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1. Introduction

A quadratic polynomial differential system is a system of the form

ẋ = P (x, y), ẏ = Q(x, y),

where P and Q are polynomials in the variables x and y, and the maximum of the
degrees of P and Q is two.

The quadratic polynomial differential systems and their applications have been
studied intensively these last 30 years, see for instance the exhaustive bibliography
about these systems in the books of Reyn [40] and Ye Yanqian [48]. More concretely,
classes of quadratic systems that have been studied are: homogeneous (see [13,
34,36]), bounded (see [11,16,19]), having a star nodal point (see [6]), chordal
(see [22,23]), with a weak focus of second or third order (see [4,5,29,32]), with
four infinite critical points and one invariant straight line (see [42]), Hamiltonian
(see [2]), gradient (see [10]), having a focus and one antisaddle (see [3]), integrable
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Phase portraits of the quadratic polynomial Liénard differential systems 203

quadratic systems using Carleman and Painlevé tools (see [24]), having a centre
(see [32,45]), . . .

On the other hand a polynomial Liénard differential system is a system of the
form

ẋ = y, ẏ = f(x)y + g(x),

where f and g are polynomials in the variable x.
The polynomial Liénard differential systems and their applications also have been

analysed by many authors these recent years. Thus some authors studied their limit
cycles (see for instance [14,15,17,21,26,27,39,41]), or their algebraic limit cycles
(see [28,31,37]), or their invariant algebraic curves (see [7,8,49]), or their canard
limit cycles (see [43]), or the shape of their limit cycles (see [46]), or the period
function of their centres (see [47]), or their integrability (see [9,30]), or a kind of
a generalized Liénard system (see [18]).

Roughly speaking the Poincaré disc D
2 is the closed unit disc centred at the origin

of coordinates of R
2, where its interior is identified with R

2 and its boundary S
1 is

identified with the infinity of R
2, i.e. in the plane we can go to or come from infinity

in as many directions as points for the circle S
1. So a polynomial differential system

in R
2 (i.e. in the interior of D

2) can be extended analytically to the whole D
2. In

this way we can study the dynamics of the differential system in a neighbourhood
of infinity. For details on the Poincaré disc see § 3, and chapter 5 of [20].

Up to now the phase portraits in the Poincaré disc of the quadratic polynomial
Liénard differential systems have not been studied, their study is the goal of this
paper. More precisely, our objective is to classify the different topological phase
portraits in the Poincaré disc of the systems

ẋ = y, ẏ = (ax + b)y + cx2 + dx + e, (1.1)

where (x, y) ∈ R
2 are the variables and a, b, c, d, e are real parameters.

We denote by X = (y, (ax + b)y + cx2 + dx + e) the vector field defined by sys-
tem (1.1). We observe that since we are interested in the quadratic polynomial
Liénard differential systems we must assume that the parameters satisfy a2 + c2 �= 0
and a2 + b2 �= 0 in order to avoid the non-quadratic systems and in order to have
systems of Liénard type respectively. Moreover we need that c2 + d2 + e2 �= 0,
otherwise y = 0 is a straight line filled of equilibria and the system can be reduced
to a linear one.

Two phase portraits in the Poincaré disc D
2 are topologically equivalent if there

exists a homeomorphism h : D
2 → D

2 which sends orbits of one of the phase por-
traits into orbits of the other phase portrait, preserving or reversing the orientation
of all the orbits.

Our main result is the following one.

Theorem 1. A quadratic polynomial Liénard differential system (1.1) has a phase
portrait in the Poincaré disc topologically equivalent to one of the phase portraits
of figures 3, 4, 7, 9, 10, 11 and 12. That is, there are 17 different topological phase
portraits in the Poincaré disc for system (1.1).
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Table 1. Normal forms for system (1.1).

