
J. Fluid Mech. (1997), vol. 339, pp. 309–330. Printed in the United Kingdom

c© 1997 Cambridge University Press

309

Wave diffraction by a long array of cylinders

By H. D. M A N I A R AND J. N. N E W M A N
Department of Ocean Engineering, MIT, Cambridge, MA 02139, USA

(Received 19 September 1996 and in revised form 20 December 1996)

Water wave diffraction by an array of bottom-mounted circular cylinders is analysed
under the assumptions of linear theory. The cylinders are identical, and equally
spaced along the array. When the number of cylinders is large, but finite, near-
resonant modes occur between adjacent cylinders at critical wavenumbers, and cause
unusually large loads on each element of the array. These modes are associated
with the existence of homogeneous solutions for the diffraction by an array which
extends to infinity in both directions. This phenomenon is related to the existence of
trapped waves in a channel. A second trapped wave is established, corresponding to
Dirichlet boundary conditions on the channel walls, as well as a sequence of higher
wavenumbers where ‘nearly trapped’ modes exist.

1. Introduction
Many offshore structures are supported by vertical columns of circular form, which

are subject to wave diffraction and associated pressure forces or ‘loads’. Linearized
potential theory is applicable, provided the wave height is small in relation to the
wavelength and the diameter of the columns. Plane progressive incident waves can
be assumed, with wavenumber K and wavelength λ = 2π/K .

Special attention has been given to structures which consist of a large number of
separate elements, situated in a periodic array. Applications of such structures include
bridges and proposed designs for floating airports. Arrays of wave-power devices also
have been proposed to take advantage of the favourable interference characteristics
which exist in certain cases. Interference has an important effect on the loads, not
only for large arrays but also for structures with only a few elements such as the
columns of tension-leg platforms.

Various analytical methods have been developed to solve the wave diffraction
problem for these types of configurations. Havelock (1940) derived the velocity
potential for a single cylinder, and this solution was extended to multiple cylinders by
Ohkusu (1974). More general arrays of axisymmetric bodies have been analysed by
Kagemoto & Yue (1986) and Linton & Evans (1990), and in other references cited
therein.

The present paper is motivated by the singular role of quasi-resonant wave inter-
actions which we have found at critical values of the spacing of the array elements,
relative to the wavelength. At these critical values we have computed very large
amplitudes of the free-surface elevation between adjacent elements, and correspond-
ing large loads acting on each cylinder. The principal objectives of this work are to
emphasize and explain the occurrence of these interactions.

We consider an array of N equally spaced fixed cylinders, each having a radius
a about its vertical axis. The axes of adjacent cylinders are separated by a distance
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310 H. Maniar and J. N. Newman

2d, and situated in the plane y = 0 of a Cartesian coordinate system (x, y, z) where
−h < z < 0 is the fluid domain, z = 0 is the plane of the undisturbed free surface,
and the depth h is constant.

Incident plane waves propagate in the direction with angle β relative to the +x-axis.
The corresponding velocity potential is

ΦI (x, y, z, t) = Re
{
φI (x, y) e− iωt coshK(z + h)/ coshKh

}
, (1.1)

where

φI = eiK(x cos β+y sin β),

and a constant factor proportional to the amplitude is ignored. The frequency ω and
wavenumber K are related by the dispersion relation ω = (gK tanhKh)1/2, where g
is the gravitational acceleration.

The total diffraction potential ΦD = ΦI + ΦS is defined as the sum of the incident
and scattered components. Since the cylinders extend vertically throughout the fluid
domain, the z-dependence of ΦD and ΦS is identical to that of the incident plane
wave, and the diffraction potential can be written in the form

ΦD = Re
{
φD(x, y) e− iωt coshK(z + h)/ coshKh

}
. (1.2)

The function φD is governed by the modified wave equation

∇2φD +K2φD = 0, (1.3)

subject to the boundary condition of zero radial velocity on each cylinder. The
scattering component φS = φD − φI satisfies the radiation condition of outgoing
waves in the far field.

The function φD(x, y) depends only on the horizontal coordinates, and can be
associated physically with the diffraction of two-dimensional acoustic waves by an
array of circles. In addition to the coordinates (x, y), φD depends on the normalized
wavenumber Ka, the incidence angle β, and the geometrical ratio a/d < 1. The
most significant parameter with respect to wave interference is Kd, which relates the
spacing between adjacent cylinders to the wavelength.

As an example to motivate the present work, figure 1 shows the magnitude of the
wave load on the middle element of an array consisting of nine cylinders, in head
waves (β = 0). Two geometrical configurations are shown, where a/d = 1/4 and
a/d = 1/2. Also shown for comparison is the load on a single isolated cylinder of the
same radius. The most distinctive feature is a sequence of narrow peaks which occur
when Kd is slightly less than π/2 times an integer. The highest peaks are about three
times the force on a single cylinder; it will be shown in subsequent examples that
this multiplicative factor increases without limit as N →∞. (It should be emphasized
that we are considering the load on a single cylinder, not the total force on the array
which would be expected to increase with N in general.)

In long wavelengths (Ka� 1), where the scattering from each cylinder is relatively
weak, the load on each element is practically the same as for a single isolated
cylinder. For the two cases shown in figure 1, this applies in the regime Kd/π < 0.3.
For substantially larger wavenumbers, corresponding to shorter wavelengths, one
might expect a reduced load on each cylinder due to sheltering except near the head
of the array. This appears to be the case to some extent, except near the peaks,
and the first peak seems to divide the two regimes where interactions are weak or
sheltering is significant. The principal question that remains is to explain the peaks
themselves.
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Figure 1. Magnitude of the load on the middle cylinder of an array N = 9 (solid line) and
comparison with the load on a single isolated cylinder (dashed line). The propagation of the
incident waves is in the direction parallel to the array (β = 0). (a) a/d = 1/4 and (b) a/d = 1/2,
where a is the cylinder radius and 2d the spacing between adjacent cylinder axes. The magnitudes
shown are normalized on the basis of unit wave amplitude, density, gravity, cylinder radius and
depth.

