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THE a-DIMENSIONAL MEASURE OF THE GRAPH AND SET
OF ZEROS OF A BROWNIAN PATH

BY S. J. TAYLOR

Received 20 May 1954

In a recent joint paper (l) with Prof. Besicovitch we announced the conjecture that
for almost all one-dimensional Brownian paths, the set of zeros has dimensional
number \, and zero A4-measure. It is the purpose of this paper to give a proof of this
result. In doing so we consider the graph C((o) of a Brownian path w as a point set in
the plane, and prove that, with probability 1, C(w) has dimensional number § and
zero A*-measure.

In obtaining the value of the dimensional number of the sets considered, the upper
bound is easier to find than the lower bound. For both the sets considered we find the
lower bound by using the concept of capacity. The first section will contain a definition
of capacity, and a summary of the results in this subject which will be needed.

D. will denote the space of one-dimensional paths w. A probability measure /i is
defined in £2. For notation and definitions relevant to this space see(ii).

1. The a-capacity of a bounded closed set. Let E be a bounded closed set in a Euclidean
space X. Let m be a countably additive measure defined for all Borel sets in X, such that

m(3E) = m(E) = 1.

dm(y)
For a > 0, let Ia(m) = I dm(x) \

where | x — y | denotes the distance from x to y. IJrri) is known as the integral of energy.
L e t Wa(E) = inf Ia(m)>
where the infimum is taken for all measures m satisfying the above conditions. The
a-capacity of E, denoted by Ca(E), is defined by

Ca(E) = [Wa{E)TVa if Wa(E) is finite,

= 0 otherwise.

Clearly Ca(E) decreases as a increases. The capacity dimension of E, denoted by
C-dim (E) may be defined by

C-dim {E) = 0 if Ca(E) = 0 for all a > 0;

if f
\Ca{E)>0, 0<a<s.

We shall use the following

THEOREM A. For a bounded closed set E in a Euclidean space, the capacity dimension
is equal to the dimensional number.

This theorem follows immediately from Theorems 11 and 13 of (5).
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266 S. J. TAYLOR

For the two sets considered we shall need two distinct methods of obtaining the
capacity.

(i) If the set E is the continuous image of a closed interval fa, 6] of real numbers,
it may be written E = ^

E = ^

dsdt

THEOBEM B. / / x(t) is a continuous function of the real variable t taking values in a
Euclidean space H,

and

then Ca(E) is positive.
This theorem follows immediately from the definition, since the image of Lebesgue

measure in [a, 6] under the transformation x(t) is a measure in 3£ with

m{E) = m(£) = b-a.
(ii) The idea of transfinite diameter (see, for example, (3)) may be generalized for

any closed set E as follows. Let

where the infimum extends over all ra-systems of points xv x2,..., xn in E.

THEOREM C. For a bounded closed set E with Eftf defined by (1), Da(E) = li
exists and satisfies Da{E) = Wa(E). n^"°

This result is obtained on p. 47 of (4).
I t follows from Theorem C, that if Da(E) is finite, then Ca{E) is positive; and it is

this result that we shall use in the sequel.

2. The dimensional number of the set of roots. Given o» e Q, the set of values of t for
which x(t, (o) = 0 will be denoted by i?(w). For 0 < ̂  < t2 < oo, the part of this set for
which tx K. t < <2 will >̂e denoted by R{tly t2, w). I t is known (see, for example, section 7
of (6)), that for almost all co of Q, B(tv t2, cu) is a perfect hnear set.

With probability 1, paths w are completely determined by the values of x(t, o») at
an enumerable everywhere-dense set. For a > 0, AaiJ(<x, t2, co) is a measurable function
of the end-points of the open intervals complementary to R(<o). Thus AaB(t1, t2, u>)
is a measurable function of w with respect to measure ji. As a start we prove a result
of the ' zero-one' type for this function.

LEMMA 1. If a>0 and E = {<o: Aai?(0,1, w) >0}, then fi(E) = 0 or 1.
Since a change of scale in which t is replaced by AH and x(t, (o) by Ax(t, o>) does not

have any effect on measure in Q., it follows that, for any T > 0, fi(E) = fi(ET), where
ET = {o»: AaR(0,T,o))>0}; and, for 0 < T 1 < T 2 , if it is known that R(TVT2,(O) is non-
empty, the conditional probability of the event {«: AaR(r1, r2, w) > 0} is again /i(E).