System (1.1) Normal form

(i) a �= 0 c �= 0 ẋ = y, ẏ = x2 + xy + Ax + By + C

(ii) a = 0, bc �= 0 ẋ = y, ẏ = x2 + y + Dx + E
(iii) ab �= 0, c = 0 ẋ = y, ẏ = xy + y + Gx + H
(iv) a �= 0, b = c = 0, d > 0 ẋ = y, ẏ = xy + x + I
(v) a �= 0, b = c = 0, d < 0 ẋ = y, ẏ = xy − x + I
(vi) a �= 0, b = c = d = 0, e �= 0 ẋ = y, ẏ = xy + 1

In order to prove theorem 1 we will make use of the normal forms of system (1.1)
in § 2, which simplify in somehow the envolved calculations. Afterthat in § 3 we anal-
yse the local phase portraits of the infinite singular points. Finally in § 4 we study
the local phase portraits of the finite singular points, and the proof of theorem 1 is
given in § 4.

For studying the local phase portraits at the finite and infinite singular points of
the compactified quadratic polynomial Liénard differential systems we use notations
and results presented in chapters 2, 3 and 5 of [20]. For classifying the global phase
portraits of the quadratic polynomial Liénard differential systems in the plane R

2

extended to infinity we follow the notations and results on Poincaré disc in chapter
5 in [20], and with the result due to Markus [33], Neumann [35] and Peixoto [38],
which guarantees that we only need to classify all the different configurations of
separatrices of the compactified quadratic polynomial Liénard differential systems,
in order to obtain their topologically different phase portraits in the Poincaré disc.

2. Normal forms

The next result will simplify the study of the phase portraits of system (1.1) in the
Poincaré disc.

Proposition 2. All systems (1.1) are topologically equivalent to one of the normal
forms (i)–(vi) in table 1, where A,B,C,D,E,G,H, and I are parameters.

Proof. Fixed α, β, γ �= 0, after the linear change of coordinate (x, y) �→ (αX, βY )
and the time rescaling t �→ γT , system (1.1) becomes

dX

dT
=

γβ

α
Y,

dY

dT
= c

γα2

β
X2 + aαγXY + d

αγ

β
X + bγY + e

γ

β
. (2.1)

We study six cases separately. In each case, we assume

γβ

α
= 1. (2.2)

Case (i): ac �= 0. After the above change of coordinate we can take (2.2),
cγα2/β = 1 and aαγ = 1. These conditions are satisfied if α = c/a2, β = c2/a3 and
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γ = a/c. System (2.1) becomes

dX

dT
= Y,

dY

dT
= X2 + XY + AX + BY + C,

where A = d/c2, B = ab/c and C = a4e/c3.
Case (ii): a = 0 and bc �= 0. Then we assume (2.2), cγα2/β = 1 and bγ = 1, and

the solution is α = b2/c, β = b3/c and γ = 1/b. System (2.1) becomes

dX

dT
= Y,

dY

dT
= X2 + DX + Y + E,

where D = dc/b5 and E = ec/b4.
Case (iii): ab �= 0 and c = 0. Then we assume (2.2), aαγ = 1 and bγ = 1. System

(2.1) becomes

dX

dT
= Y,

dY

dT
= XY + Y + GX + H,

where G = d/b2 and H = eb/a.
Case (iv): a �= 0, b = c = 0 and d > 0. Then we assume (2.2), aαγ = 1 and

dαγ/β = 1. System (2.1) becomes

dX

dT
= Y,

dY

dT
= XY + X + I,

where I = ±ae/d3/2.
Case (v): a �= 0, b = c = 0 and d < 0. Then we assume (2.2), aαγ = 1 and

dαγ/β = −1. System (2.1) becomes

dX

dT
= Y,

dY

dT
= XY − X + I,

where I = ±ae/|d|3/2.
Case (vi): a �= 0, b = c = d = 0 and e �= 0. Then we assume (2.2), aαγ = 1 and

eγ/β = 1. System (2.1) becomes

dX

dT
= Y,

dY

dT
= XY + 1.

