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Abstract. This paper presents an analysis of the relativistic self-focusing of a
rippled Gaussian laser beam in a plasma. Considering the nonlinearity as arising
owing to relativistic variation of mass, and following the WKB and paraxial-
ray approximations, the phenomenon of self-focusing of rippled laser beams is
studied for arbitrary magnitude of nonlinearity. Pandey et al. [Phys. Fluids 82,
1221 (1990)] have shown that a small ripple on the axis of the main beam grows
very rapidly with distance of propagation as compared with the self-focusing of
the main beam. Based on this analogy, we have analysed relativistic self-
focusing of rippled beams in plasmas. The relativistic intensities with saturation
effects of nonlinearity allow the nonlinear refractive index in the paraxial
regime to have a slower radial dependence, and thus the ripple extracts
relatively less energy from its neighbourhood.

1. Introduction

New short-pulse laser technology (Main and Mourou 1988; Patterson et al.
1991) has recently made possible the production of extremely intense laser
sources at multiterawatt level. The focused intensities obtained are very high,
of the order of 10") W cm−#, and further developments are aimed at intensities
exceeding 10#! W cm−#. The development of such high-intensity lasers has lead
to the possibility of observing relativistic effects when a laser pulse interacts
with a fully ionized plasma. The propagation of a high-intensity laser pulse
through a fully ionized plasma is a basic physics problem, and is of great
interest with regard to practical applications for compact X-ray lasers (see
Sprangle and Esarey 1992, and references therein), laser–plasma-based particle
accelerators (Burnett and Corkum 1989) and the fast ignitor scheme for studies
of inertial-confinement fusion (ICF) (Tabak et al. 1994). The relativistic
filamentation instability can lead to modification of the propagating pulse by
spatially modulating the laser intensity transverse to the direction of
propagation. The relativistic filamentation and self-focusing instabilities have
been studied for a number of years, and are important because one needs to
understand laser propagation at high intensities before one can interpret the
results from other nonlinear phenomena (Sprangle and Esarey 1991; Monot
1995).

A laser beam propagating in an underdense plasma with a frequency ω
p
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smaller than the laser frequency ω undergoes relativistic self-focusing as soon as
its total power P exceeds a critical value P

cr
E 17(ω}ω

p
)# GW. This self-focusing

is due to the relativistic mass increase of plasma electrons and the
ponderomotive expulsion of electrons from the pulse region, creating a density
depression. Both effects lead to a local decrease in the plasma frequency and an
increase in the refractive index. The medium then acts as a positive lens.
However, the self-focusing due to the density depression occurs on a longer time
scale than the self-focusing due to the relativistic mass increase. The analysis
presented here will be concerned only with relativistic self-focusing on a time
scale sufficiently short that the plasma density profile does not evolve
significantly under the influence of the laser beam. This implies that the pulse
length τ

R
of the laser beam must be short compared with τ

S
¯ r}C

s
, the time

scale for the density depression to occur (here r is the laser beam radius and C
s

is the ion sound speed). An analysis in terms of the envelope and paraxial
approximations shows that, depending on the laser pulse and plasma
parameters, either self-focusing of the whole pulse or pulse filamentation occurs
(Asthana et al. 1994; Borisov et al. 1995).

In an experimental situation where intense laser or electromagnetic beams
travelling through nonlinear self-focusing media result in multiple filament
formation, there is a one-to-one correspondence between filaments and intensity
spikes riding with the incident laser beam, as studied earlier by Abbi et al.
(1985). The origin of the filamentation instability may be attributed to small-
scale density perturbations (resulting from quasineutrality) or small-scale
intensity spikes associated with the main beam. The perturbations grows at the
cost of the main beam, and this is detrimental to laser-induced fusion. In laser
plasma experiments, the filamentary structure created in an underdense plasma
undergoes self-focusing. The self-focused filaments spoil the symmetry of the
energy deposition as well as triggering parametric instabilities that may lead to
back- and side-scattering of the laser beam. Thus direct and indirect
experimental evidence reveals that an apparently smooth laser beam has
intensity spikes that may lead to distortion of self-focusing in nonlinear media
(Kothari and Kobayashi 1983; Pandey et al. 1990).