Suppose, if possible, that /i(ET) = 8 with 0<S<l. Let TV T2 satisfy 0 < TX < r2 < 1.
Let E'Tl = {<o: Aai2(O,Tl5w) = 0}. Then /i(E'Tl) = l-S>0. By the stationarity of the
process, the conditional probability for {«: Aai?(r2) l,w) >0} when it is known that
there is at least one point in R(T2, 1, w) is S. Now for weE'Ti, X(TV(O) has some finite
value, and the behaviour of x{t, io) {t > TX) depends only on this value. Whatever the
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value stipulated for x(Tlt co), the conditional probability that R(T2, 1, w) be non-empty
is strictly positive. Hence, if

Q2 = {CJ: A«R(0, TV o>) = 0; A«R(T2, 1,CO)> 0},

Q2 is a subset of E'Ti and MQ2) > 0-

Thus ETi, Q2 are disjoint sets such that

ETi + Q2CE, n{E) = p(ETi) = 8, fi{Q2)>0.

Since this is a contradiction, 8 = 0 or 1, and the lemma is proved.

THEOREM 1. There exists an absolute real constant y such that, for almost all paths coeQ,

dim R(a>) = y.

Let y be the exact lower bound of the values of a for which

{w: AaR{0, l ,«)>0} = 0.

Then, by Lemma 1, if 7 > 0 and /? < y,

Let ap = y+\jp, 0p =max [\y,y- 1/p] (p = 1,2,...),

Xp = {w: AapB((o) = 0}, Yp = {w: AhR(u>) > 0}.

Then/*(Zp) = /i{Yp) = l{p = \,2,...). Hence if Z = f| XpYp, then/i(Z) = 1. Clearly,

if w e Z, the dimension of i?(o>) is y.
We now proceed to obtain the value of the absolute constant y. I t follows from

Theorem 2 of (1) that 7 < \. This may also be deduced from the last section of the present
paper in which we prove that /i{o): A*i?(0, l,w) = 0} = 1. The remainder of the present
section will be devoted to obtaining the opposite inequality7 > \. This result is obtained
by showing that, for 0 < a < \, the a-capacity of R(CJ) is positive with probability 1.
For any path w e Q let M^ w) = SUp X(T, w); (2)

and let S((o) be the set of values of t for which

M(t,(o) = x(t,w).

Since with probability 1 x(t, w) is continuous as a function of t, it follows that (i)
is a closed linear set, (ii) y = M(t, w) is a monotonic increasing continuous function of
t for almost all w of Q. Hence for almost all fixed we. D, there is an inverse function
T(y,co) defined by T(y,a)) = t if M(t,w) = y. (3)

For almost all values of y (in the sense of Lebesgue measure), T(y,a>) is uniquely
defined by to. For fixed w there is a countable set of values of y at which T(y, w) has
a 'jump'. However, if \{y^i=lf2, is any preassigned countable set of values of y,
there is probability 1 that at all of these values T(y, w) is uniquely defined. Thus, for
almost all w, {T^y^ w)}f=12 defines a countable set of points in S(CJ). We need
the following results due to P. Levy:

LEMMA A. The sets R(u>) and S(o>) satisfy the same probability laws: that is, the comple-
mentary open intervals of R(to) and S(a>) satisfy the same probability laws with regard to
both position and magnitude.

https://doi.org/10.1017/S030500410003019X Published online by Cambridge University Press

https://doi.org/10.1017/S030500410003019X


268 S. J. TAYLOR

This lemma is Theorem 47-1 of (7). It will allow us to deduce results about Aa-B(&>)
from AaS(w).

LEMMA B. For each value oft the functions \x(t, (o)\, M(t,w) and [M (t, w) — x(t, w)]
have the same probability distribution as y(t, w), where, for k>0,

/i{co: y(t, u)<k} = 2(2nt)-l Pexp ( - £2/20 dE,.
Jo

This combines Theorems 42-1 and 42-4 of (7).
Since M(t,w) is a monotonic function, we have by (3)

fi{cj: T(y,o)) <u} = /u{a>: M(u, w) >y)

= 2(2nu)-i Pexp ( - £?/2u) d£,
Jv

by Lemma B. Differentiating with respect to u gives

ji{o: T{y, 0))<u} = y(2n)-lTexp (-?/2/2cr) o~*do- (4)
Jo

for y > 0, u > 0. Suppose now that a is fixed with 0 < a < \. Let

(5)
By the stationarity of the Gaussian process,

MQm,n) = MQo, n) (m = 0 , l ,2 , . . . , t t - l ) ,

= ju.{w: \T(\jn,w)]~a>n.(logn)~2}

= n{w: T(l/n, w) <n~^a(\ognfla}
pn-'la(logn)'"1

= (2nn2)-i exp ( - 1/2OTI2) o^da,
Jo

by (4). Making the substitution cm2 = w, we have
/"n«-i/«(jog»)''o<

MQm,n) = (2»r)-* exp ( - l/2w) w~Uw. (6)
Jo

The integrand in (6) is an increasing function of w in the range (0, \); and there exists
an integer nQ such that, for n > n0,