This complete the proof of the proposition. �

3. Infinite singular points

In this section we study the infinite singular points of the quadratic polynomial
Liénard differential systems using the notation and results of chapter 5 in [20].

3.1. Infinite singular points in the local charts U1 and V1

From equation (5.2) in [20], we obtain that the expression of the Poincaré
compactification p(X ) of system (1.1) in the local chart U1 is

u̇ = c + au + dv + buv + ev2 − u2v,

v̇ = −uv2.
(3.1)
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Figure 1. Local phase portraits of the infinite singular points of the chart U1 and V1 in
the Poincaré disc.

Proposition 3. If a = 0 there is no infinite singular points in U1. If a �= 0 there
is a unique equilibrium point in U1 and another unique equilibrium point at V1 as
described in figure 1.

Proof. Taking v = 0 in (3.1), which correspond to the points of boundary S
1 of the

Poincaré disc, the infinite singular points are the solutions of the system

u̇ = au + c = 0, v̇ = 0. (3.2)

So, if a �= 0 at infinity there is a unique singular point, namely (u, 0) = (−c/a, 0).
When a = 0 there are no infinite singular points in the local chart U1 because
a2 + c2 �= 0.

At the singular point (−c/a, 0) the Jacobian matrix has trace a and determi-
nant 0. From § 1.5 in [20] we know that (−c/a, 0) is a semi-hyperbolic singular
point, and using theorem 2.19 in [20] we obtain that it is a saddle-node such that
when c > 0 it has in v > 0 the unstable parabolic sector, and in v < 0 there are
two hyperbolic sectors, recall that the infinity v = 0 is invariant. When c < 0 the
sectors of the saddle-node interchange their localization with respect the line of the
infinity.

Since the local phase portraits in the infinite singular points of the local chart V1

of the Poincaré sphere are the symmetric phase portrait with respect to the centre of
the sphere reversing the orientation of the orbits, we have that the infinite singular
point (−c/a, 0) in V1 when c > 0 has in v > 0 the two hyperbolic sectors, and in
v < 0 the parabolic sector. When c < 0 the sectors of the saddle-node interchange
their localization with respect the line of the infinity.

When c = 0 the origin is the unique infinite singular point and it is a semi-
hyperbolic singular point. Again, by theorem 2.19 of [20] we obtain that (0, 0) is
either a saddle if ad < 0, or an unstable node if ad > 0, or a saddle-node if d = 0
and e �= 0. �
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Figure 2. Local phase portraits of the infinite singular points of the origins of the chart
U2 and V2 in the Poincaré disc.

3.2. The origin of the local charts U2 and V2

Once we have studied the infinite singular points in the local charts U1 and V1,
it only remains to study if the origins of the local charts U2 and V2 are infinite
singular points.

Again using the results stated in [20], chapter 5, we obtain the expression of the
Poincaré compactification p(X ) of system (1.1) in the local chart U2, i.e.

u̇ = v − au2 − buv − cu3 − du2v − euv2,

v̇ = −auv − bv2 − cu2v − duv2 − ev3.
(3.3)

Clearly the origin (u, v) = (0, 0) is an infinite singular point of this system.

Proposition 4. The local phase portrait at the origin of U2 and V2 is described in
figure 2.

Proof. The Jacobian matrix of system (3.3) at the singular point (0, 0) has trace
and determinant equal to zero, but it is not the zero matrix. So according to the
definitions of § 1.5 in [20] the origin of system (3.3) is a nilpotent singular point,
and we can study its local phase portrait using theorem 3.5 of [20]. Doing that
we get that if a �= 0 then the local phase portrait at the origin is formed by two
sectors one elliptic and one hyperbolic, of course separating these two sectors we
can consider two parabolic sectors. When a = 0 we have that c �= 0, and then the
origin is a stable node if c > 0, and an unstable node if c < 0.