In view of the ongoing development of ultra-intense short-pulse lasers, we
present here an analysis of the relativistic self-focusing of a Gaussian laser beam
with a ring ripple superimposed on it for arbitrary large nonlinearity. In Sec.
2, the general equations for the self-focusing are presented. In Sec. 3, an
expression for the nonlinearity is given, and an equation governing the
variation of the beam width parameter with distance of propagation, the self-
trapping condition and the critical power are presented. Results and a
discussion are given in Sec. 4, supported by numerical analysis.

2. General equations for self-focusing of the beam

Consider the propagation of a Gaussian laser beam with a ring ripple
superimposed on it in a homogeneous collisionless plasma along the z direction.
The electric field at the fixed plane z¯ 0 of the main beam may be represented
by

E
!
r
z=!

¯E
!!

exp0® r#

2r#
!

1 exp(iωt), (1a)
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where ω is the angular frequency of the laser beam, r is the radial coordinate of
the cylindrical coordinate system and r

!
is the initial width of the main beam.

The electric field of the ring superimposed on the main beam may be expressed
as

E
"
r
z=!

¯E
"!

r

r
"!

exp0® r#

2r#
"!

1 exp[(iωt®Φ
p
)], (1b)

where Φ
p

is the phase difference between the main beam and the ripple ; the
maximum field of the ring is at r¯ r

"!
. The total electric vector of the beam can

thus be written as E¯E
!
­E

"
. The intensity distribution of the rippled

Gaussian laser beam is thus given by

E[E* r
z=!

¯E#
!!

exp0®r#

r#
!

1 (1­2
E

"!

E
!!

r

r
"!

cosΦ
p
exp9r#2 0

1

r#
!

®
1

r#
"!

1:
­

E#
"!

E#
!!

0 r

r
"!

1# exp9r#01r#
!

®
1

r#
"!

1:* . (2)

The wave equation governing the electric vector of the beam in a plasma with
dielectric constant ε can be written as

~#E­
ω#

c#
εE¯ 0. (3)

In writing (3), the term ¡(¡[E) has been neglected, which is justified when
(c#}ω#) r(1}ε)~# ln ε r' 1. The nonlinear dielectric constant of the medium for
arbitrary large nonlinearity is (Asthana et al. 1994)

ε(©E[Eª)¯ ε
!
­Φ(©E[Eª). (4)

In the paraxial-ray approximation, one generally expands Φ around ΦE 0.
However, with such an expansion, one can study only those cases where Φ'
ε
!
. To study self-focusing for arbitrary large Φ, the nonlinear dielectric constant

of the medium at r¯ 0 is needed.

ε(©E[Eª)¯ ε!
!
( f )­ψ( f ), (5)

where

ε!
!
( f )¯ ε

!
­Φ0-k(0)E#

!!

k( f2f )#.1 ,

ψ( f )¯Φ(E[Eª)®Φ0-k(0)E#
!!

k( f )2f #.1 .
Here f is the dimensionless beam-width parameter, defined below in (10), and
k is the propagation constant, defined below in (6). Using the WKB
approximation and following Akhmanov et al. (1968) and Sodha et al. (1974),
one can write

E(r, z)¯A(r, z) 9k(0)

k(z):
"/#

exp9®i& k( f ) dz: , (6)

where

k(z)¯
ω

c
[ε!

!
( f )]"/#, k(0)¯

ω

c
[ε!

!
( f¯ 1)]"/#.
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Substituting for E and ε in (3), one obtains

®2ik( f )
¦A

¦z
­~#A­

ω#

c#
Ψ( f )A¯ 0. (7)

Putting

A(r, z)¯A
!
(r, z) exp9®i& k( f ) dS:

in (7) and separating real and imaginary parts, we find

2
¦S

¦z«
­0¦S

¦r1
#

­
ω#

c#

ε
"
( f )

k#( f )
¯

1

k#A
!

0¦#A
!

¦r#
­

1

r

¦A
!

¦r 1 , (8)

¦A#
!

¦z
­

¦S

¦r

¦A#
!

¦r
­A#

! 0¦#S

¦r#
­

1

r

¦S

¦r1¯ 0. (9)

The solutions of (8) and (9) are

A#
!
¯

E#
!!

f #
exp0® r#

r#
!
f #1 (1­

2E
"!

E
!!

r

r
"!

f
cosφ

p
exp0 r#

2r#
!
f # 01®

r#
!

r#
"!

1:
­0E"!

E
!!

r
!

r
"!

f1
#

exp9 r#

2r#
!
f # 01®

r#
!

r#
"!

