds were collected in non-flooded forest areas in the western
Brazilian Amazon, mostly in the Floresta Nacional (Flona) do
Jamari, state of Rondônia (Table 1). These forest areas are char-
acterized by a closed and tall canopy rich in woody species. The
species used in this study are mostly legume trees with a height
of 15 to 40 m. Mature fruits of five to ten individuals per species
were collected and taken to the laboratory where seeds were
removed from fruits and screened in order to discard malformed
and/or predated seeds. Seeds were then stored under laboratory
conditions for a few months prior to the germination trials, except
for Theobroma cacao, which produces recalcitrant seeds (Venial
et al., 2017) and thus germination trials were set up immediately
after these seeds were harvested.

All studied species have a broad distribution across the
Amazon basin. One species (T. cacao) is cultivated in South
and Central America and three species (Apuleia molaris,
Cedrela fissilis and Senna multijuga) also occur throughout

most of the Brazilian territory. According to the literature, the
species used in this study are considered as successional species
(Ferraz et al., 2004; Amaral et al., 2009). Seed size was classified
from information extracted from the literature and based on the
criteria established by Cornejo and Janovec (2010) (Table 1).
The forest areas sampled show a tropical rainy climate, similar
to most areas across the Amazon basin (see Bastos, 1982), with
a mean annual temperature of 25°C, minimum temperature of
18°C, maximum temperature >30°C (Bastos and Diniz, 1982),
and a mean annual precipitation that can reach over 2000 mm
(INMET, 1961–1990). Rainfall is well distributed throughout
the year but may be reduced during drier months, from June to
August (Marengo et al., 2001).

Germination trials

For all species, germination trials were conducted under 10 con-
stant temperatures (10, 13, 15, 17, 20, 25, 30, 35, 37 and 40°C) in
different germination chambers under constant white light, except
for Enterolobium schomburgkii, in which experiments at 35 and
37°C were not carried out due to restraints in seed availability.
Number of replicates varied between four and five, and number
of seeds per replicate varied from 20 to 50 seeds (Table 1). For
the germination experiments, seeds were placed in plastic boxes
with two layers of filter paper saturated with distilled water.
Germination was determined by protrusion of the primary root
(Bewley et al., 2013) and experiments were monitored daily for
30 days. By the end of the trials, non-germinated seeds were visu-
ally inspected to assure they were unviable and thus counted as
dead.

Some of the study species (legumes, see Table 1) had imperme-
able seed coats (physical dormancy; see Baskin et al., 2000) and
physical dormancy was confirmed by preliminary germination
tests where seeds showed no signs of imbibition. Thus, seeds of
these species were mechanically scarified with sandpaper prior
to the germination experiments, except for A. molaris, in which
seeds were chemically scarified with sulfuric acid for two minutes.

Germination thermal parameters

Germination capacity (G%) was determined as the proportion of
germinated seeds in relation to the total number of seeds sown in
the plastic boxes. In addition, we calculated the germination time
(t50) and the germination rate (GR, i.e. inverse of germination
time) for 50% of germinated seeds at each temperature for each
species. Germination time and germination rate were also calcu-
lated separately only for the replicates in which G% reached
50%, even though the mean of G% might not reach 50% in
some exceptional cases. To calculate germination time, we used
a linear interpolation between two points of the cumulative ger-
mination curve around the desired percentage of germination
(G% = 50) from the y-axis and used a line equation to calculate
the estimated time (t50) from the x-axis (Steinmaus et al., 2000;
Soltani et al., 2015). We established two optimal temperature
ranges: one considering high G% (values over 80%) and one con-
sidering the highest GR50 (lowest t50) combined with a high G%,
which usually delimits a sub- and a supra-optimal range. Thus,
best germination times (t50) were assigned as the lowest numerical
value of t50 (days) within the optimal G% range.

We used regression analysis to examine the association
between GR50 and temperatures. The base temperature (Tb) was
then calculated as the point in which the regression line touches
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Table 1. Study species, family, distribution, successional status, population origin (native or cultivated) and number of seeds per replicate

Species Family
Successional

status
Species

distribution
Seed
size

Population
origin Locality

Collection
date

Scarified
seeds

N seeds/
replicate

Apuleia molaris Spruce ex
Benth.