Hence, for n > n0, there is a positive constant &x with

MQm, n) < Kn-i+^log n)-** exp { - \n^~\\og n)-**}. (7)

n\jQm,n, n = 2P (p=l,2,...). (8)
7»=0

By (7) we have fi{Ep) < k2. 2^"-p-^ e x p { - k3 .ZP™"-®p-**} (9)

for p >p0, where k2, ka are positive constants. We can now prove

THEOREM 2. For 0 < a < £, and almost all w of Q, ifte sei >S(w) A<w positive oc-capacity.
GO

Consider a fixed u) of Q. By (9) above, S /t(^j,) converges. Hence, by the Borel-
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Cantelli lemma, there exists, with probability 1, an integer p1 such that co is in the
complement of Ep for p >pv Thus

[(^)^)Y (10)
form = 0,1,2, ...,n- 1; n = 2P,p>p1. Let

A1 = max f W ^ ± l , w ) - W ^ , J l . (11)

For p >plt write
tm>p = T(mln,w) (n = 2P;m = 0,l,-,n-l). (12)

With probability 1, each of the numbers tmp is uniquely defined and lies in $(«).
Now any interval of the form (i.2~p,j .2~p)s where i, j , p are non-negative integers,
contains at least one interval of the form (k. 2~Q, (k + 1). 2~«) with

Further, for s = 0 ,1 ,2 , . . . , there are not more than 2s+*> combinations of integers i,j

such that [ i o g 2 (j _ ; ) ] = s (0 < i < j ^ n _ i ; n = 2»).

Thus, if 0 = 2 ^ ^ M i . , - ^ 1 - , (13)

[l

we have, for q = p + 2 — s > px, by (10),

That is, ^s,p < kiq~\ (14)

for some positive constant fc4. Also, from (13) and (1),

s=0

By (11), for q = p + 2 — s^pv the terms in (13) making up <f>s p are each less than

- ;—^- ; and so * , ,

By (14) we have ' ^
s=o

= A2, a finite positive constant.

Thus, by (15) D$ < A^A, ,

for » = 2P, ̂ j >^>1. Hence by Theorem C, the capacity of the part of #(«) between 0
and T(\, w) is positive. This completes the proof of Theorem 2.

t Here [x] denotes the integer part of x.
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COROLLARY. The absolute constant y defined by Theorem 1 satisfies y^\-

This follows immediately from the above theorem, Lemma A and Theorem A.

3. The graph of a Brownian path. For fixed we Q, the set of values of X(t, w) for
0 < t < 1 is clearly a linear closed interval. The end-points of this interval satisfy known
probability laws. However, each interior point of the interval has a multiplicity
2^0, the power of the continuum. Thus we need some device to examine the set of
values of x(t, co).

For winfl , let C(w) be the set of points {t, x(t, w)) (t ̂  0). Then, with probability 1,
C(o>) is a continuous curve in the plane passing through (0,0) and it is non-rectifiable.
We now think of C(&>) as a set of points in 2-space defined by the stochastic process w.
If 0 < tx < t2 we denote by C(<1, t2, w) the set of points (t, x(t, w)) (^^t^ t2).

THEOREM 3. For almost all w of Q, the curve C(o)) has dimensional number f.

For any A < \, there is probability 1 that the function x(t, w) satisfies a uniform
Lipschitz condition of order A in the range 0 < t < 1 (this is proved as Theorem XLVII
in (10)). Hence, by the main theorem of (2), dimC(0,1, w) < 2 — A, with probability 1.
I t follows that, for amost all w of Q,

To obtain the opposite inequality we again consider the capacity of the set C(0,1, &>).
P u t r(*,<w) = [|*(*,w) | a + *«]*; (16)

f(t,r)=fi{u,:r(t,(o)<r}. . (17)

Then, if r ̂  t > 0, f(t, r) = ju,{co: \ x(t, w) |2 < r2 -12}

= 2(27rf)-H
Jo

exp(-u2/2t)du;
o

while f(t, r) = 0 if 0 < r < t. Thus

{ } if r>t>0;