Analogous results have been presented by Simon (1982), for the damping coefficients
of an array of axisymmetric wave-energy devices, including the specific case N = 9
and a/d = 1/2. In his discussion Simon notes that the results ‘become increasingly
intricate, with a lot of fine structure, as the number of devices increases, and this does
not add to one’s understanding.’ Ohkusu (1982) considers the coefficients of wave
reflection and transmission by one or two cylinders in a channel, and finds sharply
peaked results from both theory and experiments. Ohkusu’s results are discussed in
the Conclusions.

We will show that a close relation exists between the peaks in figure 1 and the
trapped waves which can occur in a channel with rigid sidewalls. The existence
of such trapped waves has been established by Linton & Evans (1992), Evans,
Levitin & Vassiliev (1994), and in other papers referenced therein. Trapped waves
have been shown to exist for circular cylinders (and other body shapes), at one
critical wavenumber just below the cut-off value Kd = π/2 for antisymmetric wave
propagation in the channel. The trapped wave itself is antisymmetric about the
channel midplane, and hence cannot radiate energy to infinity along the channel.
Since there are no antisymmetric far-field waves, and the normal velocity is zero
on both the channel walls and cylinder, this mode is a homogeneous solution of
the boundary-value problem. We shall refer to this subsequently as the ‘Neumann
trapped wave’, in view of the corresponding boundary condition on the walls.

The connection with trapped waves may seem surprising since we are concerned
here with diffraction of head waves past a finite array in an otherwise unbounded
horizontal domain. The diffraction of beam waves (β = 90◦) past an infinite array is
equivalent to that of a single cylinder in a channel, in accordance with the method
of images, but for other angles of wave incidence this equivalence is lost and the role
of the trapped waves is less obvious. Moreover the analogy with trapped waves in a
channel only explains the first peak in figure 1.
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312 H. Maniar and J. N. Newman

We initially found the peaks illustrated in figure 1 while analysing much larger
arrays with a high-order panel program based on B-splines. The original objective
was to test the accuracy and limits of this program in comparison to the interaction
theory of Linton & Evans (1990). Those results, which are described in §2, provide
empirical evidence of the connection with trapped waves. In subsequent sections a
matrix analysis based on the theory of Linton & Evans (1990) is used to show that the
trapped modes are eigensolutions not only for the diffraction problem in a channel,
and for the equivalent problem of an infinite array in beam waves, but more generally
for waves of arbitrary incidence angle. Moreover the second peak corresponds to a
trapped wave in a non-physical channel where the velocity potential (rather than its
normal derivative) vanishes on the walls. The existence of this ‘Dirichlet trapped wave’
is hitherto unknown to our knowledge, in the context of water waves, but analogous
modes are known to exist in the acoustics context. (This analogy is discussed in §6.)
The subsequent peaks in figure 1 are associated with ‘nearly-trapped waves’, where
the radiation is weak but non-zero.

After presenting computational results for long arrays in §2, the interaction theory
of Linton & Evans (1990) is re-derived in §3 and simplified for long arrays in §4.
In §5 we show that the corresponding linear system of equations has homogeneous
solutions, for an array with an infinite number of elements, at the wavenumbers corre-
sponding to the Neumann and Dirichlet trapped modes. At the higher wavenumbers
where secondary peaks are shown in figure 1, there is no homogeneous solution but
the linear system is poorly conditioned, suggesting a large but finite response with
weak radiation of energy. Conclusions are summarized in §6.

2. Computations for large arrays
Figure 2 shows the magnitude and phase of the wave load acting on each element

of a long array (N = 100) of cylinders with the ratio a/d = 1/2. These results are for
head waves (β = 0), at five different wavenumbers which are denoted (a–e). In each
case the magnitude, shown in the left column, is normalized by the corresponding
result for a single isolated cylinder. Except in case (d) the normalized magnitude on
the first cylinder is approximately 1, indicating that the load on the first cylinder of
the array is not strongly affected by interactions with the other elements. For the
remainder of the array interactions are important, and it is necessary to distinguish
between three regimes.

In the first plot (a), where the wavelength is three times the cylinder spacing, the
load increases slowly along the array, suggesting a refraction of the incident wave
energy toward the array. The phase is closely correlated with the local phase of the
incident wave at each cylinder.

In cases (c) and (e), where the wavelength is shorter, the load decreases along the
array due to sheltering. As in the long-wavelength regime (a), the phase is essentially
the same as the local incident-wave elevation. Thus in (c), where the wavelength is
twice the spacing, the forces on consecutive cylinders have opposite phase and in (e),
where the wavelength is equal to the spacing, their phase is nearly constant.

Seeking to explain the transition from (a) to (c), we first discovered the result (b) at
Kd = 1.390706. Here the normalized load is much larger, reaching a maximum value
of 35 near the middle of the array. The phase differs by π between adjacent cylinders,
whereas the phase difference of the incident wave over the same distance is less than
2.4. This wavenumber is virtually identical to the value Kd = 1.39131 reported by
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Figure 2. The distribution of the force magnitude (left) and phase (right) along an array of 100
circular cylinders in head seas. The diameter/spacing ratio a/d = 1/2. The cylinders are identified
by the abscissa, with the first cylinder at the up-wave end of the array. Note that the scales of the
magnitude are different in each plot.
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314 H. Maniar and J. N. Newman

Linton & Evans (1992), for the existence of trapped waves in the diffraction problem
for a cylinder of radius a in the centre of a channel of width 2d when a/d = 0.5.

The connection between the peak loads acting on a finite array in head seas and
trapped waves in a channel can be explained in the following manner. Trapped waves
are known to exist in a channel, corresponding to the case of beam waves incident
upon an infinite array of equally spaced cylinders. The trapped wave is associated
with a homogeneous solution, of indeterminate magnitude. Since this solution is
antisymmetric about the centreplane of the channel, the corresponding load on the
cylinder is perpendicular to this plane.