Leguminosae Early succession Widespread S1 Native Flona Jamari May 2011 Yes 50 × 4

Astronium lecointei Ducke Anacardiaceae Late succession Amazon L2,3 Native Flona Jamari June 2010 No 20 × 5

Cedrela fissilis Vell. Meliaceae Climax Widespread L4,5 Native Flona Jamari July 2010 No 20 × 5

Enterolobium schomburgkii
(Benth.) Benth.

Leguminosae Late succession Amazon/
Cerrado

S-M6,7 Native Flona Jamari June 2010 Yes 50 × 5

Parkia multijuga Benth. Leguminosae Late succession Amazon L8,9 Native Flona Jamari Nov 2010 Yes 25 × 4

Parkia nitida Miq. Leguminosae Late succession Amazon M-L8–10 Native Flona Jamari Oct 2010 Yes 25 × 4

Schizolobium amazonicum
Huber ex Ducke

Leguminosae Pioneer Amazon M-L11,12 Native Flona Jamari May 2011 Yes 20 × 5

Senna multijuga (Rich.)
H.S.Irwin & Barneby

Leguminosae Pioneer Widespread S13,14 Urban garden UNIR campus Aug 2010 Yes 20 × 5

Stryphnodendron guianense
(Aubl.) Benth.

Leguminosae Pioneer Amazon/
Caatinga

S15 Native UNIR campus Aug 2010 Yes 50 × 5

Theobroma cacao L. Malvaceae Early succession Widespread L16 Cultivated Ouro Preto do
Oeste

Dec 2011 No 25 × 4

1Reis et al. (2016); 2Ferraz et al. (2004); 3Cornejo and Janovec (2010); 4Pereira et al. (2017); 5Angeli et al. (2005); 6Ramos and Ferraz (2008); 7Bonadeu and Santos (2013); 8Camargo et al. (2008); 9Carvalho (2009); 10Díaz-Bardales (2001); 11Souza et al.
(2003); 12Braga et al. (2013); 13Amorim et al. (2008); 14Carvalho (2004); 15Freitas et al. (2014); 16Venial et al. (2017). Successional status was classified according to Ferraz et al. (2004) and Amaral et al. (2009). Species distribution was classified according
to the vegetation domain described in Flora do Brasil 2020 (http://floradobrasil.jbrj.gov.br). Seed size was classified from the literature (see below), following the criteria proposed by Cornejo and Janovec (2010) that is based on seed length: S = small =
0.5–0.99 cm; M =medium = 1–1.99 cm; L = large≥ 2 cm. Approximate GPS coordinates of sites where seeds were collected: Flona Jamari (9°0´S; 62°44´W); UNIR campus (8°50´S; 63°56´W); Ouro Preto do Oeste (10°44´S; 62°12´W).
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the x-axis ( y = 0), thus ceasing the germination process
(Steinmaus et al., 2000). Thermal time (θT) requirement was cal-
culated as the reciprocal of the slope (1/b values) in the regression
lines in the sub-optimal range (Garcia-Huidobro et al., 1982;
Bradford, 2002). Ceiling temperatures (Tc) could not be precisely
obtained mostly due to the small number of points found in the
supra-optimal range. Therefore, Tc values were estimated based
on which temperature G% was reduced to below 5%.

Data analysis

We used linear models to evaluate how temperatures affected seed
germination for each species separately, considering a significance
level of α = 0.05. Linear models were carried out with the lme4
package (Bates et al., 2015) in R software version 3.2.5 (R Core
Team, 2016). Post-hoc Tukey’s tests were performed to evaluate
multiple comparisons among temperatures using the multcomp
package (Hothorn et al., 2008). Likewise, we used regression ana-
lysis and linear models to evaluate how the different temperatures
affected GR50 for each species. Tb, θ50 and optimal t50 values were
compared between species using linear models after log transfor-
mations to fit model assumptions.

Results

For all species, there was a wide range of temperatures at which
germination reached 80–100% (Fig. 1). All species showed ger-
mination ≤60% under the lowest temperature tested (10°C),
except for E. schomburgkii, which already had germination of
over 80% at this treatment. Most species started to show high ger-
mination percentages at 13°C; however, Parkia spp. required 17°C
and A. molaris required 20°C to reach G% ≥80%. Regarding the
hotter temperatures tested, only C. fissilis showed reduced ger-
mination (56%) at 30°C, while the other species showed reduced
germination only at 37–40°C. Nevertheless, seeds of three species
kept high germination at 40°C: Astronium lecointei (82%), Parkia
nitida (81%) and Schizolobium amazonicum (71%).