In order to know the position of the invariant straight line of the infinity v = 0
with respect to the elliptic and hyperbolic sectors when a �= 0, we need to do the
changes of variable known as blow up’s, see for more details chapter 3 of [20] or [1].
Doing such changes we get that the elliptic sector is in v > 0 and the hyperbolic
sector is in v < 0. Moreover there are no parabolic sectors in v < 0. �

In short we have completed the description of the local phase portraits at the
infinite singular points.

4. Finite singular points for each normal form

In this section we study the local behaviour of the finite singular points for each
normal form of system (1.1) presented in table 1. To analyse the local phase portraits
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Figure 3. Local and global phase portraits in the Poincaré disc of Case (i) when
A2 − 4C < 0.

Figure 4. Local phase portraits in the Poincaré disc of Case (i) when A2 − 4C = 0.

of every finite singular point we use the results of [20]. Furthermore, we aim to
obtain all the possible global phase portraits for each Poincaré disc with a different
configuration of all local phase portraits of finite and infinite singular points. In
order to get this we use the following important remark for all the six cases that
we have to analyse in this section.

Remark 5. For determining the possible global phase portraits from a local phase
portrait it is sufficient to consider all the possible α- and ω-limits of the separatrices
of the hyperbolic sectors of the correspondent local phase portrait.

Case (i). The system (1.1) is

ẋ = y, ẏ = x2 + xy + Ax + By + C. (4.1)

If A2 − 4C < 0 this system has no finite singular points. The local phase portrait
and the correspondent global phase portrait are shown in figure 3.

Assuming A2 − 4C � 0 the finite singular points of system (4.1) are p± = ((−A ±√
A2 − 4C)/2, 0), and the Jacobian matrix in each singular point has determinant

Δ± = ∓√
A2 − 4C and trace T± = B + (−A ±√

A2 − 4C)/2.
When A2 − 4C = 0 we get Δ = 0 and there is a unique singular point, that is,

p = (−A/2, 0) which is nilpotent if T = B − A/2 = 0, or semi-hyperbolic if T �= 0.
Applying theorem 2.19 of [20] in the semi-hyperbolic case we get that p is a saddle-
node. For the case nilpotent we apply theorem 3.5 of [20] and conclude that p
is a cusp. These local phase portraits are shown in figure 5. Using remark 5 the
correspondent global phase portraits are shown in figure 5.
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Figure 5. Global phase portraits in the Poincaré disc of Case (i) when A2 − 4C = 0.

Figure 6. Local Phase portraits in the Poincaré disc of Case (i) when A2 − 4C > 0.

When A2 − 4C > 0 there are two singular points, that is, p±. Since Δ+ < 0 we
have that p+ is a saddle, and p− is either a focus, or a node. If T 2

− − 4Δ− < 0 then
p− is either a stable focus if T− < 0, or an unstable focus if T− > 0. If T 2

− − 4Δ− > 0
then p− is either a stable node if T− < 0, or an unstable node if T− > 0. See these
local phase portraits in figure 6. Using remark 5 it is easy to check that there are
only six possible global phase portraits of figure 7. And in table 2 we check that
the six phase portraits of figure 7 are realizable.

In all the above phase portraits there exists at most one limit cycle for the Liénard
differential system that we are analysing, this is a known result which can be found
in [12].

Hopf Bifurcation: In Case (i) with A2 − 4C > 0 and T− = 0 as the singular
point p− is a weak focus it, eventually, could be a centre, but this is not the
case. In order to prove this we compute the eigenvalues of the Jacobian matrix of
system (4.1) at the singular point p−. The real part of the eigenvalues is −A +
2B − α, where α2 = A2 − 4C, and we assume α > 0 to facilitate the calculations.
The possible situation where the weak focus p− could be a centre is when the real
part of its eigenvalues is zero, i.e. α = −A + 2B. With some effort we can check
that the singular point p− is always an unstable focus, and never a centre, because
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Figure 7. Global phase portraits in the Poincaré disc of Case (i) when A2 − 4C > 0. In
(a) T− � 0, in (b), and in (c), (d), (e) and (f) T− < 0.

