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Abstract

Preeclampsia (PE) is now recognised as a cardiovascular risk factor for women. Emerging evi-
dence suggests that children exposed to PE in utero may also be at increased risk of cardio-
vascular disease (CVD) in later life. Individuals exposed to PE in utero have higher systolic
and diastolic blood pressure and higher bodymass index (BMI) compared to those not exposed
to PE in utero. The aim of this review is to discuss the potential mechanisms driving the rela-
tionship between PE and offspring CVD. Exposure to an adverse intrauterine environment as a
consequence of the pathophysiological changes that occur during a pregnancy complicated by
PE is proposed as one mechanism that programs the fetus for future CVD risk. Consistent with
this hypothesis, animal models of PE where progeny have been studied demonstrate causality
for programming of offspring cardiovascular health by the preeclamptic environment. Shared
alleles betweenmother and offspring, and shared lifestyle factors betweenmother and offspring
provide alternate pathways explaining associations between PE and offspring CVD risk. In
addition, adverse lifestyle habits can also act as second hits for those programmed for increased
CVD risk. PE and CVD are both multifactorial diseases and, hence, identifying the relative con-
tribution of PE to offspring risk for CVD is a very complex task. However, considering the
emerging strong association between PE and CVD, those exposed to PE in utero may benefit
from targeted primary CVD preventive strategies.

Introduction

Preeclampsia (PE) is a pregnancy-specific disorder that complicates 2%–5% of all pregnancies
and is a leading cause of maternal morbidity and mortality worldwide.1 PE was traditionally
diagnosed when a pregnant woman presented with increased blood pressure and pro-
teinuria. According to the current International Society for the Study of Hypertension in
Pregnancy guidelines, PE is defined as an onset of hypertension (systolic blood pressure higher
than 140 mmHg or diastolic blood pressure higher than 90 mmHg on two occasions that are
4–6 h apart) after 20 weeks gestation and the coexistence of one or more of the following new-
onset conditions: (1) proteinuria (spot urine protein/creatinine>30 mg/mmol [0.3 mg/mg] or
>300 mg/day or at least 1 g/l [‘2þ ’] on dipstick testing), (2) organ dysfunction (such as renal
insufficiency [creatinine>90 umol/l; 1.02 mg/dl], liver involvement (elevated transaminases –
at least twice upper limit of normal ± right upper quadrant or epigastric abdominal pain),
neurological complications (examples include eclampsia, altered mental status, blindness,
stroke or more commonly hyperreflexia when accompanied by clonus, severe headaches when
accompanied by hyperreflexia, persistent visual scotomata), haematological complications
(thrombocytopenia – platelet count below 150,000/dl, DIC, haemolysis) and (3) uteroplacental
dysfunction evidenced by fetal growth restriction.2 Although the hypertension and proteinuria
resolve after pregnancy, women who develop PE are at increased risk of vascular diseases in later
life. Previous systematic reviews andmeta-analyses have shown that womenwho develop PE are at
more than two-fold increased risk of developing coronary artery disease (CAD) compared to
women who have non-preeclamptic pregnancies.3-5 Early onset PE (<34 weeks gestation) is asso-
ciated with nearly eight-fold increased risk of subsequent CAD for the woman compared to late
onset disease and severe PE (blood pressure >160/110mmHg plus proteinuria >0.3 g/24 h or
diastolic blood pressure >110mmHg plus proteinuria >5 g/24 h) is associated with a higher
risk of CAD compared to mild PE.5,6 Women who develop PE are at increased risk of other
vascular diseases including hypertension, thromboembolic disorders, cerebrovascular events
and diabetes compared to women who do not experience PE.3-5 The evidence linking PE with
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cardiovascular disease (CVD) has resulted in PE being recognised by
the American Heart Association as a female-specific, cardiovascular
risk factor.7