Therefore, considering G%, A. lecointei displayed the broader
range of optimal temperatures, ranging from 13 to 40°C. The opti-
mal range for S. amazonicum and T. cacao was from 13 to 37°C,
while S. guianense and S. multijuga showed higher G% from 13 to
35°C. The species with the shorter optimal range was A. molaris
(from 20 to 35°C) and C. fissilis (from 13 to 25°C) (Fig. 1;
Table 2). GR values showed a more specific thermal dependence,
increasing linearly with temperature up to an optimal point or
range (Fig. 1). Astronium lecointei and P. nitida maintained a
high G% and relatively high GR50 even under 40°C. For these
two species, GR50 increased with increasing temperatures. A simi-
lar pattern was found in T. cacao, with increased GR50 up to 37°C,
but at 40°C germination abruptly declined to zero (Fig. 1).

The shortest germination times (lowest numerical value of t50,
in days) were found under the temperatures of 20 to 37°C. In the
hottest temperatures, P. nitida and T. cacao showed the fastest
germination times (t50) under 37°C, while A. lecointei and P. mul-
tijuga exhibited fastest t50 under 35°C (Table 2). For most species,
t50 varied between 2 and 4 days. Only C. fissilis showed a slower
germination time (t50 = 10 days at 20°C), contrary to E. schom-
burgkii, for which 50% of seeds germinated within 1 day of the
experiment (Table 2). Likewise, thermal time requirement (θ50)
varied from 32 to 75°C.days in all species, except for C. fissilis,
which showed θ50 = 157°C.days, and E. schomburgkii, which
showed the lowest θ requirement (θ50 = 19°C.days, see Table 2).

Most values of base temperature (Tb) varied from 7.2 to 9.5°C
(Table 2), not differing among each other. The only difference was
found between A. molaris, which had the highest Tb value (12.7°
C), in relation to C. fissilis and P. nitida (both with Tb ∼6°C, see
Table 2). Ceiling temperatures (Tc) could not be precisely deter-
mined due to small number of temperatures falling in the
supra-optimal range. Nevertheless, most species were tolerant to
the hotter temperatures tested and would show Tc values >40°
C, given that they still germinated more than 30% under the hot-
test treatment (Fig. 1; Table 2). Senna multijuga, S. guianense and
T. cacao showed Tc limits around 40°C, temperature at which G%
was nearly zero. For A. molaris and C. fissilis, germination was
close to zero at 37°C.

Discussion

In the forest understory, temperatures may vary from 20 to 30°C
(Benítez-Malvido and Martínez-Ramos, 2003). However, forest
gap openings alter the microclimate, enhancing sunlight availabil-
ity and temperatures (Denslow, 1980; Chazdon and Pearcy, 1991;
Pearson et al., 2002). Our data show that seeds maintain high G%
and low germination times under a wide range of temperatures,
with most optimal temperatures varying from 20 to 40°C (see
also Ferraz and Varela, 2003). Although temperature is a funda-
mental aspect of niche breadth (Thompson et al., 1999), our stud-
ied species do not seem to be particularly demanding with regard
to their thermal requirements. Therefore, temperatures found in
the forest would not be a limiting factor for seed recruitment.
Cooler temperatures might cause a decrease in germination
time, but G% is maintained >80% for most species, even under
13°C. Even though Amazon seeds rarely face temperatures
below 20°C, their base temperature is around 9°C. However,
such values are higher than Tb found in temperate species,
which face severe winters and tolerate temperatures close to
zero (Dürr et al., 2015). Under hotter conditions, Tc values
were commonly higher than 40°C, indicating their capacity to tol-
erate high temperatures.