Table 2. Parameters of Case (i) realizing all the possible phase portraits in the Poincaré
disc. Here B1 ∈ (2.3, 2.4) and B2 ∈ (1.6, 1.7).

A2 − 4C > 0 A = 3, B � (3 +
√

5)/2, C = 1 Figure 7(a)

A = 0, B1 < B < (3 +
√

5)/2, C = −3/2 Figure 7(b)
B = B1 Figure 7(c)
A = 3, B2 < B < B1, C = 1 Figure 7(d)
B = B2 Figure 7(e)
A = 3, B < B2, C = 1 Figure 7(f)

A2 − 4C = 0 B − A/2 > 0 A = −1, B = 1/2, C = 1/4 Figure 5(a)
B − A/2 = 0 A = 2, B = 1, C = 1 Figure 5(b)
B − A/2 < 0 A = 3, B = 1, C = 9/4 Figure 5(c)

A∗ ∈ (2, 5), B = 1, C = A∗/4 Figure 5(d)
A = 5, B = 1, C = 25/4 Figure 5(e)

A2 − 4C < 0 A = 2, B = 1, C = 2 Figure 3

the first non-zero Lyapunov constant is equal π/4β5 > 0, where β > 0 and is given
by β2 = 2B − A. The result proved in [12] ensures that the Liénard differential
system that we are analysing has at most one periodic orbit. Using a result proved
in [25] (theorem 3.3), when B1 = (A +

√
A2 − 4C)/2 we have a Hopf bifurcation,

and an unstable limit cycle bifurcates from p− when B < B1 (see figure 7(b)). This
limit cycle ends in a loop formed with the sadle p+ and a homoclinic orbit to it
(see figure 7(c)).

Case (ii). Then system (1.1) becomes

ẋ = y, ẏ = x2 + y + Dx + E. (4.2)
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Figure 8. Local phase portraits in the Poincaré disc of Case (ii).

Figure 9. Global phase portraits in the Poincaré disc of Case (ii).

The finite singular points of system (4.2) are p± = ((−D ±√
D2 − 4E)/2, 0), and

the Jacobian matrix at p± is

J |p± =
(

0 1
±√

D2 − 4E 1

)
,

which has trace T = 1 and determinant Δ =
√

D2 − 4E for p−, and Δ =
−√

D2 − 4E for p+. First we observe the necessary condition D2 − 4E > 0 for
the existence of the equilibrium points p±. If D2 − 4E = 0 we get a unique
singular point which is semi-hyperbolic. Applying theorem 2.19 of [20] at this
semi-hyperbolic singular point we get that this singularity is a saddle-node.

If D2 − 4E > 0 we obtain two singular points, i.e. p±. In this case p+ is a saddle
because T = 1 and Δ = −√

D2 − 4E < 0, and the other equilibrium point p− is
an unstable node if 0 < D2 − 4E � 1/16, or an unstable focus if D2 − 4E > 1/16.
Since the divergence of system (4.2) is constant equal to 1, this system cannot
have periodic orbits or homoclinic loops (by Bendixson theorem, see for instance
theorem 7.10 of [17]). Then from the local phase portraits of figure 8 we obtain the
correspondent global phase portraits as shown in figure 9.

All these global phase portraits in figure 9 are achievable with the respective
parameters shown in table 3.

Case (iii). Then the correspondent normal form is

ẋ = y, ẏ = xy + y + Gx + H. (4.3)

If G = 0 there is no finite singular point for system (4.3). And, if G �= 0, this system
has a unique finite singular point (−H/G, 0).
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Table 3. Parameters of Case (ii).

D2 − 4E > 0 D = 3, E = 2 Figure 9(a)

D2 − 4E = 0 D = 3, E = 9/4 Figure 9(b)

D2 − 4E < 0 D = 3, E = 3 Figure 9(c)

Figure 10. Local and global phase portraits in the Poincaré disc of Case (iii) when G > 0.