In addition to the maternal risk, emerging evidence suggests
that children born to women who experience PE may also be at
increased risk of CVD in adulthood. A recent population-based
cohort study of 231,298 deliveries demonstrated a significant linear
association between PE (no PE, mild PE, severe PE and eclampsia)
and rates of CVD in the offspring (0.24% vs. 0.33% vs. 0.51% vs.
2.73%, respectively, p< 0.001).8 Furthermore, compared to chil-
dren of normotensive pregnancies, those exposed to PE in utero
(mild, severe and eclampsia) had significantly higher rates of
hypertension (0.06% vs. 0.11% vs. 0.14% vs. 1.37%, respectively,
p< 0.001), arrhythmias (0.13% vs. 0.18% vs. 0.18% vs. 1.37%,
respectively, p= 0.016) and heart failure (0.04% vs. 0.03% vs.
0.18% vs. 0.00%, respectively, p= 0.004)8. Over the last decade,
many studies have also reported a greater prevalence of conven-
tional CVD risk factors in children exposed to PE in utero com-
pared to children not exposed to PE in utero. We recently
conducted a systematic review and meta-analysis of prospective
and retrospective studies that had compared CVD risk factors
among those exposed to PE in utero compared to those not
exposed to PE in utero.9 This pooled evidence from 36 studies
and over 53,000 participants found that systolic blood pressure,
diastolic blood pressure and body mass index (BMI) were signifi-
cantly higher among those exposed to PE in utero compared to
those not exposed to PE in utero.9 The link between maternal
PE and offspring CVD is likely to be due to abnormalities in vas-
cular function. This is supported by the finding of impaired vas-
cular responses in some offspring animal models that mimic
PE10 as well as the majority of human studies of those exposed
to PE in utero.11 Endothelial dysfunction, a hallmark of PE and
an early biological marker of CVD, is evident in children and ado-
lescents exposed to PE in utero.12,13 Endothelium-dependent
differences in microvascular function have also been reported in
children born to women who experienced PE as early as in the neo-
natal period.14 Furthermore, carotid intima-media thickness is
increased among young adults in their 20s exposed to PE in utero.15

A study that compared aortic intima-media thickness (aIMT) and
cord blood lipid profiles of neonates born to women with PE with
those of neonates born of healthy pregnancies showed significantly
increased aIMT and cord blood triglyceride and decreased cord
blood high density lipoprotein cholesterol levels in neonates of
preeclamptic pregnancies compared to the control group.16

These findings suggest the possibility that an early atherogenic
phenotype independent of blood pressure may contribute to the
link between exposure to PE in utero and later life CVD.

The above evidence demonstrates a clear association between
PE and later life CVD for both women and their children. CVD is
a major global health burden that results in the greatest number
of deaths worldwide. The World Health Organization estimates that
17.6million people died fromCVD in 2012 accounting for 31.43% of
global mortality.17 In the context of an increasing global obesity epi-
demic, this calls for an urgent need to develop potential primary pre-
ventive strategies for at-risk populations. The association between
maternal PE and offspring CVD is well known. However, the mech-
anisms underlying this link are poorly understood. This review
outlines the evidence for developmental programming, epigenetics
and shared genetics as potential mechanisms driving the relationship
between PE and offspring CVD.

Developmental programming of CVD risk by in utero
exposure to PE

Developmental programming of chronic diseases is now an estab-
lished paradigm. The link between early life environmental factors
and later life disease susceptibility was initially proposed by David
Barker who in early 1990s showed that restricted growth in fetal life
was associated with mortality from CVD.18,19 This concept that
exposure to unfavourable conditions in utero at times of critical
organ development may lead to later life disease risk was originally
called the Barker Hypothesis/fetal origins of disease hypothesis
and now the Developmental Origins of Health and Disease
hypothesis.20 While most of the initial work on this topic linked
intrauterine undernutrition with later life CVD and metabolic dis-
ease risk, subsequent epidemiological studies have shown that
numerous intrauterine exposures including major pregnancy com-
plications (PE, intrauterine growth restriction [IUGR], spontane-
ous preterm birth and gestational diabetes mellitus), maternal
obesity and smoking during pregnancy and exposure to environ-
mental chemicals can each trigger propensity for a myriad of
cardiovascular, metabolic, immunological, reproductive and neu-
rodevelopmental disorders in the offspring.21