Now consider the diffraction problem for a finite array. This can be analysed in
general from the interaction theory of Linton & Evans (1990), which is re-derived
below in §3. The principal result is a linear system of equations (3.7) where the
unknowns are the complex amplitudes of Fourier modes at each cylinder. It is
generally assumed that the same analysis applies in the limit N → ∞ (see Linton &
Evans 1993). However the existence of trapped waves as N → ∞, for the beam-wave
condition, implies that the linear system of equations which represent the interactions
between the cylinders admits a homogeneous solution at the critical wavenumber
where trapped waves exist, and a nearly singular solution can be expected when N
is finite but large. Since the left-hand side of this linear system is independent of the
wave incidence angle, the same singular behaviour can occur for head seas, or more
generally for any oblique angle of incidence. From this argument we conclude that
the load on each cylinder may become large at the same wavenumber where trapped
waves exist in a channel, with the understanding that the channel walls correspond to
the vertical planes which are normal to the axis along the array and situated midway
between adjacent cylinders.

In the absence of physical walls, the velocity potential and its normal derivative
must be continuous across these planes as shown in figure 4(a). This condition is
satisfied if the local ‘trapped’ solution, which is antisymmetric about the plane which
coincides with each cylinder axis, is nearly opposite in phase to the corresponding
mode at the adjacent cylinders. It follows that the loads on adjacent cylinders will
have the phase difference ±π, as observed in case (b) of figure 2.

If this explanation is valid, results similar to (b) of figure 2 should be observed at
other angles of wave incidence. This is confirmed in figure 3, where the normalized
load component in line with the array is plotted at β = 0, 30◦, 60◦, and 90◦. Even
in beam waves there is a substantial in-line load, normal to the direction of wave
incidence. The phase, which is omitted in figure 3, differs by approximately ±π
between adjacent cylinders for all angles of incidence.

An exception occurs in beam waves if N is odd. This follows from symmetry, since
the in-line load must be zero on the cylinder at the centre of the array. The results
shown in the right column of figure 3 confirm the expectation that the cases N = 100
and N = 101 are practically identical except in beam waves.

The results shown in figures 2 and 3 were obtained using a higher-order three-
dimensional spline–Galerkin panel method developed by Maniar (1995) and also
described by Lee et al. (1996). Identical results within graphical accuracy have been
computed from an independent program based on the semi-analytic theory of Linton
& Evans (1990). In both methods we note that the solution is based on a linear system
of equations where the influence coefficients on the left-hand side are associated with
hydrodynamic interactions between different panels, or Fourier modes of the solution
at each cylinder, but independent of the forcing associated with the incident wave.
Thus if there is a homogeneous solution at one incident wave angle, as is known to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

97
00

52
96

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112097005296


Wave diffraction by a long array of cylinders 315

40

30

20

10

0 10 20 30 40 50 60 70 80 90 100

20

15

10

5

0 10 20 30 40 50 60 70 80 90 100

10

8

6

4

2

0 10 20 30 40 50 60 70 80 90 100

10

8

6

4

2

0 10 20 30 40 50 60 70 80 90 100

1.0

0.8

0.6

0.4

0.2

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

20

15

10

5

10

8

6

4

2

N = 100 N = 101

Figure 3. The distribution of the in-line force magnitude along an array of 100 (left) and 101
(right) circular cylinders. The in-line force is the component of the exciting force along the length
of the array. From top to bottom, the four pairs of plots correspond to the incidence angles
β = 0, 30◦, 60◦, 90◦ respectively.

exist for beam seas on an infinite array at the critical wavenumber corresponding
to the first trapped mode, the same homogeneous solution will exist at the same
wavenumber irrespective of the incidence angle. For an array which is large but finite,
the response at this wavenumber will be nearly singular, as is observed here. This
provides a heuristic explanation of the very large loads shown in figure 2(b) and in
figure 3, and for the first peak in each of the plots shown in figure 1.
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(a)

(b)

Figure 4. Sketches of the first Neumann (a) and Dirichlet (b) trapped modes along the array axis.
The fictitious channel walls are shown as dash–dotted (−· ·−) lines, the free surface profiles as solid
lines, and two adjacent cylinders as dashed (−−−) lines.

Subsequently, having observed the second peaks in figure 1, we discovered the case
(d) in figure 2 where the maximum load on each cylinder is about five times that of a
single isolated cylinder. The phase in this case is practically constant along the array,
indicating a very large global force on the entire array. The analysis in §5 indicates
that this case corresponds to the wavenumber of a trapped mode where homogeneous
Dirichlet conditions are imposed on the channel walls. Since the potential vanishes in
this case on planes midway between the cylinders, rather than the normal derivative,
continuity of the solution across these planes is only possible if the adjacent solutions
are in phase as shown in figure 4(b).

Further confirmation for the explanation in terms of antisymmetric trapped waves
is apparent from figure 5, which shows contour plots of the free-surface elevation
in the vicinity of the middle cylinder of the array with 101 elements, for the two
wavenumbers corresponding to cases (b) and (d) in figure 2. For the Neumann case
(b) the maximum elevation, which occurs midway between adjacent cylinders, is 35
times the elevation of the incident wave. For the Dirichlet case (d) the maximum
elevation is 5–6 times the elevation of the incident wave, occurring on the sides of
the cylinder. These very large wave motions are antisymmetric about the plane which
coincides with the cylinder axis, and symmetrical or antisymmetrical, respectively,
about the midplane between adjacent cylinders (satisfying homogeneous Neumann
or Dirichlet conditions on the latter planes). In these respects the solution is identical
to the corresponding trapped wave in a channel.

The singular interactions which are described here are not present in the analysis of
an infinite array by Linton & Evans (1993). This is because the latter work assumed
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(a) (b)

Figure 5. Equipotential contours at the first Neumann (a) and Dirichlet (b) trapped modes, in head
waves. Only the imaginary part of the total potential is shown, for the domain near the centre of
an array with 101 cylinders. Positive and negative values of the potential are indicated by solid and
dashed lines respectively. The change in the potential between adjacent contours is 1.0 and φ = 0
on the centreline.

periodicity of the solution with respect to both the array spacing and the wavelength
of the incident waves. The latter restriction eliminated the homogeneous solution
which could otherwise occur at the critical wavenumbers where trapped waves exist
in a channel.