Consider G �= 0, then the Jacobian matrix at this singular point (−H/G, 0) is

J |(−H/G,0) =
(

0 1
G 1 − H/G

)
.

Then J |(−H/G,0) has trace T = 1 − H/G and determinant Δ = −G. Hence, if G > 0
then Δ < 0 and the singular point (−H/G, 0) is a saddle. When G < 0 we get Δ > 0
and in this case we have to analyse two possibilities. More precisely we can have

(i) T 2 � 4Δ ⇔ H2 − 2GH + G2 + 4G3 � 0,

(ii) 4Δ > T 2 > 0 ⇔ H2 − 2GH + G2 + 4G3 < 0.

In Case (i) the singular point is a node and in Case (ii) the singular point is a focus.
In both cases the singular point is stable if H > G and unstable if H < G.

For all these local phase portraits and the correspondent global phase portraits
see figure 10 when G > 0, figure 11 when G < 0 and when G = 0 the local and
the correspondent global phase portrait are topologically equivalent to those ones
of figure 3. It is easy to check that the quadratic differential system (4.3) has no
invariant straight lines. So by a result of Sotomayor and Paterlini [44] it follows
that the two finite separatrices of the saddles at the origins of the local charts U1

and V1 of figure 11(a) cannot connect, otherwise the connection must be through
an invariant straight line. Therefore the global phase portrait of figure 11(b) is the
unique possible. All these global phase portraits are achievable with the respective
parameters shown in table 4.

Case (iv). The correspondent normal form is

ẋ = y, ẏ = xy + x + I, (4.4)
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Figure 11. Local and global phase portraits in the Poincaré disc of Case (iii) when G < 0
and G < H. If G > H then the phase portraits are the same but reversing the orientation
of all their orbits.

Table 4. Parameters of Case (iii).

G > 0 G = 1, H = 1 Figure 10
G = 0 G = 0, H = 1 Figure 3(b)
G < 0 G = −1, H = 0 Figure 11

which has a unique finite singular point (−I, 0). The Jacobian matrix at this singular
point is

J |(−I,0) =
(

0 1
1 −I

)
.

Since J |(−I,0) has trace T = −I and determinant Δ = −1 we conclude that the
singular point (−I, 0) is a saddle. This local phase portrait and the correspon-
dent global phase portrait are topologically equivalent to those ones presented in
figure 10.

Case (v). The correspondent normal form is

ẋ = y, ẏ = xy − x + I, (4.5)

which has a unique finite singular point (I, 0). The Jacobian matrix at this singular
point is

J |(I,0) =
(

0 1
−1 I

)
.

which has trace T = I and determinant Δ = 1. If I = 0 then the singular point
(0, 0) is a centre non-hyperbolic because in this case the system is reversible with
involution given by (x, y, t) �→ (−x, y,−t). The local and global phase portraits are
shown in figure 12. If I �= 0 there exist two possibilities

(i) T 2 � 4Δ > 0 ⇔ I2 � 4 > 0 ⇔ I � −2 or I � 2,

(ii) 4Δ > T 2 > 0 ⇔ 4 > I2 ⇔ −2 < I < 2.

In Case (i) the singular point (I, 0) is a stable node if I � −2, or an unstable node
if I � 2. In Case (ii) the singular point (I, 0) is a stable focus if −2 < I < 0, or an
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Figure 12. Local and global phase portraits in the Poincaré disc of Case (v) when I = 0.

unstable focus if 0 < I < 2. These local phase portraits and the correspondent global
phase portraits are topologically equivalent to those ones presented at figure 11.

Case (vi). The correspondent normal form is

ẋ = y, ẏ = xy + 1, (4.6)

which has no finite singular point. This local phase portrait and the correspondent
global phase portrait are topologically equivalent to those ones of figure 3.
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