Depending on the severity of the insult during critical periods of
rapid growth and development, permanent tissue adjustments can
occur which lead to long-term functional changes in vital organs.
Although PE is a multifactorial disorder, several pathophysiological
mechanisms including angiogenic imbalance, excessive inflamma-
tion, ischaemia/perfusion and imbalances in the renin angiotensin
system are all implicated in its pathogenesis.22,23 During a pregnancy
complicated by PE, the placenta releases circulating factors, includ-
ing sFlt and sEng,24,25 into thematernal circulation as a result of syn-
cytiotrophoblast stress due to a variety of insults including placental
ischemia/hypoxia, contributing to excessive inflammation and gen-
eration of reactive oxygen species.26-29 Consistent with a causal role
for these placental factors in programming of progeny CVD, over-
expression of sFlt in amousemodel of PEmimicking the placenta of
a pregnancy affected by PE results in elevated systolic and diastolic
blood pressure in male offspring.30 Higher than normal levels of
these placental circulating factors lead to placental oxidative stress,
inflammation and lipid peroxidation31,32 which can have permanent
effects on the susceptibility of that fetus to CVD later in life.
Increased oxidative stress and placental oxidative DNA damage
are associated with fetal growth restriction in offspring from preg-
nancies complicated by PE,33 and there is evidence of oxidative stress
and DNA damage in cord blood from offspring of PE-affected preg-
nancies.34 Exposure to hypoxia in a rat model of PE leads to
impaired placental function, and offspring exhibit inflammation
and atherosclerosis.35-37

The impact of perinatal exposure to inflammation also has vari-
ous impacts on the fetus, including changes to the fetal immune
system38,39 (e.g. lower abundance of regulatory T [Treg] cells)
which persist into early childhood.39 Exposure to intrauterine
inflammation as a result of placental dysfunction may lead to
increased inflammation and reduced capacity to dampen inflam-
mation due to a deficiency in Treg cells in later life. Such immune
programming may contribute to progeny CVD, since inflamma-
tion is central in the pathogenesis of atherosclerosis and CVD.39,40

Animal studies provide mechanistic evidence that each of these
exposures programs offspring blood pressure. The strength ofmost
of the animal models is that they avoid the confounding factors of
shared genetics and shared lifestyles and focus specifically on
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in utero exposure. The models of PE in which programming of
progeny cardiometabolic outcomes has been most extensively
characterised are in rodents. These include the surgically induced
reduced uterine perfusion pressure (RUPP) rat, and PE induced by
maternal treatment during pregnancy with hypoxia, the nitric
oxide synthase (NOS) inhibitor L-NAME or angiotensin II auto-
antibodies. Postnatal outcomes have also been well characterised
in progeny ofmice where elevated sFlt1 was achieved by adenoviral
transfection of dams during pregnancy. In each of these models,
progeny are lighter at birth but catch up in body weight to that
of controls during or before adulthood.37,41-51 Development of
obesity is variable, with obesity reported in adult female, but not
male, RUPP rats with ageing,52,53 but normal body and central
fat abundance in adult progeny of sFlt1-transduced mice of
both sexes.54 Likewise, effects of in utero exposure to a preeclamp-
tic phenotype on postnatal glucose tolerance are sex- and age-
dependent in the RUPP rat,53,55 L-NAME-treated rat56 and
sFlt1-transduced mice51 models of PE. Progeny cardiac dysfunc-
tion is common to all of these models, although with some
variation in phenotype and different sets of outcomes studied in
each model. Hypertension at baseline and/or in response to stress
or adrenaline has been reported in progeny of the RUPP
rat,10,41-45,52,57 hypoxic rat47,48,58,59 and in males but not females
in the sFlt1-transduced mice model of PE.30,54 Interestingly, prog-
eny of the L-NAME-treated rat are normotensive as young and
mature adults.50,60 Greater arterial vasoconstriction in response
to stimuli, greater renal sympathetic nerve activity, contributions
from circulating sex steroids and impaired vasodilation are all
implicated as mechanisms for hypertension in progeny of the
RUPP rat.10,42,43,52,57 Similarly, in progeny of hypoxic rat dams,
phenylephrine-induced vasoconstriction is greater, and both endo-
thelium-dependent and endothelium-independent vasodilatation
are reduced compared to control progeny.36,47,48,61,62