3. The interaction theory of Linton & Evans (1990)
Following Linton & Evans (1990), we consider the diffraction of plane progressive

incident waves by an array of circular cylinders which extend vertically throughout
the fluid domain between the free surface z = 0 and the bottom z = −h. Since the
geometry is independent of the vertical coordinate and the boundary condition on
each cylinder is homogeneous, the complete diffraction potential varies as a function
of z in the same manner as the incident wave, and can be expressed in the form

Re
{
φD(x, y) e− iωt coshK(z + h)/ coshKh

}
.

Here the frequency ω and wavenumber K are related by the dispersion relation
ω = (gK tanhKh)1/2, where g is the gravitational acceleration. The two-dimensional
function φD = φI + φS is governed by the reduced wave equation, and analogous
physically to the diffraction potential for acoustic waves in two dimensions propa-
gating past an array of circles. The component φI represents the incident wave field,
and φS is the scattered field due to the array.

To simplify the notation we restrict our consideration here to an array consisting
of N identical cylinders, of radius a, equally spaced along the x-axis with their axes at
x = xj , where (j = 1, 2, ..., N) and xj+1 − xj = 2d. Global and local polar coordinates
are defined by the relations

x+ iy = r e iθ, (x− xj) + iy = rj e iθj .
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The incident-wave field can be expressed in the alternative forms

φI = eiK(x cos β+y sin β) = e iKr cos(θ−β)

=

∞∑
n=−∞

Jn(Kr) exp
(

in(θ − β + π/2)
)

= Ij

∞∑
n=−∞

Jn(Krj) exp
(

in(θj − β + π/2)
)
. (3.1)

Here Jn denotes the Bessel function of the first kind, and

Ij = eiKxj cos β

is the incident-wave phase at the axis of the jth cylinder.
The scattering potential associated with the jth cylinder is expressed in the corre-

sponding form

φ
j
S =

∞∑
n=−∞

AjnZnHn(Krj) e inθj , (3.2)

where Hn ≡ Jn + iYn denotes the Hankel function of the first kind, and the factor

Zn = J ′n(Ka)/H
′
n(Ka) (3.3)

is introduced for convenience later in satisfying the boundary condition of zero radial
velocity on each cylinder. Note that each term in (3.2) is singular at the cylinder
axis, and in the far field the radiation condition of outgoing waves is satisfied. The
coefficients Ajn are unknown at this stage.

The total scattering potential of the array is the sum of (3.2) over all elements of
the array, since this is the most general solution which contains the same singularities
at each cylinder while satisfying the radiation condition in the far field. After adding
the incident potential (3.1), the total diffraction solution is given in the ‘global’ form

φD = φI +

N∑
j=1

∞∑
n=−∞

AjnZnHn(Krj) e inθj . (3.4)

The function (3.4) can be expressed in terms of the local coordinates of the kth
cylinder using Graf’s addition theorem (cf. Abramowitz & Stegun 1964, equation
9.1.79). In the domain rk < 2d it follows that

φD = Ik

∞∑
n=−∞

Jn(Krk) exp
(

in(θk − β + π/2)
)

+

N∑
j=1

′
∞∑

n=−∞

∞∑
ν=−∞

(±1)n+νAjnZnHn+ν(K|xj − xk|)Jν(Krk) e iν(π−θk)

+

∞∑
n=−∞

AknZnHn(Krk) e inθk . (3.5)

Here Σ ′ denotes summation over the array excluding the cylinder j = k, and the ±
sign is chosen according as k><j respectively.

The unknown coefficients Ajn are determined by imposing the boundary condition
of zero radial velocity on each cylinder. In the derivation of Linton & Evans (1990),
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(3.5) is differentiated with respect to rk and set equal to zero on rk = a. Here we adopt
a simpler approach, anticipating that the most general ‘local’ solution near the kth
cylinder, which satisfies the homogeneous boundary condition of zero radial velocity
on this cylinder, can be expressed in the form

φD(rk, θk) =

∞∑
n=−∞

Akn [ZnHn(Krk)− Jn(Krk)] e inθk . (3.6)

This formula is justified on the basis that the singular contributions from the Hankel
functions Hn are identical to (3.2), and the regular contributions from the Bessel
functions Jn ensure that the radial derivative of each term vanishes on rk = a. The
latter contribution represents the local field due to the incident wave and the scattered
waves from all other cylinders. The same result is derived by Evans & Linton (1990),
after proceeding more directly by radial differentiation of (3.5).

On each cylinder (3.5) and (3.6) must be equal, and equating the Fourier coefficients
with the same harmonic in θk gives the following linear system of equations for the
unknown coefficients Ajn:

Akm +

N∑
j=1

′
∞∑

n=−∞
(±1)n−mAjnZnHn−m(K|xj − xk|) = −Ik im e− imβ. (3.7)

Here (k = 1, 2, . . . , N) and (m = 0,±1,±2, . . . ,±∞).
The linear system (3.7) is identical to equation (2.11) of Linton & Evans (1990)

and, after truncation to a finite number of Fourier modes (−M 6 m 6 M), to
their equation (2.15). In this truncated form the linear system can be solved for the
unknowns Akm. The right-hand side of (3.7) represents the forcing due to the incident
wave field, which depends on the incidence angle β. The coefficients on the left-hand
side of (3.7) represent mutual interactions between different elements of the array
which are independent of the incident-wave characteristics.