= 0 if 0
For 0 < a < f, put

Thus Pa(t) = 2{2nt)-*[r1-*^ -12)~* en$ {~ (r2-t2)/2t}dr

= 2(2n)-i <*-*« | xi(x2 +1)-*" exp ( - \x>) dx,
Jo

by the change of variable r = [t(x2 + t)]K Now x2 +1 ^ t for all x, and so

Pa(t) < 2(2TT)-* <J-a f"a;*exp ( - x2\2) dx.
Jo

That is, ^(1)^*5**-*, (18)-

where k5 is a finite positive constant. Let i/r(s, t) be the distance from C{s, s, co) to
C(t,t,oj); that is, ft(sj) = {\x(t,a>)-x(s,oj)\2+\t-s\!i}K
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Now, by Fubini's theorem
1/"1 dsdt

J
01 dsdt

( . . . . u is finite;
o{V(s> t)i

and, by Theorem B, the a-capacity of C(0,1, w) is positive. It follows by Theorem A
that dim (7(0,1, w) > a. Since a can be arbitrarily near f-, we have

with probability 1. This completes the proof of the theorem.
To obtain the probable value of A*(7(w) we need

LEMMA C. Given i) > 0, and the space Q of paths w, there exists an increasing sequence
of integers kvk2!... such that if

Dr = {cj: sup \x{t,w)\< 7]k~ *},

then

(i) fi(Dr)=p>0 ( r = l , 2 , . . . ) ,

{ii) /i(DT+1ID'1D'2...D'r)>\p,

(iii) for any positive integer N, fi\ \J DA = 1.

This is a restatement of Lemmas 5, 6 and 7 of (n).

THEOREM 4. For almost all Brownian paths coin Q,
A*C(«) = 0.

Proof. Let w be a fixed element of Q. If 8 is any small positive number, put v = j ^
and apply Lemma C. Let p1 be the smallest of the integers klt k2,... such that

Pi>V~* (19)
and (oeDPi:p1 exists with probability 1. The rectangle with vertices (0, ±tjpji),
(1/^D ±W~ih)> win contain all of C(0,1/p^o)). This rectangle can be covered by nx

squares of side l/px> where K 1 < 2 ^ J + 1 ^3vp\, by (19). Each of these squares is
contained in a circle of diameter -J2lpv Hence there is a set St of nx circles, each of
diameter •s/2/p1 which covers C(0, l/pv «); thus

2 d* = n^Zlprf < 6V(llPl) = WVPi)-
s.

Now repeat the argument for C(llpvoo,w); this gives an integer p2 such that
0(1/2?!, l/p1+ Ilp2,(t>) is contained in a set S2 ofn2 circles each of diameter -J2lp2, and
7i2 < 3wp\. As each step can be carried out with probability 1, it is possible to obtain
a sequence 0 = t0 < tx < t2... such that C(<r_1; tr,«) is contained in a set Sr of circles with

S d » < ^ - U ) ( r = l , 2 , . . . ) . (20)
Sr

Now, by (iii) of Lemma C, there exists an integer M such that

These events are independent; hence, by the Borel-Cantelli lemma, the sequence
pv p2,... will, with probability 1, contain an infinite number of terms less than M; and
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so the sequence tlt t2,... cannot have a limit point before 2. Since tr — tr_1 < 1, there must

exist an integer m with 1 < tm < 2. The set V = U Sr °f circles then covers C(0, tm, w)

and therefore C(0,1, w). Further, by (20),

Since 8 is arbitrary, A?C(0,1, (o) = 0 with probabihty 1. Hence AJC(w) = 0 for almost
all (o of Cl.

4. TAe A*-«ieo5Mre o/ B((o). Let i?A(0. l,w) be the set of values of t for which
x(t,(o) = A, 0 < i ^ 1. Clearly it is a linear set given by the intersection of 0(0, l,o>)
with y = A. We need the following

LEMMA 2. Let y = f(x) be a single-valued continuous function ofx defined for 0 < x ̂  1,
a?wZ Zei Ey be the setf-^y), 0 < x ^ 1. TVien, if a>0, v>0, A.*Ey is an upper semi-con-
tinuous function of y.