Progeny heart structure and function are also impaired in sev-
eral of these models. For example, cardiac and cardiomyocyte size
are normal at 3 months of age in young male adults whose mothers
were exposed to intermittent hypoxia from early pregnancy (10%
O2 for 3 h/day fromGD7 to 21)59. At 5 months of age, hypertensive
adult male progeny from these dams exhibit cardiac hypertrophy,
with normal cardiomyocyte size but greater left ventricular colla-
gen expression of collagen I and III.59 Furthermore, lesions sugges-
tive of developing atherosclerosis are present in the aortas of adult
male progeny at 5 months of age of dams housed continuously in
10.5% O2 from GD5-delivery,37 and in aged adult male and female
progeny at 16 months of age who were exposed to hypoxia in utero
10%O2 for 3 h/day fromGD7 to 21.35 Although their relative heart
weights are normal, male progeny of dams treated with angioten-
sin-II-like auto-antibodies (which bind and activate the angioten-
sin II-type I receptor) have enlarged cardiomyocytes, with areas of
disorganisation, necrotis and apoptosis evident in their left ven-
tricles as young adults at 5 months postnatal age.49 The function
of isolated hearts from these progeny in a Langendorff apparatus
is normal under basal conditions, but they have impaired recovery
and larger infarcts following ischaemia-reperfusion.49 Cardiac
hypertrophy is also evident throughout the first month of postnatal
life in progeny of rats treated with L-NAME before and throughout
pregnancy.63

The fact that hypertension and impaired metabolism occur in
progeny in these models of induced PE provides direct evidence of
causality for the exposure. Nevertheless, these models lack the
initiating processes that lead to spontaneous PE in humans.
Interpretation of the programming mechanisms in progeny

exposed to PE in utero and evaluation of potential maternal or
postnatal interventions also need to consider the stage of cardio-
vascular development when in utero exposure occurs. For example,
the switch from cardiomyocyte proliferation to hypertrophy
occurs postnatally in rodents but before birth in other species
including humans.64 A recent report that progeny of preeclamptic
baboons exhibit elevated systolic blood pressure during a dietary
salt loading challenge65 provides direct evidence of cardiovascular
programming by in utero exposure to PE in species that are more
mature at birth, although studies with greater animal numbers are
needed to assess any sex differences.

When combined with epidemiological evidence from human
studies, these suggest several plausiblemechanisms for the hyperten-
sive phenotype seen in offspring of preeclamptic pregnancies.11

Several studies have shown reduced numbers of nephrons and car-
diomyocytes in offspring born with low birthweight or born pre-
term, two pregnancy complications that often co-exist with PE.66

A reduction in the number of nephrons contributes to a reduction
in the rate of renal ultrafiltration that affects the circulating blood
volume leading to increased blood pressure.67 Altered nephron
number is associated with glomerular hypertrophy and reduced
renal vascular dilation contributing to risk of hypertension.68,69

Alterations in the renin–angiotensin–aldosterone system (RAAS)
including upregulation or downregulation of specific receptors
within the kidney, blood vessels and the placenta have also been
implicated in the development of renal dysfunction.70 Emerging evi-
dence suggests that epigenetic processes which are strongly influ-
enced by the environment may play a key role in developmental
programming of adult CVD.