4. Interaction theory for large arrays
Hereafter we consider a long array (N � 1) and seek an asymptotic solution valid

in the interior region far from the ends, where 1 � k � N in (3.7). With these
assumptions the coefficients Akm will vary slowly with respect to the index k, except for
a nearly-constant phase shift δ between adjacent cylinders. Thus we assume formally
that

Akm ∼ Ak−1
m e iδ, (4.1)

or, to simplify the notation,

Akm ∼ Am e ikδ. (4.2)

With this assumption (3.7) is replaced by

Am +

∞∑
n=−∞

AnZn
∑
j 6=k

(±1)n−m e i(j−k)δHn−m
(
2Kd|j − k|

)
= −Ik im e− ikδ− imβ. (4.3)

Here k is a fixed index, and the dimension of each independent linear system (4.3),
for each value of k, is reduced relative to (3.7).
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Let us suppose that j = 1, 2, ..., N and l = j − k. Then (4.3) is equivalent to

Am +

∞∑
n=−∞

AnZn

[ −1∑
l=1−k

e ilδHn−m
(
2|l|Kd

)
+ (−1)n−m

N−k∑
l=1

e ilδHn−m
(
2lKd

)]

= −Ik im e− ikδ− imβ. (4.4)

Substituting l = ∓j in the first and second sums in square brackets,

Am +

∞∑
n=−∞

AnZn

[
k−1∑
j=1

e− ijδHn−m
(
2jKd

)
+ (−1)n−m

N−k∑
j=1

e ijδHn−m
(
2jKd

)]

= −Ik im e− ikδ− imβ. (4.5)

With the assumptions stated above the upper limits of the inner sums in (4.5) can
be set equal to ∞. The resulting Schlömilch series arise in the analysis of diffraction
gratings. We shall adapt the notation of Twersky (1961) by defining the general case
of this series in the form

Hn(x, δ) =

∞∑
j=1

Hn(jx)
[
e− ijδ + (−1)ne ijδ

]
, (4.6)

where x and δ are real, x > 0, and the series converge for all values of the arguments
subject to the restriction x 6= |δ|. Using (4.6), (4.5) is replaced by the simpler expression

Am +

∞∑
n=−∞

AnZnHn−m(2Kd, δ) = −Ik im e− ikδ− imβ. (4.7)

It is useful to define new unknowns which are respectively the sum and difference
of A±m:

Sm = Am + A−m, Dm = Am − A−m.
Since Zn = Z−n and Hn−m = (−1)n−mHm−n, it follows that(

Sm

Dm

)
+

∞∑
n=−∞

n−m even

(
Sn

Dn

)
ZnHn−m(2Kd, δ) +

∞∑
n=−∞
n−m odd

(
Dn

Sn

)
ZnHn−m(2Kd, δ)

= 2Ik e− ikδ

(
− cosm(β − π/2)

i sinm(β − π/2)

)
. (4.8)

The in-line load on each cylinder is proportional to the coefficient D1, and the load
acting at right angles to the array is proportional to the coefficient S1.

For an array which is very long, or infinite, one normally assumes that the phase
difference δ is simply the shift in phase of the incident wave between successive
cylinders:

δ = 2Kd cos β.

This is based on the assumption that the only relevant distinction between different
elements is the local phase of the incident wave. Alternatively, one can argue that,
since the left-hand sides of (4.7) and (4.8) are independent of k, the same must be
true of the right-hand sides and thus δ is prescribed by the condition that Ik e− ikδ is
constant. The same restriction is applied by Linton & Evans (1993) in their analysis
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Wave diffraction by a long array of cylinders 321

of an infinitely long periodic array. On the other hand, the computational results in
§§1 and 2 suggest that at certain critical wavenumbers the in-line load, and hence the
coefficient D1, are nearly resonant, implying homogeneous solutions of (4.8) where
the phase of the incident wave is irrelevant. The analysis of these modes is carried
out in the next section.

5. Homogeneous solutions for infinite arrays
The large loads shown in figures 1–3, and the free-surface elevations in figure 5,

suggest that at certain critical wavenumbers homogeneous solutions of the linear
system (4.8) exist. Two types of resonant solutions are anticipated: the Dirichlet and
Neumann modes with corresponding phase differences between adjacent cylinders
δ = 0 or π, respectively, as discussed in §3. Thus we shall consider the existence of
homogeneous solutions of (4.8) with the phase δ prescribed in advance to be either
0 or π.

For these two cases it is clear from (4.6) that the Schlömilch series are only non-
zero when the order n is even. Thus the linear systems (4.8) are uncoupled, and the
appropriate homogeneous form of the second system is

Dm +

∞∑
n=−∞

n−m even

DnZnHn−m(2Kd, δ) = 0. (5.1)

The coefficients Dm are uncoupled for even and odd values of m, and the load
proportional to D1 can be evaluated restricting m to the set of odd integers in (5.1).

We first show that there is one homogeneous solution of (5.1) for the Dirichlet
case δ = 0, in the domain Kd < π, and another for the Neumann case δ = π, in
the domain Kd < π/2. The procedure we adopt for these two cases is to prove that
(5.1) can be replaced by a linear system of equations with real symmetric coefficients,
and then to verify numerically that the determinant of the truncated linear system
vanishes at one value of Kd within the assumed domain.

Appropriate relations for the Schlömilch series are derived in the Appendix. To
utilize these relations it is helpful to define Hn = Jn + iYn, as in the corresponding
decomposition of the Hankel function. The results for the real component are

J2n(2Kd, 0) = −δn0 +
1

Kd
(0 < Kd < π) (5.2)

and

J2n(2Kd, π) = −δn0 (0 < Kd < π/2), (5.3)

where δmn is the Kroenecker delta function, i.e. δ00 = 1 and δn0 = 0 for n 6= 0. With
these results substituted in (5.1) it follows that

Dm
(
1− Zm

)
+ i

∞∑
n=−∞

n−m even

DnZnYn−m(2Kd, δ) = 0. (5.4)

There is no contribution from the sum involving the second term on the right-hand
side of (5.2) since D−nZ−n = −DnZn.

From the definition (3.3),

1− Zm = i
Y
′

m

J
′
m

Zm.
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Figure 6. The Neumann trapped-mode wavenumber as a function of the spacing parameter (a/d).
A total of four odd Fourier modes have been retained in the computations. This figure is equivalent
to figure 2 of Callan et al. (1991).

a/d Callan et al. NF = 1 NF = 2 NF = 4 NF = 8

0.1 1.56904 1.569051 1.569051 1.569051 –
0.2 1.55023 1.550230 1.550230 1.550230 –
0.3 1.50484 1.504847 1.504842 1.504842 –
0.4 1.44655 1.446555 1.446547 1.446547 –
0.5 1.39131 1.391316 1.391314 1.391314 1.391314
0.6 1.34830 1.348305 1.348300 1.348300 1.348300
0.7 1.32288 1.322945 1.322902 1.322882 1.322882
0.8 1.32079 1.321010 1.320882 1.320789 1.320789
0.9 1.35185 1.352137 1.352110 1.351788 1.351785
1.0 1.42730 1.430229 1.427529 1.427481 1.427481

Table 1. Comparison of the Neumann trapped-mode wavenumber with the computations of
Callan et al. (1991). NF is the total number of odd Fourier modes retained in the present method.