Even though rainforest species often have non-dormant and
large seeds (Vázquez-Yanes and Orozco-Segovia, 1984; Baskin
and Baskin, 2014; Rubio de Casas et al., 2017), seven of our
species (all legumes) required scarification as they had water-
impermeable seed coats (physical dormancy). The occurrence
of this type of dormancy is related to seed size (Rubio de
Casas et al., 2017), given it offers physical protection to the
embryo (Rolston, 1978; Tweddle et al., 2003; Dalling et al.,
2011), and is strongly clustered within tropical legumes (Dayrell
et al., 2017). Under natural conditions, physical dormancy is
usually alleviated as a result of the higher temperatures found
in gaps (Moreno-Casasola et al., 1994; Geisler et al., 2017),
but might also be related to their storage time in soil seed
banks (Rodrigues-Junior et al., 2018). Once scarified, seeds behave
as non-dormant species, allowing germination parameters
based on thermal time models to be calculated (Daibes and
Cardoso, 2018).

Species that have a wide distribution range normally have a
wide range of optimal temperatures for germination (see
Marques et al., 2014). However, among the studied species,
such a pattern remained unclear: S. multijuga was the only wide-
spread species showing a broad plateau of optimal temperatures,
while A. lecointei, a species restricted to the Amazon basin,
showed a wide range of optimal temperatures. Apuleia molaris,
considered to have a wide distribution range, showed the
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narrowest range of optimal G% (20–35°C), which suggests that
germination niche breadth is not always linked to a broader dis-
tributional range (Thompson and Ceriani, 2003). Despite the

narrow optimal range, the temperatures at which A. molaris ger-
minates are still within the range of temperatures usually found in
the understory. Nevertheless, in forest gaps where temperatures

Fig. 1. Germination capacity (G%, black squares) and germination rate (GR50, white circles, 1/t50) under a range of constant temperatures of ten tree species occur-
ring in the western Brazilian Amazon. Optimal ranges for maximal G% are shaded in grey.
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could reach over 40°C (Pearson et al., 2002; Geisler et al., 2017),
seed germination would be hampered as G% of A. molaris falls
after 35°C.

The most sensitive species to the hotter temperatures was the
climax species C. fissilis, for which germination was reduced at
35°C and reached nearly zero at 37°C. Because C. fissilis showed
a relatively high germination time (t50 = 10 days), it also had the
highest thermal time requirement, irrespective of its widespread
distribution. Highest thermal requirement could be related to lar-
ger seed size of climax species, which tend to show slow-growing
(and shade-tolerant) seedlings (Foster, 1986; Swaine and
Whitmore, 1988; Souza and Válio, 2001, 2003). In contrast, the
small-seeded E. schomburgkii (a late-successional species) had
the quickest germination time and lowest thermal time require-
ment. Other late-successional species, including the large-seeded
P. multijuga, germinated most of their seeds within a few days
after experiments began and showed similar θ values in compari-
son with the other species. The inclusion of more climax and late-
successional species would be desired to unfold a clearer pattern
regarding thermal requirements, successional status, and seed
size in tropical forests.

Independent of the successional status, some species (see A.
lecointei and P. nitida) showed an enhanced GR50 at the hottest
temperatures, maintaining a germination of≥ 80% even at 40°C.
Such unique patterns differ from most theoretical thermal-
dependence patterns that have been described, including those
for tropical legumes (Daibes and Cardoso, 2018). Therefore, we
argue that increasing kinetics of seed germination under hotter
temperatures might be an ecological strategy to face forest gaps,
thus favouring the rapid recruitment of understory species
(Chazdon and Pearcy, 1991). However, GR-temperature depend-
ence should increase linearly with temperature, reaching a point
where it decreases from optimal to supra-optimal ranges until
the ceiling temperature (Alvarado and Bradford, 2002; Bewley
et al., 2013). In T. cacao, GR increased up to 37°C and then ger-
mination dropped abruptly from 100% to zero at 40°C (Fig. 1).
Hence, instead of slowly decreasing GR in the supra-optimal

range, there was a short but decisive interval of 3°C that drove
seed germination from its maximum capacity to death. Other spe-
cies (see Table 2) showed Tc values greater than the hottest tem-
perature tested, thus treatments testing temperatures over 40°C are
necessary to stipulate their supra-optimal range limits.