Proof. We require to show that, for any y0,

Suppose AyEy = p; then 0^p<co. For any e>0, let Q = U(Eyo,v) be a covering
of Eyo by intervals of length not greater than v such that

5^0

Since f(x) is continuous, i!^ is closed, and we may assume that Q consists of a finite
number of open intervals. The plane set T of infinite strips with base Q', the com-
plement of Q, is closed. Also the plane set C of points (x,f(x)) (0<x< 1) is closed.
Hence the set T r\C and the line y = y0, are two closed sets with no common points.
These sets must be at a positive distance S apart. Thus, for | y — y0 \ < S, Ey is covered
by a set of open intervals congruent to Q. Hence

A ^ w < S d « for \y-yo\<8;
Q

and so A^Eyo > lim sup A-%Ey - e.

Since e is arbitrary, the lemma is proved.
The above lemma shows that AaEy = lim Aa

vEy is a measurable function of y. It
7->-0

is this fact that we need in the sequel.

THEOREM 5. For almost all Brownian paths a> in Q,

A*i2(w) = 0.

Proof. Suppose the theorem is false. Then Lemma 1 shows that, for all T > 0,

/i{(o: AiR(0,T,w)>0} = 1.

Let d be a small positive number, and Q* the subset of Q, for which

sup x(t, co) > 38 and inf x(t, co) < - 38.
0 i i ( K * i
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As 8-+0, fi(Q.*)^l. Define a probability measure fi* in O* by

when 2?CQ*.

Then /i*{w: A*R(0,T, W) > 0} = 1.

Define an enumerable sequence {AJ as follows. Let £ be any positive number such
that £/# is irrational. For n = 1,2,..., let An be the unique number such that
| An | < 28, and \nE, — Xn\ = 4q8 for some integer q. Then the sequence {AJi=1 2 ;._
is equidistributed on (— 28,28) in the following sense. If E is any set contained in
[-8,8], define <j>i(z,E) = 1 if A^zei / ,

= 0 otherwise.

Then, for almost all z in the range | z \ < 8 (in the Lebesgue sense),

lim = S ^ ( Z > ^ ) = L i . (21)

(Thisisanimmediateapplicationof the famous result of Weyl, see pp. 315, 316of (12).)
For a fixed z satisfying | z \ < 8, put

yi = Xi + z ( i = l , 2 , . . . ) .

Now suppose o) is in Q*. Then

jti*{a>: AiRyi(0,l,w)>0}= 1,

for there is a first point in Ryi(0,1, a>), and behaviour to the right of this point is
independent of behaviour before. Further, no matter what is known about
A ^ ^ O , 1, w) for i = 1,2,...,m- 1, the conditional probability for

{<o:AtRyJ0,l,w)>0}

must still be 1 since min | yi — ym \ > 0. Thus, for almost all o in Q*,

A*Ry.(0, l,w)>0 for i = 1,2,.... (22)

Let E(cj) be the set of values of y for which

A*jRy(0, l,w) = 0 and \y\^8.

By Lemma 2, for almost all o» of Q*, E(o>) is a Gs set and therefore measurable. Hence,
by (21), for almost all z such that | z \ < 8,

limis#>%))=^. (23)

Suppose, for the moment, that with probability q > 0

\E(w)\>0.

Define a product measure in D.* x Z, where Z is the set of real numbers | z \ ̂  8, as the
product of the measure fi* in Q* and Lebesgue measure in Z. Then, by (23), for almost
all zcZ, there is probability q that at least one of the sets Rz+Xi(0,1,&>) (i = 1,2,...)
has zero A*-measure. This contradicts (22), which states that for any zeZ the prob-
ability of this event is zero. Hence we must have, with probability 1,

| E{w) | = 0.
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274 S. J . TAYLOR

There must exist p > 0 such that

satisfies /i*{o): \ E{p, w) | > 8}> \. (24)

The main theorem of (9) now shows that, if w e Q* is such that | E(p, OJ)\>S, there

exists a constant k > 0 with A*C(0 1 w) > JcpS.

Thus, by (24), ju,*{(o: A*C(0, l,w) >kp8}>\;

and so, in Q, /i{w: A*C(0,1,co) ^ kpS) > \/i{Q.*) > 0.

Since kp8 > 0, this contradicts Theorem 4. Our original assumption is contradicted
and the theorem is proved.

Remark. In the present paper we have restricted ourselves to considering measure
with respect to the measure functions xa, a > 0. More general Hausdorff measure
functions might be considered; this was done by Levy in (8) for Brownian paths in
w.-space. He succeeds in obtaining an improved upper bound for the measure of sets
considered, but it seems more difficult to show that the result is 'best possible'. In
the present case, analogous improved upper bounds can be obtained, but I omit to
state the results as I have been unable to prove them 'best possible'.
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