Therefore (5.4) can be reduced to a linear system with real coefficients,

Y
′

m

J
′
m

(
DmZm

)
+

∞∑
n=−∞

n−m even

(
DnZn

)
Yn−m(2Kd, δ) = 0, (5.5)

where the unknowns are the products in parentheses. In general these unknowns are
complex, but the same equations apply separately to their real and imaginary parts.
Thus a homogeneous solution of (4.8) will exist if and only if the determinant of the
coefficient matrix in (5.5) is equal to zero.

Computations of the determinant of the truncated system are readily performed,
using the formulae in the Appendix to compute the coefficients Yn−m. For the
Neumann case (δ = π) we find for all fixed values of a/d in the range (0 < a/d < 1)
that the determinant passes through zero at one value of Kd, which varies with a/d
as shown in figure 6. More precise values of this wavenumber are shown in table
1, which indicates the convergence with respect to the total number of odd Fourier
modes included in the truncated version of (5.5). These values agree to a high degree
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Figure 7. The Dirichlet trapped-mode wavenumber as a function of the spacing parameter (a/d).
A total of four odd Fourier modes have been retained in the computations.

a/d NF = 1 NF = 2 NF = 4 NF = 8

0.1 3.129606 3.129605 3.129605 3.129605
0.2 3.055237 3.055177 3.055177 3.055177
0.3 2.990391 2.989795 2.989795 2.989795
0.4 3.003034 2.999586 2.999586 2.999586
0.5 3.085486 3.071730 3.071722 3.071722
0.6 – 3.132661 3.132556 3.132556

Table 2. Convergence of the Dirichlet trapped wavenumber. NF is the total number of odd
Fourier modes retained in the truncated linear system.

of accuracy with those tabulated by Linton & Evans (1992). In their table 1, Linton
& Evans show the results from two different computational methods, with differences
beyond the second or third decimal place in the last two entries (a/d = 0.9 and
1.0). In these cases our results agree more closely with their second method, which is
associated with the work of Callan, Linton & Evans (1991).

For the Dirichlet case (δ = 0) there is likewise one zero of the determinant based
on the truncated coefficient matrix in (5.5), provided a/d is in the restricted domain
(0 < a/d < 0.677). (The latter limit is approximate.) Figure 7 and table 2 show these
results. The absence of a homogeneous solution and corresponding trapped mode
when a/d > 0.677 may be due to the proximity of the Dirichlet condition on the
wall and the Neumann condition on the cylinder. When the gap between these two
surfaces is small, the potential cannot change sufficiently rapidly to accomodate both
boundary conditions.

The trapped-mode wavenumbers for the Neumann case are just below the cut-off
Kd = π/2 for antisymmetric waves in a channel with Neumann boundary conditions
on the walls. Similarly, the wavenumbers for the Dirichlet case are slightly less
than the corresponding cut-off value Kd = π for antisymmetric waves in a (non-
physical) channel with Dirichlet boundary conditions. Since energy cannot radiate in
an antisymmetric wave at these wavenumbers, these modes are trapped.
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Figure 8. The wavenumber (solid) and determinant (dashed) as functions of the spacing parameter
(a/d) at the first Neumann nearly trapped mode (a) and the first Dirichlet nearly trapped mode (b).
The wavenumber and determinant correspond to the left and right ordinates respectively.

a/d N = ∞ N = 100 N = 50 N = 25 N = 10

(a) 0.1 1.569051 1.564620 1.561387 1.556078 1.535095
0.2 1.550230 1.545296 1.537992 1.527609 1.521618
0.3 1.504842 1.502960 1.497959 1.484591 1.455732
0.4 1.446547 1.445607 1.442858 1.433207 1.397390
0.5 1.391314 1.390708 1.388911 1.382053 1.346352
0.6 1.348300 1.347841 1.346468 1.341077 1.309548
0.7 1.322882 1.322488 1.321307 1.316623 1.287400
0.8 1.320789 1.320405 1.319249 1.314634 1.285175
0.9 1.351785 1.351331 1.349952 1.344432 1.310387

(b) 0.1 3.129605 3.123532 3.117117 3.109247 3.091453
0.2 3.055177 3.053704 3.049632 3.037179 2.998946
0.3 2.989795 2.989021 2.986778 2.978717 2.944624
0.4 2.999586 2.998898 2.997149 2.990171 2.962101
0.5 3.071722 3.070979 3.068774 3.063518 3.060920
0.6 3.132556 3.130060 3.129582 3.122363 3.113582

Table 3. Comparison of the wavenumber of the Neumann trapped mode (a) and the Dirichlet
trapped mode (b) for an infinite array (N = ∞) with the wavenumber at which the peak load occurs
within a finite array of N cylinders.