The role of epigenetics in the relationship between PE and
increased risk of CVD in offspring

Epigenetics refers to modifications that result in gene expression
changes, often through chromatin remodelling, without altering
the underlying DNA sequence71 These modifications include
DNA methylation, histone modifications, non-coding RNA
(ncRNA) and other modifications that can result in altered gene
expression.71 Epigenetic changes have been widely studied in
developmental processes, especially their role in determining cell
lineages, and also in disease states as they can mediate aberrant
gene expression.71 In addition, epigenetic modifications are
routinely used for diagnostic and prognostic biomarkers of
adverse outcomes. Epigenetic modifications are also altered in
response to environmental exposures and can potentially indicate
whether an adverse exposure early in life is associated with future
chronic disease risk.71

The most widely studied epigenetic alteration is DNAmethyla-
tion which is the addition of a methyl group to a cytosine catalysed
by enzymes known as DNAmethyltransferases. DNAmethylation
is involved in development, imprinting and X chromosome inac-
tivation, as well as numerous other processes.71 Hypermethylation
at gene regulatory regions or promoter associated CpG islands is
often associated with gene repression. Histone modifications refer
to changes to the histone tails including acetylation, methylation or
phosphorylation and together with DNA methylation impact
chromatin packing and hence accessibility of transcription factors
to the regulatory DNA sequences controlling gene expression.
ncRNAs consist of short ncRNAs like microRNAs, piwiRNAs,
snoRNAs or long non-coding RNAs (lncRNA) and can inhibit
transcription and translation or alter protein trafficking and fold-
ing to name just a few of their actions.72
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Epigenetic changes are considered likely mechanisms that link
maternal PE with offspring CVD with the possibility of passing on
the risk to subsequent generations, by germ-line inheritance of epi-
genetic marks.73,74 Animal models, which allow for tight regulation
and control of the adverse exposure, have repeatedly shown that
adverse events in utero are associated with increased risk of chronic
disease in offspring.73,75,76 Similar studies in humans are difficult,
not only due to the lack of control of ‘other’ life-time environmen-
tal exposures but also due to genetic predispositions and addition-
ally access to the appropriate tissue for assessment. However,
epidemiological studies do show evidence for changes in DNA
methylation as potential mediators or biomarkers of in utero expo-
sure to PE when assessed in the placenta77,78 and cord blood.79

Whether these epigenetic changes are associated with an increased
risk of CVD in the offspring later in life is unknown as no studies
have yet reported epigenetic alterations in the adult offspring born
to women who experience PE. This is not surprising due to the
length of follow-up required for these studies and also access to
the right tissue sample for the epigenetic analyses. However, there
are a few studies that demonstrate an association between PE expo-
sure and epigenetic changes in offspring. In a 2015 study by Julian
et al., DNA methylation in blood from young adult men born
following hypertensive pregnancies (n= 5) compared to controls
(n= 19) showed differential methylation in the genes SMOC2,
ARID1B and CTRHC1.80 Murray et al. reported that DNA
methylation in cord blood leukocytes of ANRIL predicted pulse
wave velocity and heart rate in the child at 9 years of age.81

Therefore, with the appropriate longitudinal cohorts, in future,
we may be able to determine whether epigenetic change induced
by in utero exposure to PE underlies increased risk of future
CVD risk in the offspring.

The placenta may mediate this future CVD risk in the offspring
as several studies have shown altered DNA methylation in placen-
tas fromwomen who experience PE compared to healthy pregnan-
cies (reviewed in ref.77). The genes shown to have aberrant DNA
methylation include those with a role in trophoblast proliferation,
differentiation and invasion, as well as genes involved in vascular
function and immunological processes.77 Epigenetic alterations in
these critical genes may impact the function of the placenta during
pregnancy resulting in an adverse environment for the fetus.82 The
fetus adapts to this adverse environment, resulting in epigenetic
alterations that mediate future CVD risk. More work is required
to define how PE impacts the intrauterine environment, what epi-
genetic alterations this induces in the fetus and if these epigenetic
alterations are still evident in adult offspring. Dissecting out the
epigenetic mechanism is made difficult in humans by the need
for longitudinal cohorts as well as determining which tissue to
assess.