1:* , (10a)

S¯ "
#
r#β(z)­η(z), (10b)

β¯
1

f

df

dz
. (10c)

It should be noted that β is the inverse radius of curvature of the front and
r
!
f(z) is the width of the main beam. The intensity profile of the beam inside

the plasma can be put in the form

E[E*¯ I
!
(r, z)­I

"
(r, z), (11)

where

I
!
(r, z)¯

k(0)E#
!!

k(z)f #
exp0® r

r#
!
f #1 ,

I
"
(r, z)¯

k(0)E#
!!

k( f )f # (
2E

"!

E
!!

r

r
"!

f
cosφ

p
exp9® r#

2r#
!
f # 01­

r#
!

r#
"!

1:
­0E"!

E
!!

r

r
"!

f1
#

exp0® r#

r#
"!

f #1* .
The maximum of I

"
occurs at r¯ r

max
, where

r
max

r
!
f(z)

¯

A

B

r
!

r
"!

­2
E

"!

E
!!

cosφ
p

0 r#
!

r#
"!

®11 r#
!

r#
"!

­03­
r#
!

r#
"!

1E
!!

E
"!

cosφ
p

C

D

"/#

. (12)

Equations (8) and (9), together with (10)–(12), can now be used to study the
self-focusing of the beam for relativistic nonlinearity.
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3. Nonlinear dielectric constant: relativistic nonlinearity

3.1. Self-focusing equation

Following Asthana et al. (1994), the effective dielectric constant in a collisionless
plasma for relativistic nonlinearity can be written as

ε¯ ε
!
­φ(©E[Eª), (13a)

where ε
!
¯ 1®ω#

p
}ω# is the linear part of the dielectric constant and ω

p
¯

(4πN
!
e#}m)"/# is the plasma frequency in the absence of the beam. The elec-

tron density and charge are N
!

and e respectively. The nonlinear term due to
relativistic variation of mass for a circularly polarized wave is

φ©E[Eª)¯
ω#
p

ω#

²1®[(1­"
#
αEE*)C

"
]−"/#´, (13b)

with

C
"
¯ 1­

e#EE*

16λ#m#
!
ω#c#

, α¯
e#

m#
!
ω#c#

.

Substitution for E from (6), and S, A
!
and β from (10) into (13), and following

the paraxial-ray approximation, φ can be written as (correct to terms in r#)

φ0k(0)E#
!!

k( f )2f # 01­
E

"!
r
!

E
!!

r
"!

cosφ
p11¯

ω#
p

ω#
(1®91­

k(0)αE#
!!

k( f )2f # 01­
E

"!
r
!

E
!!

r
"!

cosφ
p1:

¬91­
k(0)E#

!!

k( f )16λ#2f # 01­
E

"!
r
!

E
!!

r
"!

cosφ
p1:−"/#* .

(14)

Substituting for S and φ in (8), using the paraxial-ray approximation (i.e.
(r}r

!
f )%' 1), equating the coefficients of r# on both sides of the resulting equa-

tion, and substituting for β, one obtains

d#f

dz#
¯

1

k#( f )r%
!
f $

®0ωp
r
!

c 1# k(0)αE#
!!

k( f )4r%
!
f $k#

¬
1­

1

4λ#

k(0)

k( f )

αE#
!

2f #
X

91­
k(0)

k( f )

αE#
!!

2f #
X01­

k(0)

k( f )

1

16λ#

αE#
!!

2f #
X1:$/#

XY, (15a)

with

X¯ 1­
E

"!
r
!

E
!!

r
"!

cosφ
p
, (15b)

Y¯ 1®
E

"!
r
!

E
!!

r
"!

cosφ
p 91®

1

2 0
r#
!

r
"!

­11:®0E
"!

r
!

E
!!

r
"!