For an array which is large but finite, pure trapping is not possible. This conclusion
is based on the premise that energy radiation can occur in the three-dimensional far
field, and also on the numerical results in §§1 and 2 where large but finite loads
are found to occur at the peaks. Tables 3(a) and 3(b) compare the wavenumbers
described above for the Neumann and Dirichlet modes of an infinite array with the
wavenumbers at which the maximum peak load occurs on a finite array. Here the
maximum load is defined with respect to all elements of the array. As the number
of elements is increased the peak wavenumber clearly tends to the corresponding
value for an infinite array. The maximum load in each case is listed in tables 4(a)
and 4(b). For the Neumann mode the maximum load increases with a/d up to
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a/d N = 100 N = 50 N = 25 N = 10

(a) 0.1 1.51 1.31 1.20 1.11
0.2 5.55 2.98 1.94 1.42
0.3 12.71 7.33 4.04 1.98
0.4 24.08 12.11 6.80 2.89
0.5 35.36 18.25 8.92 4.04
0.6 46.47 22.86 12.20 5.26
0.7 57.97 29.09 14.54 6.33
0.8 65.44 32.79 16.35 7.00
0.9 63.96 30.27 16.24 6.63

(b) 0.1 3.55 2.22 1.66 1.32
0.2 14.66 8.14 5.14 2.34
0.3 12.28 8.18 6.09 3.33
0.4 6.19 5.17 4.74 2.96
0.5 5.45 4.99 3.84 2.18
0.6 3.07 2.10 1.83 1.65

Table 4. The maximum in-line force experienced by some cylinder in the array at the
wavenumbers listed in (a) table 3(a) and (b) table 3(b).

approximately a/d = 0.8, and decreases slightly above that point. For the Dirichlet
mode the maximum occurs at much smaller values of a/d. The same distinction is
apparent in figure 1. For both modes the maximum load is a monotonic increasing
function of the number (N) of cylinders in the array. Except for cases where the peak
load is relatively small it appears that this load is proportional to N.

The possibility of higher-order trapped modes at wavenumbers Kd > π is suggested
by the numerical results shown in figure 1. This leads to the question of whether or
not non-trivial homogeneous solutions of the linear system (5.1) exist for Kd > π.
The analysis is more complicated in this regime since the real parts of the Schlömilch
series include, in addition to (5.2) and (5.3), additional components associated with
the imaginary terms in (A8) and (A9). For this reason the reduction of (5.1) to a
real system is not possible. Numerical computations confirm that the modulus of the
complex determinant is very small but non-zero, at wavenumbers corresponding to
the higher-order peak loads of a finite array. The first higher-order wavenumbers,
where the modulus of the determinant is a minimum, are shown in figures 8(a) and
8(b). Also shown are the corresponding values of the modulus of the determinant.
From the latter results it is apparent that the magnitude of the higher-order peak
loads is very sensitive to a/d.

6. Conclusions
A connection has been established between the existence of trapped waves in

a channel and large loads acting on the elements of a long array in waves from
arbitrary incidence angles. While seemingly unrelated from the physical standpoint,
except in waves which are incident upon the array from abeam (β = π/2), these two
problems share the same homogeneous solutions under more general circumstances.
These homogeneous solutions exist at certain eigenvalues of the non-dimensional
wavenumber Kd which depend on the ratio a/d between the cylinder diameter 2a
and the distance 2d between the channel walls or the corresponding distance between
adjacent cylinders in the array.
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For an array which is large but finite, there are no homogeneous solutions in the
strict sense, but the response in the vicinity of these wavenumbers is nearly resonant.
The numerical results suggest that the peak magnitude of the load on each element
increases in proportion to the total number of elements in the array. For the array
with 100 cylinders the maximum load which is experienced by any cylinder in the
array is 35 times the load at the same wavenumber acting on a single isolated cylinder.

The analysis here has focused on the simplest case of circular cylinders which
extend vertically throughout the fluid domain from the bottom to the free surface.
However the existence of trapped modes and resonant peaks can be anticipated for
other types of bodies, and the essential geometrical feature is not the body shape per
se but the periodicity of the array. Results similar to those in figure 1 are presented
for an array of truncated cylinders by Lee et al. (1996).

The occurrence of these high loads at critical wavenumbers might have serious
practical consequences for very large periodic structures, such as the proposed design
for the Øresund Bridge between Denmark and Sweden. However the bandwidth
of the peak loads is quite narrow, and it appears from the numerical results that
the integrated effects in a continuous spectrum are not severe. This is apparent
qualitatively from figure 1, and computations for larger arrays indicate that the
bandwidth is inversely proportional to the magnitude of the peaks. Thus the spectral
energy from these loads appears to be more-or-less independent of the number of
elements in the array.

Another obvious practical consideration is that viscous damping and nonlinear
effects would substantially reduce the large-amplitude motions of the free surface and
associated peak loads.

The multiple peaks illustrated in figure 1 are associated not only with the Neumann
mode which has been established by Callan et al. (1991) for a cylinder in a channel
with rigid walls, but also with a corresonding Dirichlet mode corresponding to a
trapped wave in a non-physical channel with zero values of the potential on the walls.
However the Dirichlet mode only exists if the cylinder diameter 2a is less than 0.677
times the channel width or spacing between adjacent cylinder axes. Also present are
several smaller peaks at higher wavenumbers. These correspond to weakly damped
modes where the radiation is small but non-zero, as indicated by non-vanishing but
very small values of the determinant for the corresponding linear system of equations
studied in §5.

These different critical modes are closely related to the ‘Parker modes’ of aerody-
namic resonance, generally associated with a cascade of aerofoils (or flat plates) in
a wind tunnel. For such a geometry Parker (1966, 1967) showed that four different
resonant modes exist with nodes (Dirichlet) or anti-nodes (Neumann) on the bound-
aries midway between the plates, and also on the symmetry axis normal to the flat
plates at their mid-chord points. For the circular cylinder we find only the two modes
which are symmetrical about the plane joining the axes. This is consistent with the
conclusion of Callan et al. (1991), that there is no trapped mode for the circular
cylinder antisymmetric about the latter plane, although such modes are shown to
exist for bodies which are elongated in the direction of the channel.

As noted in the Introduction, Ohkusu (1982) has considered the reflection and
transmission of waves past one or two circular cylinders situated on the centreplane
in a channel. Sharp peaks are noted for the local wave elevation, particularly for
the case of two cylinders. However these peaks occur in the vicinity of Ka = 1.25,
and since a/d = 2/5.7 = 0.351 it follows that Kd = 3.56. This is substantially higher
than the (Neumann) trapped mode which would occur near Kd = 1.47 for a single
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cylinder. Another difference in Ohkusu’s results is that the peaked response exists
on the channel centreline, as well as on the walls, and hence his phenomenon is not
associated with a strictly antisymmetric mode analogous to the trapped waves which
vanish on the centreline. We have not looked for modes which are symmetric about
this line since these do not affect the loads on the cylinders.