The role of shared genetics in the relationship between
PE and increased risk of CVD in offspring

The link between PE and CVD in offspring could also be explained
by shared genetic factors that predispose individuals to vascular
diseases that manifest at different time points during the life
course.83 The incidence of PE is higher among women who were
born of a pregnancy complicated by PE,84 while the risk of father-
ing a pregnancy complicated by PE is also higher among men who
previously fathered a pregnancy complicated by PE with a different
partner84 and among men who were themselves the product of a
pregnancy complicated by PE,85 all suggesting that PE is at least in
part heritable. Further evidence for a genetic mechanism is

provided by studies that show that genetic variants that are known
risk factors for CVD are more prevalent among women who expe-
rience PE, men who father pregnancies complicated by PE and
among infants born of pregnancies complicated by PE compared
to unaffected populations.86-89 Genetics, therefore, may act as a
confounding factor in the association between maternal PE and
offspring CVD. The underlying mechanism for some offspring
who experience CVD in adult life after exposure to PE in utero
may not be the effect of PE but genetic susceptibility to CVD,
and these individuals may experience CVD even if they had not
been exposed to PE in utero. This theory is supported by the find-
ings of genetic variants that are common in both PE and CVD from
a study on genetic dissection of the 2q22 PE susceptibility locus.90

This study identified four independent single nucleotide polymor-
phisms (SNPs) within four genes that were associated with PE in an
Australian family cohort: lactase (LCT, rs2322659), low-density
lipoprotein receptor-related protein 1B (LRP1B, rs35821928),
rho family GTPase 3 (RND3, rs115015150) and grancalcin
(GCA, rs17783344).91 These four SNPs were also associated with
cardiovascular risk factors in an independent cohort of Mexican
American families.91 An attempt to confirm the above findings
in an independent Australian population-based cohort of mothers
and their adolescents showed nominal associations with cardio-
vascular risk factors (weight, blood glucose and triglycerides) for
all four SNPs.92 These findings suggest the possibility that certain
genetic variants may predispose individuals to different vascular
diseases, with some women developing PE during pregnancy, some
men fathering pregnancies complicated by PE and some develop-
ing CVD.

The role of shared environment and lifestyle in the
relationship between PE and increased risk of CVD
in offspring

Similar to shared alleles, shared lifestyle factors between mother
and offspring may also confound the association betweenmaternal
PE and offspring CVD. It is well known that suboptimal environ-
mental and lifestyle conditions including unhealthy diets, lack of
exercise, low socioeconomic status and low educational levels
are all associated with both PE and CVD. Since these factors are
very likely to be shared between mothers and their children, they
may underlie the association betweenmaternal PE and CVD in off-
spring in a manner similar to the potential role of similar genes.
These unfavourable lifestyle factors are also proposed to act as
‘second hits’ for some individuals. Some who are ‘programmed’
for increased disease risk only develop disease when exposed to
a ‘second hit’93 at a later stage in life. These ‘second hits’ are often
adverse lifestyle factors including smoking, unhealthy diets and
sedentary lifestyles,93 so shared adverse environment may contrib-
ute to CVD risk both directly and by providing a ‘second hit’
exposure to individuals who are susceptible as a consequence of
their intrauterine exposures.

Maternal PE and offspring CVD: developmental
programming, shared genes or shared lifestyle?