Even though most species are tolerant to high temperatures,
small differences in their germination requirements, especially
of their supra-optimal range, could act as potential drivers of
seed recruitment in tropical rainforests (see Daws et al., 2002;
Pearson et al., 2002), especially in more disturbed sites where
temperatures are usually higher. However, temperatures are nor-
mally lower than their supra-optimal range in forest understories
and would not play such an important role in seed recruitment.
At these sites, non-dormant seeds can be quickly recruited,
forming seedling banks that compete for light in the understory.
Therefore, seed and seedling traits might show complementary
trade-offs contemplating all aspects of the regeneration niche
in tropical forests (Osunkoya et al., 1994; Daws et al., 2007).
Thus, intermediate-successional species would be able to germin-
ate in the understory but would also be able to take advantage
from forest gaps in disturbed sites and grow into the canopy
(Denslow, 1980).

In conclusion, germination temperature limits may be similar
among Amazon species but patterns in their thermal require-
ments seem to be different. Efficient thermal energy use through-
out the germination processes leads to increasing germination
with higher temperature, thus enhancing the chance of a success-
ful establishment. On the other hand, in the supra-optimal range,
delicate limits can be found as temperatures increase, with ger-
mination dropping to zero within a short interval of temperatures.
This might be fundamental to understand germination responses
in the context of habitat loss and fragmentation, given climate and
microclimate conditions are altered (Laurence and Williamson,
2001). Climate change consequences could also affect the dynam-
ics of forest understories as the Intergovernmental Panel on
Climate Change (IPCC) predict, for the Amazon region, an
increase in temperature of 3–5°C in the less pessimistic scenario

Table 2. Thermal parameters of germination of ten tree species occurring in the western Brazilian Amazon

Species Base temperature Thermal time Optimal range (G%) Best t50 (and T) Ceiling temperature

Apuleia molaris 12.7 ± 0.2 a 35 ± 2 cd 20–35 3 ± 0.1 c (25) ∼37

Astronium lecointei 9.1 ± 0.5 ab 32 ± 3 cd 13–40 2 ± 0.3 cd (35) >40

Cedrela fissilis 5.8 ± 1.1 b 157 ± 20 a 13–25 10 ± 0.3 a (20) ∼37

Enterolobium schomburgkii 7.2 ± 2.2 ab 19 ± 6 d 10–? 1 ± 0.2 e (25) >40

Parkia multijuga 9.5 ± 2.8 ab 52 ± 22 bc 17–37 4 ± 1 b (35) >40

Parkia nitida 5.9 ± 2.9 b 75 ± 22 b 17–40 2 ± 0.5 cd (37) >40

Schizolobium amazonicum 8.3 ± 0.9 ab 40 ± 5 bc 13–37 2 ± 0.3 d (30) >40

Senna multijuga 8.7 ± 3.4 ab 32 ± 19 cd 13–35 3 ± 1 cd (20) ∼40

Stryphnodendron guianense 8.9 ± 0.4 ab 44 ± 3 bc 13–35 3 ± 0.1 c (25) ∼40

Theobroma cacao 9.2 ± 0.7 ab 53 ± 3 bc 13–37 2 ± 0.1 d (37) ∼40

Mean 8.5 ± 2.4 56 ± 42 — 3 ± 3 —

F-value 3.25 (P = 0.006) 20.54 (P < 0.001) — 64.25 (P < 0.001) —

Base temperature (Tb, °C), thermal time requirement (θ50, °C.days), optimal range (temperature intervals, in °C, showing G% ≥80% with no statistical difference among them), best
germination time (lowest numerical value of t50, in days; optimal temperature (T) where the best germination time was found is shown in parentheses), and approximate value of ceiling
temperature (Tc, °C). All values are means ± standard deviation. Different superscript letters in the columns indicate significant differences among species (P≤ 0.05). The question mark for E.
schomburgkii indicates that optimal range could not be precisely determined for this species, given that temperatures of 35 and 37°C were not tested.
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and an increase of up to 8°C in the more pessimistic scenario
(Ambrizzi et al., 2007; Malhi et al., 2008). Moreover, other aspects
of seed germination should be examined, such as tolerance to
moisture, as it may negatively affect germination, especially in
large-seeded species (Daws et al., 2008). Cardinal temperatures
may also change according to the life cycle stage, differing
between seed germination and seedling growth (Bastos et al.,
2017). Thus, it remains unclear how recruitment of Amazon spe-
cies will respond to global change. Additional research is needed
to understand whether seed size and successional status explain
thermal parameters of seed germination, as well as how the ther-
mal requirements change during seedling establishment. This
study helps to start elucidating important questions regarding
seed regeneration in the Amazon rainforest.
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