In the case of head-sea diffraction (β = 0) the approximations for a large array
introduced in §4 are not valid. In particular, under the assumption that the phase
of the motion at each cylinder is correlated with the incident wave (δ = 2Kd), the
first inner sum in (4.5) is singular when the upper limit is replaced by ∞, and it is
necessary to reconsider the analysis assuming the number of elements is large but
finite. From a more physical standpoint, the scattering effects from a large number
of up-wave elements (j < k) are cumulative due to the phase correlation of their
radiated waves on the kth cylinder.

The emphasis here has been on large arrays, but it is important from the standpoint
of applications to note that tension-leg platforms with only two columns in line
experience their maximum horizontal loads at wavelengths which are slightly longer
than the spacing between the column axes. A common explanation for this peak
load is based on the elementary concept of phase correlation between the incident
waves and the two columns, but the slight shift to a longer wavelength coincides with
the wavenumber of the first Dirichlet trapped mode. Moreover the amplification of
this peak load is substantially greater than one would expect from simple arguments.
Thus it appears that the trapped-wave analogy has an important application even in
this relatively short array. However for a typical platform with a rectangular array
of four columns the interactions between all four elements may be important, as
suggested by the work of Evans & Porter (1997).

The authors acknowledge several stimulating discussions with Professor D. V. Evans
and Dr R. Porter. This work was conducted under a Joint Industry Project sponsored
by the Chevron Petroleum Technology Company, David Taylor Model Basin, Exxon
Production Research, Mobil Oil Company, Norsk Hydro, Offshore Technology Re-
search Center, Petrobrás, Saga Petroleum, Shell Development Company, Statoil, and
Det Norske Veritas Research.

Appendix. The Schlömilch series
For the Dirichlet and Neumann cases where the relative phase δ is equal to 0 or π,

the series which must be evaluated in (4.6) are

Hν(2Kd, 0) = 2

∞∑
j=1

Hν

(
2jKd

)
(A 1)

and

Hν(2Kd, π) = 2

∞∑
j=1

(−1)jHν

(
2jKd

)
, (A 2)

respectively. Since the even and odd terms in (A 2) can be summed separately, it
follows that

Hν(2Kd, π) = −Hν(2Kd, 0) + 2Hν(4Kd, 0), (A 3)
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and thus it suffices to develop appropriate algorithms for the function defined by (A 1).
We are concerned only with the cases where the index ν is an even integer or zero.

General algorithms for evaluating these sums are derived by Twersky (1961), but it
is simpler to follow the subsequent work of Miles (1983, Appendix A), starting with
the definitions

Sν(z) = 2

∞∑
j=1

Kν(jz) = πiν+1

∞∑
j=1

Hν(j iz), (A 4)

or

Hν(2Kd, 0) =
2

π
i−ν−1Sν(−i2Kd). (A 5)

Using the formulae given by Miles, and making the substitution Kd = πx,

H0(2πx, 0) = −(2i/π)S0(−2iπx)

= (1/πx)− 1− (2i/π)
[
log 1

2
x+ γ + F 0(x)

]
(A 6)

and

H2n(2πx, 0) = −(2i/π)(−1)nS2n(−2iπx)

= (1/πx) + (i/π)
[1

n
+

n∑
m=1

(−1)m
22m(n+ m− 1)!B2m

(2m)! (n− m)!
x−2m

−2(−1)nF 2n(x)
]
. (A 7)

Here B2m are the Bernoulli numbers and (with a convention different from Miles)
γ = 0.577... is Euler’s constant. The functions F n(x) are defined by the infinite series

F 0(x) =

∞∑
m=1

[
(m2 − x2)−1/2 − m−1

]
, (A 8)

F 2n(x) =

∞∑
m=1

[
m− (m2 − x2)1/2

]2n
x2n(m2 − x2)1/2

. (A 9)

For Kd < π in the Dirichlet case, and Kd < π/2 in the Neumann case, x < 1 and
the functions F n are real. This accounts for the simple results (5.2) and (5.3), leading
to the conclusion that the coefficients in (5.5) are real.

For x > 1 the appropriate branch of the square root in (A 8) and (A 9) can be
determined by noting that (A 4) is analytic for Re(z) > 0; thus, as z approaches the
negative imaginary axis, the appropriate value of the square root is[

m2 + (z/2π)2
]1/2 → [

m2 − x2
]1/2

(0 < x < m), (A 10)

[
m2 + (z/2π)2

]1/2 → −i
[
x2 − m2

]1/2
(x > m). (A 11)

With this precaution equations (A 8) and (A 9) can be used for all non-integer values
of x. For x > 1 the terms with m < x are complex, contributing to both the real and
imaginary parts of (A 1).

For large m the terms in (A 8) and (A 9) are asymptotic to 1
2
(x2/m3) and 1

2
(xn/mn+1),
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respectively. For F 0 and F 2 the convergence can be accelerated by subtracting the
corresponding asymptotic component from each term, and adding to this modified
series the product of the Riemann zeta function ζ(3) and the factor 1

2
x2 or 1

4
x2,

respectively. The resulting modified series, and the unmodified series for n > 4,
converge sufficiently rapidly so that truncation is practical. (In the program developed
for this purpose an absolute tolerance of 10−14 is used to test for convergence of the
modified series for ν = 0; the same number of terms are included in the series for
ν > 2, which converge more rapidly.)

When x tends to an integer M (A 8) and (A 9) are dominated by the singular term
m = M. For the series (A 1) it follows that, if Kd/π = x is close to an integer M,

H2n(2Kd, 0) ∼ −2i(−1)n
[
(πM)2 − (Kd)2

]−1/2
. (A 12)

For (A 2) the last term in (A 3) is singular when Kd/π = x→M − 1
2
, hence

H2n(2Kd, π) ∼ −2i(−1)n
[
π2(M − 1

2
)2 − (Kd)2

]−1/2
(A 13)

When Kd/π → M, the two singularities cancel in (A 3), with the result that (A 2) is
finite.
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