If the association between maternal PE and offspring CVD was
solely due to developmental programming, adverse cardiovascular
profiles would only be seen among those exposed to PE in utero
and siblings born of normotensive pregnancies will be unaffected.
On the other hand, if the association between maternal PE and
offspring CVD is due to shared genetics and/or lifestyles, then off-
spring of the same parents from pregnancies unaffected by PE
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would demonstrate similar CVD risk to that of offspring of preg-
nancies complicated by PE. The HUNT study comprising three
large population-based surveys (HUNT 1, n= 77,212; HUNT2,
n= 65,215; HUNT 3, n= 50,807) conducted in Norway explored
these questions by comparing CVD risk factors among siblings dis-
cordant for the exposure to hypertensive disease in pregnancy
(n= 472 participants within 210 sibships).94 In this large study, off-
spring exposed in utero to maternal hypertension including PE and
their siblings born after a normotensive pregnancy had similar
adverse CVD risk profiles, suggesting that shared genes or lifestyle
may account for the association, rather than an intrauterine effect.
However, other studies suggest that the increased CVD risk in the
offspring could be a long-term consequence of fetal exposure to PE.
In support of this theory, offspring who were born after a preg-
nancy complicated by PE display marked vascular dysfunction
(higher pulmonary artery pressure and lower flow-mediated dila-
tion), but their siblings born after a normotensive pregnancy dis-
play normal vascular function.13 In this study, the birthweight of
offspring exposed to PE in utero was approximately 400 g lower
than the control group. This suggests the possibility of an alterna-
tive explanation. Birthweight correlates linearly with nephron
number in adults and children, with nephron number increasing
by 257,426 per kg increase in birthweight95 and low nephron num-
ber being associated with higher blood pressure (reviewed in ref.66).
Effects of PE exposure in utero on postnatal blood pressure may
therefore be in part mediated by effects of fetal growth restriction
on renal function. Interpretation of associations between exposure
to PE in utero and later life CVD becomes more complicated by
the fact that offspring of pregnancies complicated by PE can also
be born with low birthweight and prematurity. Low birthweight
and prematurity are both associated with a congenital reduction
in nephron number, raised blood pressure, proteinuria and chronic
kidney disease in adulthood.66 Therefore, developmental program-
ming as a consequence of these conditions may confound the asso-
ciations between PE and offspring CVD risk. Low birthweight and

prematurity both suggest exposure to a more severe placental dis-
ease and are mostly seen in early onset PE. Due to the interactions
between genes, environment and potentially programming mech-
anisms, understanding the relative contribution of each of these
mechanisms to the link between PE and CVD is complex and a
combination of all three mechanisms appears the most plausible
explanation.

Conclusion

Considering the current evidence, PE appears to have a long-term
impact on the cardiovascular health of the offspring. Epide-
miological evidence from long-term follow-up studies on humans
shows that those exposed to PE in utero have higher blood pressure
and higher BMI compared to those not exposed to PE in utero. The
possible link between exposure to PE in utero and offspring risk for
CVD is shown in Fig. 1. Three main mechanisms could explain
the association betweenmaternal PE and offspring CVD, and these
are not mutually exclusive. Firstly, shared non-genetic (environ-
mental and lifestyle exposures) risk factors may account for the
association. Secondly, contributions from shared genetic variants
to both PE and CVD risk are a plausible explanation. Thirdly,
developmental programming due to exposure to the preeclamptic
intrauterine environment can result in long-lasting effects on the
cardiovascular health of the offspring. Animal models provide
important insights into possible mechanistic pathways as they
avoid confounding factors of shared lifestyle factors and can
address specific in utero exposures. The different phenotypes of
PE including early vs. late, severe vs. non-severe also make the
interpretation of findings from different studies harder as each
phenotype has different confounding factors.

In conclusion, there is strong evidence to demonstrate an asso-
ciation between maternal PE and offspring CVD. However, the
mechanistic pathways leading to the risk for CVD after intrauter-
ine exposure to PE are not yet clear. It is very likely that there is an

Maternal preeclampsia 

Offspring risk for cardiovascular disease in adulthood

Perturbed 
placentation

Altered 
maternal 

physiology

Angiogenic imbalance

Oxidative stress

Fetal programming in 
response to an adverse 
intrauterine environment

Epigenetic 
changes

Genetic 
susceptibility Adverse 

environmental 
and lifestyle

factors

“Second Hit”

Inflammation

Fig. 1. Potential mechanistic link between exposure to
PE in utero and offspring risk for CVD.
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overlap among all three mechanisms explored in this review
and that dissecting the relative contribution of each pathway is
impossible. Considering the risk for CVD among offspring
exposed to PE in utero, primary preventive strategies are warranted
in this target population.
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