1#. (15c)

3.2. Self-trapping and critical power

For an initial plane wave front of the beam, the initial conditions are
f(z¯ 0)¯ 1 and (df}dz)r

z=!
¯ 0. When the two terms on the right-hand side of

(15) cancel each other at z¯ 0, d#f}dz#¯ 0. If one further considers a parallel
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beam at z¯ 0 then df}dz¯ 0 at z¯ 0; thus, if f¯ 1 at z¯ 0, it remains so for all
values of z (in other words, the beam propagates without convergence or
divergence). The critical power for self-trapping of a rippled Gaussian laser
beam is therefore

0ωp
r
!

c 1#¯
291­

αE#
!!cr

2
X01­

1

16λ#

αE#
!!cr

2
X1:$/#

01­
1

4λ#

αE#
!!cr

2
X1αE#

!!cr

2
XY

. (16)

The corresponding critical beam power is

P
cr

¯
c

8π& ε"/#E#
!!cr

2πr dr

¯
cr#

!
E#

!!cr

8 (1®
ω#
p

ω#
91­

αE#
!!cr

2
X01­

1

16λ#

αE#
!!cr

2
X1:−"/#*"/#W. (17)

4. Results and discussion

Equation (15a) is the fundamental equation for determining the focusing}
defocusing of a rippled Gaussian laser beam in a plasma. The first term on the
right-hand side represents the diffraction phenomenon of the ripple. The rather
complicated second term, which arises from the relativistic nonlinearity,
describes nonlinear refraction. The relative magnitude of these terms determine
the focusing}defocusing behaviour of the rippled beam. Equation (16) yields
the self-trapping condition, with the corresponding critical power of the beam
given by (17). Furthermore, (16) has two roots : E

!!cr"
(corresponding to a critical

power P
cr"

) and E
!!cr#

(corresponding to a critical power P
cr#

) (E
!!cr"

!E
!!cr#

and P
cr"

!P
cr#

). Hence the beam becomes self-trapped in this region, and the
medium acts as an oscillatory waveguide. To obtain a numerical assessment of
self-focusing, (15) is solved numerically for typical sets of parameters for a
neodymium glass laser with irradiance exceeding 10") W cm−", ω

p!
¯ 0.5ω, r¯

1–3 µm, E
"!

}E
!!

¯ 0.2, φ
p
¯ 0 and r

!
}r

"!
¯ 1. Figure 1 illustrates the variation

of critical power with dimensionless beamwidth for a rippled Gaussian laser
beam. The variations of the beamwidth parameter f of the ripple and the
dimensionless axial intensity with propagation distance are illustrated in
Figures 2 and 3 respectively. The periodic structure is a signature of beam
propagation in a nonlinear medium with a power in excess of the critical power
for self-focussing.

We find that self-focusing of a rippled Gaussian laser beam can be analysed
like the self-focusing of a Gaussian beam in a plasma. The power of the beam
and the phase difference between the electric vector of the main beam and the
ripple are found to change the nature of the self-focusing of the ripple
significantly. Comparing our results with earlier work by Pandey et al. (1990)
shows that a small ripple on the axis of the main beam grows very rapidly with
distance of propagation as compared with self-focusing of the main beam, which
helps the relativistic self-focusing of a rippled laser beam in a plasma. Using
(15), one can write equations similar to (15)–(17) of Pandey et al. (1990) to find
the growth of a ripple in a plasma. It is further evident from (13) that the
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Figure 1. Variation of critical power for self-focusing (relativistic nonlinearity) with
dimensionless rippled beamwidth radius ω
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Figure 2. Variation of beamwidth parameter f with propagation distance z.
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Figure 3. Variation of dimensionless axial intensity with propagation distance z.
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relativistic-intensity with saturation effects of nonlinearity allows the nonlinear
refractive index in the paraxial region to have a slower radial dependence, and
thus the ripple extracts relatively less energy from its neighbourhood. The
present study has been performed under the paraxial-ray approximation, which
assumes that kv ' k, where kv is the transverse wave vector. For still higher
values of the rippled laser intensity, kv " k, and hence the paraxial
approximation does not hold.

At this stage, it is worth comparing our results when a sizeable region of
underdense plasma is placed in front of an overdense plasma. As the laser light
enters the system from the left and begins to penetrate through the critical
density, the surface of the plasma becomes corrugated (Wilks et al. 1992). This
behaviour is related to the ‘bubble’ formation studied by Valeo and Estabrook
(1975) and Estabrook (1976). Our case differs in that the perturbation on the
critical surface is seeded by the electron motion in the underdense plasma well
before the ions have a chance to move, in contrast to the previous work, which
assumes the ions to be responsible for the perturbation. This Rayleigh–Taylor-
like instability is due to the fact that the photons effectively accelerate the
plasma interface. As the pulse continues to propagate, the absorption increases
as a function of time, such that, after a certain propagation distance, the
divergence of diffraction overcomes the self-contraction, and therefore the
ripple intensity decays.
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